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Abstract

Let D be a finite and simple digraph with vertex set V(D). A
signed total Roman dominating function on the digraph D is a func-
tion f: V(D) — {-1,1,2} such that 37 .\, f(u) > 1 for every
v € V(D), where N~ (v) consists of all inner neighbors of v, and ev-
ery vertex u € V(D) for which f(u) = —1 has an inner neighbor v for
which f(v) = 2. Aset {fi,f2,..., fa} of distinct signed total Roman
dominating functions on D with the property that 3¢, fi(v) < 1
for each v € V(D), is called a signed total Roman dominating family
(of functions) on D. The maximum number of functions in a signed
total Roman dominating family on D is the signed total Roman do-
matic number of D, denoted by ds:r(D). In this paper we initiate
the study of the signed total Roman domatic number in digraphs
and we present some sharp bounds for ds:r(D). In addition, we de-
termine the signed total Roman domatic number of some digraphs.
Some of our results are extensions of well-known properties of the
signed total Roman domatic number of graphs.
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1 Introduction

In this paper we continue the study of Roman dominating functions in
graphs and digraphs. Let G be a finite and simple graph with vertex set
V(G), and let Ng(v) = N(v) be the open neighborhood of the vertex v. We
write K, for the complete graph of order n, K, 4 for the complete bipartite
graph with partite sets X and Y, where | X| = p and |Y| = ¢ and C, for
the cycle of order n. A signed total Roman dominating function (STRDF)
on a graph G is defined in [5] as a function f : V(G) — {-1,1,2} such
that 3", c v f(z) 2 1 for each v € V(G), and every vertex u € V(D) for
which f(u) = —1 is adjacent to a vertex v with f(v) = 2. The weight of
an STRDF f is the value w(f) = }_,cy(g) f(v). The signed total Roman
domination number vs;r(G) of G is the minimum weight of an STRDF on
G. A set {f1, f2,- .-, fa} of distinct s1gned total Roman dominating func-
tions on G with the property that Z _1 fi(v) £ 1 for each v € V(G), is
called a signed total Roman dominating family (of functions) on G. The
maximum number of functions in a signed total Roman dominating fam-
ily (STRD family) on D is the signed total Roman domatic number of G,
denoted by ds¢r(G). This parameter was introduced and investigated in [6).

Let D be a finite and simple digraph with vertex set V = V(D) and
arc set A = A(D). The order |V| of D is denoted by n = n(D). For
an arc (z,y) € A(D), the vertex y is an out-neighbor of x and z is an
in-neighbor of y. We write df(v) = d*(v) for the out-degree of a ver-
tex v and dp(v) = d~(v) for its in-degree. The minimum and mazimum
in-degree are 6 (D) = 6~ and A~(D) = A~ and the minimum and maz-
imum out-degree are 61 (D) = 6+ and At (D) = A*. The sets N, (v) =
N~(v) = {z|(z,v) € A(D)} and Nf(v) = N*(v) = {z|(v,z) € A(D)}
are called the in-neighborhood and out-neighborhodd of the vertex v. A di-
graph D is r-in-reqular when 6~ (D) = A~ (D) = r and r-out-regular when
6t(D) = A*(D) = r. If D is r-in-regular and r-out-regular, then D is
called r-regular. We write K, for the complete digraph of order n and K s
for the complete bipartite dzgraph with partite sets X and Y, where | X| =
and |Y| = g. For a real-valued function f : V(D) — R, the weight of f is

w(f) =X yev(py f(v), and for § € V(D), we define f(8) =3 yes f(v), s0
w(f) = f(V(D)). Consult Haynes, Hedetniemi and Slater [2] for notation
and terminology which are not defined here.

