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Abstract

There are 19 connected cubic graphs of order 10. If G is one of
a specific set 3 of the 19 graphs, we find necessary and sufficient
conditions for the existence of G-decompositions of K.

1 Introduction

For a graph G, we use V(G) and E(G) to denote the vertex set and the
edge set of G, respectively. We use K, to denote the complete simple
multipartite graph with r parts of size s, and we use K «s,¢ to denote the
complete simple multipartite graph with r parts of size s and one part of size
t. If a and b are integers with a < b, let [a, b] denote the set {a,a+1,...,b}.

A decomposition of a graph K is a set A = {G),Ga,...,G;} of sub-
graphs of K such that each edge of K appears in exactly one G;. If each
G; in A is isomorphic to a given graph G, the decomposition is called a
G-decomposition of K. Similarly, if G and H are subgraphs of K, then
a {G, H}-decomposition of K is a set A = {Gy,Gy,...,G,} of subgraphs
of K such that each edge of K appears in exactly one G; and each G; is
isomorphic to either G or H. If there exists a G-decomposition of K, then
we say G divides K and write G|K. A G-decomposition of K is also known
as a (K, G)-design.

For a positive integer v, let K, denote the complete graph on v vertices.
If vy,v2,...,v; are positive integers, let K,, ,,.. v, denote the complete t-
partite graph with parts of size vy, vs,...,v. A (Ku,,... 0., Ki)-design
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s also known as a group divisible design. For the sake of brevity, we will
refrain from adding too many details on these concepts and direct the
interested reader to the Handbook of Combinatorial Designs (9] and to the
summaries within on group divisible designs [10].

Given a graph G, a classical problem in combinatorics is to find nec-
essary and sufficient conditions for the existence of a G-decomposition of
K,. This is known as the spectrum problem for G. The spectrum problem
has heen investigated and settled for numerous classes of simple graphs G
(see [2] and [6] for summaries, and the Web site maintained by Bryant and

McCourt (7] for more up to date results). When G is a complete graph, the
spectrum problem was settled by Kirkman (14] for G = K3 and by Hanani

[12] for G € {K4,K5}
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Figure 1: The 19 connected cubic graphs of order 10.

In this work, we are concerned with the spectrum problem for the 3-
regular graphs (i.e., cubic graphs) of order 10. There are 19 non-isomorphic



connected such graphs (see Figure 1).

If G is a cubic graph of order 10 and if there exists a (K, G)-design,
then we must have 15((3) (since the number of edges in G is 15 and the
number of edges in K, is (3))) and 3|v — 1 (since G is 3-regular and K, is
(v — 1)-regular). Thus we must have v =1 or 10 (mod 15).

The spectrum problem was settled for the Petersen graph (Graph (s) in
Figure 1) in [1]. More recently, the spectrum problem for the 5-Prism and
5-Mobius (Graphs (o) and (g) in Figure 1, respectively) was settled in [16].
It is also known that 5 of the connected cubic graphs of order 10, namely
Graphs (b), (n), (0), () and (s) in Figure 1, do not decompose Ko [3].

In [17], it is shown that if G is a cubic tripartite graph of order 10, then
there exists a G-design of order v for all v =1 (mod 30). Thus to settle
the spectrum problem for the three graphs in Figure 2, it suffices to settle
the cases v = 10,16 and 25 (mod 30).

Several authors have considered (K, G)-designs for various cubic graphs
G. In [12], Hanani settled the spectrum problem for K-designs by show-
ing that there exists a (K, K4)-design if and only if v =1 or 4 (mod 12).
The spectrum problem for K3 3-designs was settled by Guy and Beineke in
[11]. The spectrum problem for the 3-prism was settled by Carter [8]. The
spectrum problem for the 3-dimensional cube was settled by Maheo in [15].
More recently, the spectrum problem for the remaining 4 connected cubic
graphs of order 8 was settled in [5].

In this work, we will settle the spectrum problem for 3 of the cubic
graphs of order 10 by showing that if v = 1 or 10 (mod 15) and if G €
{G1,G16,G18} (from Figure 2), then there exists a G-design of order v.
Henceforth, each of the graphs in Figure 2, with vertices labeled as in the
figure, will be represented by Gilvo,v1,---,v9]. A G-decomposition of a
graph with vertex set V may be written as a pair (V, B), where B is a
collection of copies of G that partitions the edge-set of the graph.

