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Abstract: The n—dimensional enhanced hypercube Q,;(1 < k < n— 1) is one
of the most attractive interconnection networks for parallel and distributed com-
puting system. Let H be a certain particular connected subgraph of graph G. The
H-structure-connectivity of G, denoted by x(G; H), is the cardinality of minimal
set of subgraphs F = {H), H,,--- , Hp} in G such that every H; € F is isomorphic
to H, and G — F is disconnected. The H-substructure-connectivity of G, denoted
by «°(G; H), is the cardinality of minimal set of subgraphs F = {H,,H3,*- , Hp)
in G such that every H; € F is isomorphic to a connected subgraph of H, and
G - F is disconnected. Using the structural properties of 0y, the H-structure-
connectivity k(Qnx; H) and H-substructure-connectivity of enhanced hypercube
K*(Qnx; H) were determined for H € {Ky, K;1, K 5, K 3).
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1 Introduction

Interconnection networks play an important role in parallel and distributed
systems. The design of the interconnection network topology significantly deter-
mines the performance of the system. An interconnection network topology can
be represented by an undirected graph G = (V, E), where each node in V corre-
sponds to a processor, and every edge in E corresponds to a communication link.
A lot of interconnection networks have been proposed in the past decades, for
example, hypercube Q, ([1]), folded hypercube FQ, ([2] ), enhanced hypercube
Onx (3], [41,[5),[6)), crossed cube, k—ary n—cube ([7]) and Exchanged Folded
Hypercubes ([8]).

The connectivity of a graph G, denoted by x(G), is the minimum cardinality
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of a node set F C V such that G — F is disconnected or a single node. Usually,
the parameter «(G) can be used to measure the reliability and fault tolerability of
a network. However, in the event of a random node failure, it is very unlikely that
all of the nodes adjacent to a single node fail simultaneously. To more accurately
measure the fault tolerance of a network, Harary ([9]) introduced the concept of
conditional connectivity by attaching some condition on remaining components,
[10] generalized the notion of connectivity by introducing h— restricted connec.
tivity which requires each component having the minimum degree at least h. [11)
proposed the concept of g—extra connectivity. The g—extra connectivity of a graph
G, denoted by «,(G), is the minimum number of vertex cut F of G such thatG-F
is disconnected and each component has at least g + 1 vertices.

So far, most efforts on the reliability and fault-tolerance of networks have
payed on the effect of individual nodes becoming faulty, that is, one often assumed
that the states of a node v, with regarded to the nodes around v, is an independent
event. However in reality, nodes that are connected could affect each other, and
the neighbors of a faulty node might be more likely to become faulty. With the de-
velopment of technology, networks and subnetworks are made into chips. When
any nodes on the chip fail to work, the whole chip could be considered failure.
All these motivate the study of fault-tolerance of networks from the perspective
of some structures instead of considering the effect of nodes becoming faulty. In-
spired by this situation, Lin et al. ([12]) brought forward the concept of structure
connectivity and substructure connectivity of graphs.

Let H be a connected subgraph of G, and F be a set of subgraph of G such
that each element in F is isomorphic to H. Then F is called a H—structure-cut
if G — F is disconnected. The H-structure connectivity x(G; H) = min{|F] :
F is H-structure-cut}. Similarly, Let F be a set of subgraph of G such that ev-
ery element of F is isomorphic to a connected subgraph of H. Then F is called
a H-substructure-cut if G — F is disconnected. The H-substructure connectiv-
ity, ¥°(G; H) = min{|F| : F is H — substructure-cut}. The definition implies
x*(G; H) < k(G; H). Certainly, K;-structure connectivity and K;-substructure con-
nectivity are the classical connectivity. Paper [12] established the H—structure-
connectivity and H—substructure-connectivity for H € {K1, K11, K1,2, K13, Cs} in
an n—dimensional hypercube. Note that K is just a single node. K, is complete
bipartite graph and C4 is a 4-cycle. Sabir and Meng ([13]) determined the «°(G; H)
and k(G; H) with H € {Py, Cx, K; 3} in an n—dimensional hypercube and folded
hypercube FQ,. Lv at al. ([7]) discussed the Hamilton cycle and path embedding
problems in k—ary n—cubes based on structure faults. In this paper, we investigate
structure fault tolerance for the enhanced hypercube Qpx.

The remainder of this paper is organized as follows. Section 2 gives the basic
definitions and existing results in literature which will be used in our discussion-
The structure connectivity k(Qnx; H) and substructure connectivity &*(Qnx; H) qu
enhanced hypercube and H € {K}, K1,1, K12, K13} are presented in Section 3. -
nally, some concluding remarks are given in Section 4.
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2 Preliminaries