A signed total Roman dominating function (STRDF) on a digraph D is
defined in [7] as a function f : V(D) — {-1,1,2} such that f(N~(v)) =
Y zen-(v) f(z) = 1 for each v € V (D), and such that every vertex u €
V(D) for which f(u) = —1 has an in-neighbor v for which f(v) = 2. The
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weight of an STRDF f is the value w(f) = Zuev( p) f(v). The signed total
Roman domination number of a digraph D, denoted by 7,,r(D), equals the
minimum weight of an STRDF on D. The signed total Roman domina-
tion number exists when §— > 1. Thus we assume throughout this paper
that 6= (D) > 1. A s r(D)-function is a signed total Roman dominating

function of D with weight vs:r(D).
A concept dual in a certain sense to the domination number is the

domatic number, introduced by Cockayne and Hedetniemi [1]. They have
defined the domatic number of a graph by means of sets. A partition of
V(G), all of whose classes are dominating sets in G, is called a domatic
partition. The maximum number of classes of a domatic partition of G is
the domatic number of G. But Rall has defined a variant of the domatic
number of G, namely the fractional domatic number of G, using functions
on V(G). (This was mentioned by Slater and Trees [4].) Analogous to the
fractional domatic number we may define the signed total Roman domatic
number of digraphs.

A set {f1, f2,..., fa} of distinct signed total Roman dominating func-
tions on D with the property that ZLI fi(v) < 1 for each v € V(D), is
called a signed total Roman dominating family (of functions) on D. The
maximum number of functions in a signed total Roman dominating family
(STRD family) on D is the signed total Roman domatic number of D, de-
noted by ds:r(D). The signed total Roman domatic number is well-defined

and
dstR(D) 2> 1 (1)

for all digraphs D with 6= (D) > 1, since the set consisting of the STRDF
with constant value 1 forms an STRD family on D.

Our purpose in this paper is to initiate the study of signed total Roman
domatic number in digraphs. We study basic properties and bounds for the
signed total Roman domatic number of a digraph. In addition, we deter-
mine the signed total Roman domatic number of some classes of digraphs.
Some of our results are extensions of well-known properties of the signed
total Roman domatic number ds:g(G) of graphs G.

We make use of the following results in this paper.
Proposition A. (/6]) If p > 4 is an integer, then dgr(Kp p) = p-

Proposition B. (/7)) If K, is the complete bipartite digraph, then
YstrR(K, ;) = 2, unless p = 3 in which case vstr(K33) = 4.

Proposition C. (/7)) If K is the complete digraph of order n > 3, then
73!R(K,:) =3.
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Proposition D. ([6]) If k > 0 is an integer, then dsr(Kok+6) = 3k + 2.

Proposition E. (/7)) If D is an r-out-regular digraph of order n with
r > 1 and 6=(D) > 1, then y¢r(D) > [n/r].

Proposition F. ([7]) If D is a digraph of order n with 6~(D) > 3, then

(D

’YstR(D)Sn‘i'l—?[ 5

Proposition G. (/6]) If Cy; is the cycle of length 4¢ with an integer ¢ > 1,
then dsr(Cyt) = 2.

The associated digraph G* of a graph G is the digraph obtained from G
when each edge e of G is replaced by two oppositely oriented arcs with the
same end as e. Since N.(v) = Ng(v) for each v € V(G) = V(G*), the
following useful observation is valid.

Observation 1. If G* is the associated digraph of a graph G, then we
have v5¢tr(G*) = VstrR(G) and dstr(G*) = dstr(G).

Using Observation 1 and Propositions A, D and G, we obtain the next
three results immediately.

Proposition H. If p > 4 is an integer, then dyr(K} ) = p.
Proposition I. If k > 0 is an integer, then dgr(Kgy,¢) = 3k + 2.

Proposition J. If t > 1 is an integer, then dyr(C};) = 2.

2 Properties of the total signed Roman do-
matic number

In this section we present basic properties of dy;g(D) and sharp bounds on
the signed total Roman domatic number of a digraph.