Figure 2: The 3 cubic graphs of order 10 of interest in this work with their
vertices labeled.

We first state a well known result on K4-decompositions of certain com-
plete multipartite graphs as well as a result on { K3, K5}-decompositions of
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K,.. We make use of these results in the next section. All of these results
can be found in the Handbook of Combinatorial Designs [9].

Theorem 1.1 There ezists a K4-decomposition of K,.xo tf and only if
n=1 (mod 3) and n 2 4.

Theorem 1.2 There exists a K4-decomposition of Knx25 if and only if
n =0 (mod 3) andn > 9.

Theorem 1.3 There ezists a {K3, Ks}-decomposition of K,, if n is odd.

2 Main Results

In this section we show that if G is one of the three graphs of order 10 in
Figure 2, then there exists a G-decomposition of K, for all v = 10, 16 or 25
(mod 30). Combined with previously known results, this will show that for
these 3 graphs, there exists a G-decomposition of K, if and only if v = 1 or
10 (mod 15). We first present several G-decompositions of various graphs.
These decompositions are needed for the main construction.

Example 2.1 Let V = Z and let

B, = {Gy[11,6,0,12,3,15,4,1,9,13],G4[11,8,13,14,4,3,1,10, 5,12,
G1[14,8,0,9,7,4,6,13,10,15),G1[0,2,1,5,4,9,3,8, 6, 10],
Gi1[1,7,6,14,10,0,13,2,15,12),G1(1,8,15,11,5,13,3,2,7, 14],
G1[2,6,5,9,12,4,0,3,11,7],G,[5,7,15,14,12,8,2, 10,9, 11},

Bis = {G14[5,0,1,4,2,12,15,3,7,13], G1[13,11,1,9,7,6,12,3, 5, 4],
Gi6l6,1,15,9,11,8,12,4,10,3],G16[0,3,8,5,6,2,1,10, 14, 4],
Gi6[0,7,14,12,9,6,10,13,1,8], Gy6[0,11, 15,8, 10,9, 14, 2, 7, 12],
Gi6(4,8,13,9,2,11,7,5,14, 15], G16[5,2,3,14,6,11,10,0, 13, 15)},

Big = {Gs[4,8,1,7,12,0,14,13,5,11], G155,0,3,11,13,9, 10, 7, 15, 2],
G1s(6,8,2,3,12,15,0,9,11,1],G15[8,0,6,3,9,7,2,1, 4, 5),
G1s(13,0,11,14,4,7,6,10,2,12], G15(15,1,13,4, 6,14, 2,9, 12, 10],
Gs[15,4,12,1,10,11,8,3,14,5),G15[7,5,10,8,15,3,13, 6, 9, 14] }.

Then it can be verified that (V, B;) is a G;-decomposition of K¢ for i €
{1,16,18}.
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Example 2.2 Let V = {a, : a € Zs and b € {1,2,3,4,5}}. Ifiisa
nonnegative integer, j € [0,9], b; € {1,2,3,4,5}, and G € {G1,G16,G1s},
then G[(ao)b,, (@1)by, - - - » (a9)s,] +1 means G[(ag +1)sy, (a3 +1)sy,-- -+ (@0 +
i)bo]- Let
Bl . {61[011021 llv 22132’0312112313h04] +1 (1€ Z5}

U {G1(01,14,21,05,11,42,03,33,23,24] +1: i € Zs}

U {G1(01,1s,13,25,02,03,12,04,14,05] + i : i € Zs}

) {Gl[03a35125145i241441 12934,32, 15] +1:1€ Zs},

Big = {G16[01,21,12,04,42,11,32,13,03,0,) +1: i € Z5}
U {G16[01,13,02,05,04,03,21,14,34,23] +i :7 € Zs}
U {G16[04, 14,43, 45, 32, 04, 3,, 15,23,05) +i:i € Zs}
U {G16[02, 29,43, 15, 21,35,24,34,05,45] +i:1€ Zs},

By = [Gis[02,01,21, 13, 00,23, B4y 1x. o, Og] b 6% § € e}
U {G18(23,01,13,42,05,04,21,03,29,44) + i : i € Zs}
U {G18[24,01,14,05,34,44,03,04,15,3;] +i : i € Zs}
U {G1s[4s,0;, 15,33,23,35,12,05,03,25] +i: i € Zs}.