A network is usually modeled by a connected graph G = (V, E). The set of
vertices Ng(v) = {u : uv € E} is called the neighbor set of vertex v in G, that is,
the set of adjacent nodes of v. d(v) = |Ng(v)| is called the degree of vertex vin G
when no loop occurs. Let A € V, Ng(A) denotes the vertex set | J,e4 Ng(v) \ A and
Cc(A) = Ng(A) | A. If each vertex is adjacent to k vertices, the graph G is called
k—regular. A path is a sequence of adjacent vertices, with the original vertex v, and
end vertex vy, represented as Py, = v{V2 ... Vn, where all the vertices vy, v,,..., v,
are distinct except the case that the path is a cycle C, where v = v,,. The length of
a path P is defined as the number of edges contained in P. The length of a shortest
cycle is defined as the girth of graph G, denoted by g(G). G is bipartite if the vertex
set V can be partitioned into two subsets V; and V5, such that every edge in G joins
a vertex in V| with a vertex in V5. A graph G is bipartite if and only if G contains
no odd cycle. Two graphs G, and G are isomorphic, denoted as G, = G, if there
is a one to one mapping f from V(G) to V(G2) such that xy € E(G,) if and only
if f(x)f(y) € E(G,). For a subgraph H of G, G — H denote the subgraph of G
induced by V(G) — V(H). Let 6(m) denote the minimum number of vertices that
are adjacent to a vertex set of m vertices in graph G.

An n-dimensional hypercube, denoted by 0y, has 2" vertices represented by
the vertex set V(Q,) = {xjxz-+-x,: xi=0o0r 1,1 <i < n}, where two vertices
X1 XX, and Y1y, -+ -y, are adjacent if and only if 37 |x; -y = 1. We set
xi = X1X2** Xi—1 XiXis]1 "+ Xp 1O denote the neighbor ofx= X1 X2 0 X1 XiXjs1 ** " Xp
in dimension i. Similarly, x*/ is the neighbor of x' in dimension j. Certainly,
x = xM,

Enhanced hypercube Qnx = (V,E) for 1 <k < n-1is an undirected simple
graph with the vertices set V ( or V(Qsx))and the edge set of E ( or E(Q.x) ).
V= {xixp+ - x,: x; =0,0r 1,1 <i<n},in fact, V(Q,) = V(Qnx). Two vertices
X = x1X3 -+ - X, and y are connected by an edge of E if and only if y satisfies one
of the following two conditions:

(1) y= x = X1X2** Xio1 XiXip] -+ Xny 1 L1 <0, 01

(2) y=X=x1X2 X1 Xg Fy) . . . T, Where 5, = 1 = x;.

xX is called a complementary edge of Q,y. Ec = (x% : x € V} the set of
complementary edges, E; = {xx' : x € V} the set of all i-dimensional edges. Thus
we have E(Qny) = E(Q,) VE..

According to the above definition, Q, is (n + 1)-regular and has 2" vertices
and (n + 1)2"! edges, and it contains Q, as its subgraph. It has 2"~ more links
than Q,. If k = 1, Oy is the well-known folded hypercube denoted by FQ,. If
k =n, O, reduce to Q,. This paper mainly consider2 <k <n- 1.

When 7 and k have the same parity, Q,, is a bipartite graph with containing
no odd cycle , for example, Q4 is a bipartite graph with bipartition V; = (x =
X|X2X3Xx4 : Z}Ll |x;| is even, x € V}and V, = {x = x xpx3x4 Z‘;l |x;] is odd, x €
V}. When n and k have different parity, Q,; is not bipartite graph.
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With the definition, we can partition Qnx into two subgraphs along some com.-
ponent i(1 < i < n). Weuse Q% and Qi |, to denote the two subgraphs re-
spectively. For convenience, Onx can be expressed as Q) , 1) QI . From the
definition of the partition, we can conclude that when i < k, 0 |, and Q! || are
isomorphic to (n — 1)-dimensional enhanced hypercube; when i 2> k, Q;?_Lk and
Qf,‘_u are isomorphic to (n — 1)-dimensional hypercube. A vertex x = xjx3---x,
belong to Q,‘?_l 4 if and only if the i-th position x; = 0; Similarly, x belongs to
Qi if and only if the i-th position x; = 1.

3 Main Results

The following lemmas are benefit for us.
Lemma 1
(1) ([14]) If n > 4, then

(g+1)n-23—(g), 0<g<n-4,

2
n(n-1)
2

(i) ([15],[16]) Let W be a vertex of V(Q,) with |W| = m, then

Kg(Qn) =

, n=3<g<n.

—lm2+(n—%)m+1, l1<m<n+1,

2

——m2+(2n—-;-)m—n2+2, n+2<mg<?2n.

2

Lemma 2 Let x,y be any two vertices in Q.4 for n > 4, then one of the
following holds.

(1) x,y € V(Qnx) for 2 < k < n— 4, then x and y have exact two common
neighbors if they have,

(i) x,y € V(Qnn-3)

If X € Ng,, ,(x) N Np,,_,(¥), then x, y have exact two common neighbors.

If X ¢ Ng,,,(x)(Npg,,, (), then x and y have exact two common neighbors
if they have.

(iii) x,y € V(Qnn-2)

8g,(m) =

{x:xl...xi...x}-...xﬂ’

Y# Xy X1 XiXig) *** Xjo1 XjXje) * 0 c X,

where (i, j} € {n —2,n - 1,n}, then x and y have exact two common neighbors if
they have.
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(iv) x,y € V(Qnp-2)

{x=xl...x'....xj...xm

Y = Xq 0 X XiXig) * 0t Xjo1 XjXj) +* Xny

where (i, j} € {n—2,n - 1,n}, then x and y have exact four common neighbors
(x*2,x1, X2, 7).