Theorem 2. Let D be a digraph with (D) > 1. Then
dstR(D) < 6" (D)

Moreover, if dg (D) = 6~ (D), then for each STRD family { fy, fo,.--, fa}
on D with d = dg;g(D) and each vertex v of minimum in-degree, we have

Yuen= (v) fi(u) = 1 for each function f; and Z‘::l filu)=1for all u €
N~ (v).
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Proof. Let {f1, f2,..., fa} be an STRD family on D such that d = ds;r(D).
Assume that v is a vertex of minimum in-degree 6~ (D). It follows from
the definitions that

d
d<z Y. fw= ) D filws Y, 1=6(D)

i=1ueN-(v) u€N-(v) i=1 u€N-(v)

Thus ds:g(D) < 6~ (D).
If dssr(D) = 6~ (D), then the two inequalities occurring in the proof

become equalities. Hence for the STRD family { fi, f2, ..., fa} on D and for
each vertex v of minimum in-degree, )¢ N-(v) fi(v) =1 for each function

fiand ¥4 fi(u) =1 for all u € N~ (v). 0

Propositions H and J show that Theorem 2 is sharp. Inequality (1) and
Theorem 2 imply the next result immediately.

Corollary 3. If D is an oriented cycle or D = K7, then dstr(D) = 1.
Corollary 4. If D is a digraph with §=(D) = 3, then dgr(D) < 2.

Proof. Suppose to the contrary that dsg(D) = 3. Let {f1, f2, fs} be an
STRD family on D, and let v be a vertex of minimum in-degree. By
Theorem 2, we deduce that 3 cy-(,) fi(z) = 1 for each function f; and

21—1 fi(z) =1 for all z € N~ (v). It follows that fi(z) < 1forall z €
N~(v) and 1 <4 < 3. This implies f;(v) > 1 for 1 < i < 3, and we obtain

the contradiction o f;(v) > 3. Thus dyr(D) < 2. O
Theorem 5. If D is a digraph of order n with 6~ (D) > 1, then

Vstr(D) - dstr(D) < 7.

Moreover, if we have vs5:r(D) - dstr(D) = n, then for each STRD family
{f1,f2,.--,fa} on D with d = dsr(D), each function f; is a ysr(D)-

function and Z;Ll fi(v) =1 for all v € V(D).

Proof. Let {f1, f2,..., fa} be an STRD family on D such that d = ds¢r(D)
and let v € V(D). Then

d
d-Ystr(D) = Z%m <Z Z fi(v)
=1

i=1veV(D)

= ¥ Yheg ¥ 1=n

veV(D) i=1 veV(D)
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If v5¢r(D) - dstr(D) = n, then the two inequalities occurring in the
proof become equalities. Hence for the STRD family {fi, f2,-.., fa} on
D and for each i, 3, cy(p) fi(v) = Ystr(D). Thus each function f; is a

~vstr(D)-function, and ZLI fi(v) =1 for all v € V(D). O

For p > 4, we conclude from Propositions B and H that Ystr(Kp p) -
dstR(K;’p) = 2p and therefore equality in Theorem 5. Using Propositions
C and I, we obtain Vstr(Kgyy6) - dstr(Kgkiq) = 9k + 6. This is a further
example that demonstrates the sharpness of Theorem 5. For some out-
regular digraphs we will improve the upper bound given in Theorem 2.

Corollary 6. Let D be an r-out-regular digraph of order n such that 7 = 2
and 6~ (D) > 1. If n is not a multiple of r, then dyg(D) < r — 1.

Proof. Let n = pr+t with integers p>1and 1 <t <r — 1. According to

Proposition E, we have

Ystr(G) 2 [E] = {_r_] =p+1.

r

Now Theorem 5 yields to

n n
dstr(D) < < <,
(D) Ystr(D) ~ p+1

and therefore dgg(D) <1 - 1. O

Propositions H and J demonstrate that Corollary 6 is not valid in general
when n is a multiple of r.

A digraph without directed cycles of length 2 is called an oriented graph.
An oriented graph is called a tournament when either (u,v) € A(D) or
(v,u) € A(D) for each pair of distinct vertices u,v € V(D). By D~ we
denote the digraph obtained by reversing all arcs of D.