Then it can be verified that (V, B;) is a G;-decomposition of Kos for i €
{1,16,18}.

Example 2.3 Let V = {ay : a € Zy3 and b € {1,2,3}} U {00}, and let

By = {G1[01,31, 11,51,09,24,81,29, 12,42] +1:1€ le}
U {01[01,42,02,52,21,32, 101,03,92,13] +i1:1€ le}
U {G1(04, 23,03, 53, 41, 13,21,83,02,113) +i:i € Zy13}
U {G1[02,63,03,93, 125, 114, 3,, 103,82,00] +i:1€ Zla},

Bis = {G16[01,21,81,82,02,11,61,22,15,3;] + i : i € Z3}
U {G15[01122a 10y, 13, 52,12, 74, 112,03,32] +i1:1€ Zla}
U {G16[01,13,02,113,51,03,2,73,3,23] +i : i € Z13}
U {G15[02,53,91,00, 13,03,23,92,33,83] +1:1€ Zlg}.

Big = {G18[31,01,21,02,79,29,61,11,71,49) + i : 1 € Zy3}
U {G1s[42,01,32,111,53,03,81,25,9y,23] + i : i € Z13}
U {G18(23,01,13,22,43,53,21,03,05,12,) +i : i € Zy3}
U {013113,02,63, 119,00,4,, 123,22,73,53] +1i:1€ Zm}.
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Then it can be verified that (V, B;) is a G;-decomposition of K40 for i €
{1,16,18}.

Example 2.4 Let V = {ay:a € Z;; and b € {1,2,3,4,5}}, and let

Bi = {G4[0y,3,1},51,02,21, 12,81, 22, 4] + i : i € Zy11 }

U {G1[04,22,12,03,101,13,21,63,3;,83) +i:i € Z11}
U {G1[0,,83,73,04,02,42,92,33,03,14] + i : i € Z11}

U {G1[0, 24, 14,34,41,04,31,05,51,15) +i:i € Zy1}

U {G1[0,,0s,44, 15,71, 14,09,03,22,43] + 1 : i € Zy3 }

U {G,[0y,25,10s,35,02,13,62,04,92,44) + i : i € Z11 }
U {G1[02,74,44,45,102,05,12,15,42,105) + i : i € Zy1}
U {G1[03, 04, 53, 24, 63, 54,05, 33, 75,64 + 1 : i € Z11}

U {G1[04, 35, 54,45, 13, 105,03, 05,43, 55) + i : i € Z11 },

Bis = {G16[01,21,22,42,02,11,61,72,12,31] +i: i € Zyy }

U {G15[01,32,91,53,03,22, 71,23, 13,42 + i : 1 € Zy1 }

U {G16[01, 13,41, 14,02,03,21,04,93,23] +1 : 7 € Zy; }

U {G15[01,04,11,64,32,43,02,33,34,14] +i : 1 € Z1 }

U {G16[01,44,81,15, 12,34, 72, 13,05,64] + i : i € Z1y }

U {G1s[01, 15,02, 105, 51,05,21,95,63,25] + i : i € Z11 }
U {G16[02, 44,52, 25, 04,103, 83, 14, 15,64] + i : ¢ € Z1y }
U {G15[02, 3s, 23, 84,03, 25, 82,65, 74,45) +1 : i € Z11 }

U {G15[03, 104, 64,25, 10s, 55, 35, 53, 34,65) + i : i € Z11 },

Bis = {G18[31,01,21,22,81,12,61,11,02,42] + i : i € Z11 }

U {G15[82,01, 72,03, 43,23, 12,22, 52,33 + i : i € Z1;}

U {G15(23,01,13,51,14,73,21,03,31,04] +7 : i € Zy }

U {G1s[63,01,43, 72,04, 14,12,33,32, 24 +7: i € Zy; }

U {G1s[24,01, 14,91, 35,05, 71,04, 11, 15] +1 : ¢ € Z11 }

U {G1s[7s,01,65,12,105,73,02,15,21,05) + i : i € Z11}
U {G15[34, 02, 24,62, 35,103,03,14,32,105) + i : i € Zy1 }
U {G1s[3s,02,25,03, 75,24, 53,54, 23, 15| + i : i € Z11 }

U {G1s[9s, 03, 65, 75,44, 45, 24, 104, 64, Ly +izi€ Zy1 }.

Then it can be verified that (V,B;) is an G;-decomposition of Ksgs for
i €{1,16,18}.



Example 2.5 Let V = {a;:a € Zy7 and b € {1,2,3,4,5}}, and let

By = {G1(01,31,11,51,111,41,02,21,12,29) + i : i € Zy7}
U {G1(01,42,12,52,21,82,11,03,13;, 13] +1 : i € Zy7}
U {G1[01, 13,82, 23, 41,135, 21,93, 3y, 113] + i : i € Zy7)
U {G1[01, 103,33, 113, 151, 04, 11, 2, 21, 54] +i ¢ § € Zy7)
U {01[01, 64,54, 74,101, 14,61, 164,71,05] +i:1€ 7}
U {G1[04,1s,0s,2s,31,65,11,85,21,145) + i : 1 € Z17}
U {G1[02,03,52,13,22,82,12,33,16,,63) + i : i € Zy17}
U {G1(02, 83,33,93,04, 12,73, 14,153,54) +1 : i € Zy7}
U {G1[02, 54,04, 64, 22,34,12,124,55,05) + i : i € Zy7}
U {G1[02, 05,84, 15,91, 65, 12,114,2,8;) +1 : i € Zy7}
U {01[02, 25,124, 35, 52, 14,432,035, 03, 125] 41:1€ 217}
U {G1(03,04, 43, 64,13,54,83,05,103,45] + i : i € Zy7}
U {G1[03, 45,104, 55, 112,35, 13, 25,04, 165] + i : i € Zy7}
U {G1[03, 145, 65, 165,63, 95,94, 24, 114,155 + i : i € Z17},

Big = {G13[01,21, 124,35,9;,11,6,19,05, 31] +i:1€ Zl-;}
U {G16[01,12,51,03,101,02,21,122,89,2,] + 1 : i € Zy7}
U {G16[01, 62, 142, 63,112,4,13,33,13,05] + i : i € Zy7}
U {G16[01,23,51,04,71,13,31,133,93,33] + i : i € Zy7}
) {G15[01,63, 14,, 14,92,53,52,23,04,83] +i:1€ Zn}
U {G15[01, 14,441,134, 61, 04,21,84,94,24] +1:1€ Z17}
U {G16[01,0s, 11,45, 22, 84,02,33,35,15) + i : i € Zy7}
U {G16[01, 55,121, 25, 101,45, 71,155, 75,65 + i : i € Zy7}
U {G16[02, 83, 102, 34,04, 73,03, 62,44,103] + 7 : i € Z17}
U {G16[02,14,22,05,122,04,52,84,64,24) + i : i € Zy7}
U {G16[02, 35, 03, 145,82, 15,62,05,53,45) + i : i € Zy7}
U {G16[02,85,63, 34,33,75,03,55,14,95] +i:1€ Z17}
U {G16[03,24,63,25,94, 14, 133,44,05,34] +1:1€ Zl7}
U {G16(03,10s, 114,115, 84,95, 44, 165, 55, 155) +i:1 € Zy7},
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Bis = {018[31,01,21,9,,52,02,61,11.71,22] +i1i€Zy7}
U {615[12,01,02,91, 139, 2,105, 8;, 115, 142] +1:1€ Z17}
U {G1s[92,01, 72, 33,11,63,03,62,13,83] + 1 : i € Zy7}
U {Gs[ds,01,33,71,133,123,41,13,31,04) + i : i € Zy7}
U {Gs[113,01,93,12,14,153,02,73,12,,04] + i : i € Zy7}
U {G1s[24,01,14,61,05,54,21,04,41,134] + 1 : i € Zy7}
U {Gis[114,01,84,22,124,03,02,44,12,33) + i : i € Zy7}
U {Gs[25,01,15,61,115,55,21,05,31,105] + i : i € Zy7}
U {G15[10s,0y, 95, 22,34, 33,02,65,12,63) + i : i € Z,7}
U {G1s74,02,54, 72,05, 04, 33,63,43,24] + i : i € Z;7}
) {013[144,02,134,33,25,54,43,94,23,05] +i:1€ Z17}
U {013[25,02,15,63,165,65,22,05,32,145] +1:1€ Zl?}
U {013[125,02,85,04,55,64.23,35,03,164] +i:1 €27}
U {G 595, 03,115, 44, 85, 105,04,25,104,84] +i:i € Zy7}.