Corollary 7. If T is an r-regular tournament of order n with r > 2, then
dstR(T) S r—1.

Proof. Since T is an r-regular tournament, we observe that n = 2r 4 1.
Therefore it follows from Corollary 6 that dgg(T) < r — 1. O

Corollary 8. If D is an oriented graph of order n with §~(D),6~(D~1) >
1, then dytp(D) + dstp(D~1) < — 2.

Proof. If D is not a tournament or D is a non-regular tournament, then
6=(D) 4+ 6= (D~') < n -2, and hence we deduce from Theorem 2 that

dstr(D) +dgtr(D7Y) < 6~ (D) + 6~ (DY) <n—2.
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Let now D be an r-regular tournament. Then D~! is also an r-regular
tournament such that n = 2r 4+ 1. Now Corollary 7 implies

dstr(D) +dstr(DH < (r—=1)+(r—1)=2r—-2=n-3.
This completes the proof. 0

For the next theorem we use the following three digraphs of order 4.
Let K} be the complete digraph with vertex set {u1,u2,u3,u4}. Define
the digraphs of order 4 by

Ay = K7 — {(u1,u2), (uz, u1), (u1,us), (uz,u3)},

Az = K — {(u1,u2), (u2,u1), (u1, uq), (uq,u3)}
and
Az = Kj — {(u1,u2), (u2,u3), (u3, uq), (ug, 1)}

Note that A;, A2 and A3 are 2-in-regular.
Lemma 9. For i =1,2,3, we have ds:r(4:) = 2.

Proof. Theorem 2 implies that dg;gr(A;) < 2 for i = 1,2,3. Now define the
functions fi, f2: V(4;) — {-1,1,2} by

fi(u1) = fi(us) = =1, fi(uz) = fi(ug) =2

and
fo(ur) = fa(us) =2, fa(uz) = fo(us) = —1.

It is easy to see that f; and f; are signed total Roman dominating functions,
and that {fi, f2} is a signed total Roman dominating family on A;, A2 and
As. Therefore ds;r(A;) > 2 and so dg;r(A;) =2 fori=1,2,3. O

Theorem 10. Let D be a digraph of order n > 3 with §7(D) > 1. Then
ds:r(D) < n — 2, with equality if and only if n =3 orn =4 and D is
isomorphic to A;, Az, Az or Cj.

Proof. For n = 3 Theorem 10 is valid. Let now n > 4 and let = = §— (D).
If 6~ < n — 2, then Theorem 2 implies that dsg(D) < 6~ < n—2.
If 6~ = n—1, then D is isomorphic to the complete digraph K3, and
we deduce from Proposition C that vs:r(D) = 3. Hence it follows from
Theorem 5 that

dstR(D) <

n n < 9
= = n—a.
'YstR(D) 3~

If n = 4 and D is isomorphic to A;, Az, A3 or Cj, then it follows from
Lemma 9 and Proposition J that dgp(D) =2=n—2.
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Coversely, assume that dssp(D) =n —2. If ~ < n — 3, then Theorem
2 leads to the contradiction n — 2 = dygr(D) < 6~ < n — 3. Thus there
remain the cases 0" =n—1ord~ =n-2. If )~ =n—1, then we observe
as above that n — 2 = dstr(D) < n/3, a contradiction to n > 4.

Next assume that 6~ = n — 2. If n = 4, then it is straightforward to
verify that D is isomorphic to A;, A, A3 or Cj. Let now n > 5, and let
f be a y5¢r(D)-function. If f(z) = 1 for all z € V(D), then v5tr(D) =
n > 2. If f(v) = —1 for any vertex v € V(D), then there exixts a vertex
w € V(D) with f(w) = 2. If d~(w) = n—1, then it follows that vs:r(D) =
fw) + 3 sen-(w) flz) >2+1=3>2 Ifd(w) =n-2, then let
u # w be a vertex such that u ¢ N~ (w). We observe that v;,er(D) =
fw) + 3 zen-(w) f(@) + f(v) 2 2+1-1=2. Altogether, we have shown
that vs:r(D) > 2. Using again Theorem 5, we obtain

n n
n—2=dugr(D) < < -,
e Vstr(D) ~ 2
a contradiction to n > 5. This completes the proof. O

Corollary 11. If D is a digraph of order n > 5 with §—(D) > 1, then
dstR(D) S n—3.