Then it can he verified that (V, B;) is a G;-decomposition of Kgs for i €
{1,16,18}.

Example 2.6 Let V = {ay:a € Zs and b € {1,2,3,4}} and let
{Usep.q{a;: a € Zs}} be a partition of V. Let

By = {G)[0,,03,02,13,21,12,33,11,04, o] + i : i € Zs5}
U {G1[01, 14, 12,34,03,44, 21,42, 23, 24] +1 : i € Zs},

Bis = {G1s[01, 12,23, 41,03,02,21, 13,04, 22) +1 : i € Zs}
U {G16[01a03124’23102$041 12v3414ly 14] +1:1€ Zs},

Bis = {G18[22,01,12,23,41,13,21,02,03,04] +i : i € Zs}
U {G15[03, 01, 14, 42,34, 22,43, 04, 11, 44] + 1 : i € Zg}.

Then it can be verified that (V,B;) is a Gi-decomposition of K4xs for
i €{1,16,18).



Example 2.7 Let V = {ay: a € Zy5 and b € {1,2,3}} and let
{Ujepn,3y{aj: a € Zys5}} be a partition of V. Let

Bl — {01[01103’021 131 211 12r31,52,41,73] +1 4 | € le}
U {G1[01,23,32,63,94,02,61,12,8,133] +i : i € Z;5)
U {Gllolv 1039421 1137227 123) 121 111)72153] +1:1€ Z]5},

By = {G16(22,01,132,133,82,03,145,64,73,13)] +i : i € Zy5}
U {G16[01,12,43,21,23,02,4,03,9;1,32] + i : i € Zy5}
U {G16[02, 63,131,52,01,43,11,03,42,123) + i : i € Z5},

Big = {G1s(02, 113,121, 143,132,111, 33,142, 53,5,] + i : i € Zy5}
U {G1s[32,01,12,51,104,33,21,02,34,83] +i:i € Z;5}
U {G18[43,01,92,83,101,12,33,82,63,11;] + i : i € Zy5}.

Then it can be verified that (V, B;) is a G;-decomposition of Kax1s for
i € {1,16,18}.

Example 2.8 Let V = {ay : a € Z;5 and b € {1,2,3,4,5}} and let
{Ujepsi{aj:a € Zy5}} be a partition of V. Let

B, = {G][gs, 114, 143, 24, 55, 13, 124,64, 144, 115] +i:1€ le}

U {Gl[lz, 114,125, 124,82,35,02,61,73,85] +i:1€ le}
U {01[34, 135,131, 145,54, 03, 149,71, 14,65) +i: 1 € Zys}
U {01[21,73, 145,123, 74,84, 113,44, 143,141] +1:1€ le}
U {G1[54, 61,592,13,145, 15,104, 4;, 23, 105 +i:1 € Zs}

U {G1[01,43,02,63,101,52, 11,32,21,24] +1:1€ le}

U {G1(01,83,115,24,51,20,41,04,03,135] + i : i € Zy5}

U {G1[01,44,23, 104,12,, 85, 32,123, 49, 114] +i:1€ le}
U {G1(01,10s, 73,135,133, 54, 75,31, 115, 23] +1 : i € Z;5}
U {G1[02,54, 143,94, 72, 65, 31, 64, 92, 105] +i:1€ le},



By = {Gi6[91,0s, 132,03, 104, 45, 33, 14,61,125) +1:1 € Zy5}
U {G6[61,105, 143,10y, 32,93,31, 122,01, 114) +i : i € Zy5}
U {Gs[125, 01, 55, 03, 81, 144, 123,03, 41, 23] + i : i € Zy5)}
U {Gy6[134, 112, 123,05, 92,25,03,59,114,83] +i:1 € Zys}
U {G6[02,124, 85, 142, 103,104,135, 144, 114, 15] +i:1€ le}
U {G16[01, 12,61, 55, 73,02, 21,24, 23, 40] +1 : i € Zy5}
U{G16[01,23,71,03,94,13,82,75,14,53] + 4 : i € Z1s}
U {G16[01, 24, 51,55, 22, 14, 31,104, 35, 34] + i : i € Z15}
U {G16[02, 75,33, 25, 01, 44, 73,22, 94, 115] + 1 : § € Zy5}
U {G16[03, 74, 132,84,01,95, 112,05, 34,85 + i : i € Zys},

Bys = {G15[115, 114,75,123,61,43,32, 105,12,51] +i:1€ le}
U {015[114,92,73, 13,,114, 15, 34, 5, 133,05] +i:1€Z5}
U {Gs[l4,143,135,82,04,11,143,44,105, 114 +1 : i € Z15}
U {G1s[T1,62,133,10y,29, 14,8y, 25,14, 75| + i : i € Zys}
U {G1s[122,121,34,23,14,95,92,74,13,54) + i : i € Zys5}
U {G)5[62, 01,52, 121,85, 74,03, 12, 71,63) + i : i € Z1s}
U {Gis[4a,01,13,42,84, 25,41,03,51, 14] +1 : i € Zys}
U {G)1s[ds,01,24,112,145,93,6,14,4;,65] + i : i € Zys}
U {615[74,01,75,92,05,72, 113,45,124, 143] +1i:1€ L5}
U {013[94,03,42,63, 75, 62, 123,95,33,65] +i:1€ le}.

Then it can be verified that (V, B;) is a G;-decomposition of K5y 5 for
i € {1,16,18}.

We now give our main constructions.

Lemma 2.9 Let G € {G,G16,G1s}. There ezists a G-decomposition of
K, for allv=10 (mod 30).

Proof.  Let x be a nonnegative integer and let v = 30z +10. For v = 10,
the results follow from the paper by Adams, Bryant and Khodkar [3]. For
v = 40, the results follow from Example 2.3. So we may assume z > 2.

By Theorem 1.1, there exists a K4-decomposition of K(3:41)x2. Re-
placing each vertex of K(3,41)x2 by a set of 5 vertices and each edge of
Kaz41)x2 by a copy of Ks 5 gives a Kyxs-decomposition of Kaz+1)x10-
By Examples 2.6 and 2.1, there exist G-decompositions of K4x5 and K.
Thus the result now follows. n
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Lemma 2.10 Let G € {G,G16,G13}. There ezists a G-decomposition of
Ky for allv=16 (mod 30).

Proof. Let z be a nonnegative integer and let v = 30z +16. For v = 186,
the result follows from Example 2.1. So we may assume z > 1.

By Theorem 1.3, there exists a { K3, K5}-decomposition of K2:41. Re-
placing each vertex of Kj;4; by a set of 15 vertices and each edge of
K@z4+1)x2 by a copy of K515 gives a {K3y15, K5x15}-decomposition of
K(2z+1)x15- Moreover, each group of 15 points along with an additional
oo-vertex constitute a K;s. By Examples 2.7, 2.8 and 2.1, there exist
G-decompositions of Kax1s, Ksx15 and K. Thus, we have a G-decompo-
sition of K30z+16- o

Lemma 2.11 Let G € {G},G6,G1s}. There ezists a G-decomposition of
K, for all v =25 (mod 30).

Proof. Let z be a nonnegative integer and let v = 30z + 25. There
exist G-decompositions of K¢, K55 and Kgs by Examples 2.1, 2.4 and 2.5,
respectively. Thus it remains to consider the case z > 3.

By Theorem 1.2, there exists a K4-decomposition of K(37)x2,5 for z > 3.
Replacing each vertex of K(3z)x2,5 by a set of 5 vertices and each edge of
K(3ryx2.5 by a copy of Ks s gives a Kyxs-decomposition of K(3z)x10,25 for
« > 3. Thus it suffices to find G-decompositions of Ko, Kas, K55, Kss
and Kixs. By [3], there exists a G-decomposition of K;o. Moreover, G-
decompositions of Kas, Kss, Kgs and Ky are given hy Examples 2.2, 2.4,
9.5 and 2.6. Thus, we have a G-decomposition of K30;425. n

Combining the previously known results and the results from Lem-
mas 2.9, 2.10 and 2.11 we obtain the following.

Theorem 2.12 Let G € {G1,G16,G1s}. There exists a G-decomposition
of K, if and only if v =1 or 10 (mod 15).

As stated previously, there are 19 connected cubic graphs of order 10.
The spectrum problem was settled already for the three named ones among
them; those being the Petersen graph [1] and both the 5-prism and the
5-Mobius [16]. This manuscript settles for the problem for 3 additional
graphs. In a forthcoming manuscript [4], we settled the spectrum for the
remaining 13 graphs.
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