For r-out-regular digraphs we can improve Theorem 10.

Corollary 12. If D is an r-out-regular digraph of order n with » > 1 and
0= (D) > 1, then dygr(D) < n/2.

Proof. It follows from Proposition E that yur(D) > [n/r] > 2. Thus
Theorem 5 implies that dgg(D) < n/ysir(D) < n/2. 0O

Proposition H demonstrates that Corollary 12 is sharp. Using Obser-
vation 1 and Theorems 2 and 5, we obtain the corresponding results for

graphs given in [6)].
3 Upper bounds on 7;g(D) + dsr(D)

The upper bound on the product y,;r(D)-dstr(D) leads to an upper bound
on the sum of these two parameters.

Theorem 13. Let D be a digraph of order n > 3 with 6~ (D) > 1, then
'YStR(D) T dstR(D) <n+1l,

with equality if and only if v5z(D) = n.
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Proof. It follows from Theorem 5 that
n
D + d D S T T e ‘+’ da D Vs
Ystr(D) + dstr(D) dyr(D) tr(D)

According to inequality (1) and Theorem 2, we conclude that 1 < d,p(G) <
n — 1. Using these bounds, and the fact that the function g(z) = z + n/z
is decreasing for 1 < z < y/n and increasing for \/n < z < n — 1, the last

inequality leads to

n
<
Ystr(D) + dstr(D) < *dsz (D)+dam(D)

< max{n+1,——7l—+n—1}=n+1.
n—1

If vs¢tr(D) = n, then we have Ygr(D) + dstr(D) = n + 1. Conversely,
if v5¢tr(D) + dgtr(D) = n + 1, then the above inequality chain leads to

dstr(D) =1 and thus y,g(D) = n. O

For example, if D is the disjoint union of oriented cycles, then D is

1-regular, and it follows from Proposition E that v5r(D) = n(D) and thus
Ystr(D) + dstr(D) = n+ 1. Theorem 13 and Proposition F lead to the

next corollary.
Corollary 14. If D is a digraph of order n with §=(D) > 3, then
Ystr(D) + dstr(D) < .
For digraphs D with 6= (D) > 5, we can improve Corollary 14.
Theorem 15. If D is a digraph of order n with §=(D) > 5, then

7stR(D) S dstR(D) <n-2,
unless n = 6, in which case D = K¢ with y,g(Kg)+dstr(Kg) =5=n—-1.

Proof. If v54g(D) > n/2, then Theorem 5 implies ds:r(D) = 1. Using the
hypothesis §~(D) > 5 and Proposition F, we arrive at vs:r(D)+dstr(D) <
(n—3)+1=n-2. Let now vs:r(D) < n/2. If ystr(D) < 1, then it follows
from Corollary 11 that ys;p(D) +dstr(D) < 14 (n—3) =n—2. So assume
that vstr(D) > 2. Then Theorem 5 leads to

n n
D) +dgur(D) < D)+ —F—— <2+ —-. 2
VstR(D) + ds¢r(D) < Vstr(D) = r(D) 5 (2)
If n > 8, then we deduce from (2) that Ys¢r(D)+dgr(D) < 2+n/2 < n—2.

Assume next that n = 7. Then we observe that 2 < ~4,gr(D) < 3.
If v5¢r(D) = 2, then Theorem 5 leads to dstr(D) < 3 and so vsir(D) +
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dgtr(D) < 5=n—2. If y¢r(D) = 3, then dger(D) < 2 by Theorem 5 and
hence Y5tr(D) + dgtr(D) < 5 = n — 2 again.

Finally, assume that n = 6. The hypothesis §=(D) > 5 yields to
D = K§. According to Propositions C and I, we have v, z(D) = 3 and
dstr(D) = 2 and thus ystr(D) + dstr(D) = 5 = n — 1. This completes the
proof. O

4 Nordhaus-Gaddum type results

Results of Nordhaus-Gaddum type study the extreme values of the sum or
product of a parameter on a graph or digraph and its complement. In their
classical paper [3], Nordhaus and Gaddum discussed this problem for the
chomatic number of graphs. We present such inequalities for the signed
total Roman domatic number of digraphs.

The complement D of a digraph D is the digraph with vertex set V(D)
such that for any two distinct vertices u,v the arc (u,v) belongs to D if
and only if (u,v) does not belong to D. As an application of Theorem 2,
we will prove the following Nordhaus-Gaddum type result.

Theorem 16. If D is a digraph of order n such that 6= (D),6— (D) > 1,
then

dstr(D) +dstr(D) <n—1.
Furthermore, if dg;r(D) + ds;r(D) = n — 1, then D is in-regular.
Proof. Since 6=(D) = n—1— A~(D), it follows from Theorem 2 that

dytr(D) +dstr(D) <67 (D)+67(D) =67 (D)+(n-1-A(D)) <n—1.

If D is not in-regular, then A™(D) —47(D) > 1, and hence the above
inequality chain implies the better bound dgg(D) + dstr(D) <n—2. O

As an application of Corollary 6, we improve Theorem 16 for r-regular
digraphs.

Theorem 17. Let D be an r-regular digraph of order n > 5 with 1 < r <
n — 2. Then

dstR(D) + dstR(—ﬁ) <n- 2. (3)
Proof. Since D is r-regular, D is (n — r — 1)-regular. We assume, without
loss of generality, that n —r —1 <.
If n = pr+twith integers p>1and 1 <t <r—1, then it follows from
Theorem 2 and Corollary 6 that

dstr(D) +dstr(D) <7 —1+(n—-r-1)=n-2.



Thus assume now that n = pr with an integer p > 2. Asn—r—1<r, we
observe that pr=n=r+(n—r—-1)+1<2r+1 and so p = 2. Therefore
n=2rand hencen—r—-1=2r—-r—1=r—-1andr > 3.

Ifn=gq(n—r—1)+¢ withintegersg>1and 1<t <n-r—2, then
it follows from Theorem 2 and Corollary 6 that

dstr(D) + dr(D) <r+(n—-r—-1)—1=n-2,

Thus assume next that n = g(n —r — 1) with an integer ¢ > 2. Altogether,
we have
n=2r=q(n-r—-1)=gq(r-1)

with r > 3. It is easy to see that the last identity is only possible for ¢ = 3
and r = 3 and so n = 6. However, in this case we conclude from Corollary

4 and Theorem 2 that d,gR(D) + dstR(-D) < 242 =4=n-2. This
completes the proof. O

Clearly, since dgr(D) + dstr(D) > 2 by (1), Theorem 17 is not valid
for n = 3. In addition, the digraphs C;§ and A3 show that Theorem 17 is
not valid for n = 4 in general.

Corollary 18. If T is a tournament of_ odd order n > 5suchthat 6= (7T") > 1
and 5_(7) Z 1, then dstR(T) + dstR(T) S n—3.

Proof. If T is an r-regular tournament, then T is also an r-regular tour-
nament such that n = 2r + 1. Therefore it follows from Corollay 7 that
dstR(T) - dstR(T) < (‘I‘ =5 1) + (1‘ - 1) =n-3. A

Assume now that T is not regular. Then §=(T) < (n—3)/2and 6—(T) <
(n — 3)/2, and we deduce from Theorem 2 that

o _  7=3 p=3
d,tR(T)+d,tR(T)56‘(T)+6“(T)5n2 +"2 =<3
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