(v) x,y € V(Qnp-1)

If y ¢ {x"~1, x"}, then x, y have exact two common neighbors if they have.

If y € {(x*1, x}, then x, y have exact two common neighbors (X, y}.

Proof: Let x = Xy« Xi=++Xj**"Xn, ¥ = X *** Xi XiXig] *** Xj-1XjXjs1 *** Xp.
Then x, y have some common neighbors.

(i) xand y have exact two common neighbors x' = x; +++ X;_ | XiXjs1 =+ Xj* +* X
andxj =X "'xi“'xj—lx_jxjﬂ e e Xp.

(i) x,y € V(Qnn-3)

If X € Ng,,,(x)( Ng,,,(¥), by lemma 4, there exists a smallest odd cycle
with length 5 passing through vertices x and y. Now x, y have exact two common
neighbors x and y.

If X ¢ Np,,,(x)( Ng,,,(»), then x and y have exact two common neighbors
if they have, the proof is similar to (i).

(iii) The proof is similar to (i).

(iv) x,y € Qnn-2, then X = X1Xp++ - X,-3X,_5X,-1X,. x and y have exact four
common neighbors x*~2, x*~1, x" and .

If y = X1+ Xp-2Xn-1Xy, there are four internal disjoint paths of length two
between x and y as follows.

Xy R = X1 * o X o X1 Xgp = Xyt 2 Xz X1 X =¥

x =>xl= X| ** " Xp-2Xp1 Xp = X| *** Xp-2Xp-1Xp = Y

x —»xX'= Xy-oe x,,_zx,,_li,, =9 F =Xy 'En—ZEn—Ixn =

X X=Xt Xp3Xn2Xn1%n = (X)" = X) 0+ X2 X1 Xn = B 4

If y = x1 ** * Xp_2Xp-1 Xp, the four paths of length two as:

2T - - XX

= XTC = Xy Xped X1 Xy = X2 = X Xy g Xy Ko "
-1 - X X

= X" = X1ttt Xp2Xp-1Xp = X| *** Xp-2Xp-1Xn =)

— X' = Xp 0 Xp 2 Xp 1 X Xp* Xp2Xn-1Xa =)

LT T T

—=X=Xx"" xn—3in—2}u-1}n = ®n-2 =X * Xn-2Xn-1%n = y
If y = x) - - Xp—2Xn-1%n, the four paths with length two as:

X X=X T2 Xny Xy = Xy Tga K1 K = Y

X i 1’"1 = X1 'xn-zin-lxn = 1"__] =X ‘En-an-lEﬂ =2

X o X=X Xn-2Xno1 Xy = Xy XXy 1 Xg = Y

X —x=x-"" xn—3xn-2xn-1}n - a)n_l =x- "En-an-l}n =y
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(V) x,y € V(Qnp-1), then X = xyx3 - - Xp-2Xp—1 Xp-

If y ¢ {x"',x"}, the proof is similar to (i) and x,y have exact two commoy
neighbors.

Ify = x"" =X ---x,,_z-f,,_px,, ( ory = X = X1 "'Lg-]fn ), theni = X" (or
y = x"1), Therefore x, y have exact two common neighbors {(x,y).

The proof is finished.

Lemma 2 means that if two vertices x, y have some common neighbors, they
number of common neighbors is two or four when k = n — 2, otherwise number
of common neighbors is two.

Lemma 3 Let P,beapathin O, forn>5,1<k<n-2,1<m<nl
V € Ong ~ P, then [Ng,, (V) () V(Pm)| < [21.

Proof: By the definition of Q,x, when k # n — 1, the girth g(Q,x) = 4, then
Qnx cannot contain triangle. Therefore, v can be adjacent to at most one vertex of
any two consecutive vertices on P,. The lemma is true.

Next, we consider the structure connectivity and substructure connectivity.

From the definition, we have k(Qnx; K1) = n+ 1 and x°(Qnx; K1) = n + 1 for
n23,1<k<n- 1. Hence, we justdiscuss H € (K, 1, K} 2, K) 3)

Lemma 4 k(Q,;; K1) <nand K°(Qnx; K1) <nforn>52<k<n-3.

Proof: Wesetu = 00---0,v = u',uv € E(Qny) and F = {{t!,V'} : 2 <
i < njU(a,v). Then F forms a K, -structure-cut of Q. and |F| = n. Thus,
K(Qny; Ki1) <nand k(CQnx; Ky ) <

Lemma 5 «*(Qnx; K1,1) > nand k(Qnx; K1) 2nforn>52<k<n-3.

1

4

-

Proof: By contradiction. Let F = {K;,K1,--- , K1, Ki.1,Ki.1,++ ,Ky.1} and
IFl = I+t < n. Suppose that @, — F is not connected and has at least two
components. Let W be a smallest component of Q,x — F. According to the order
of W, we consider two cases.

Case 1. |[V(W)| =1

Let V(W) = {u}, then |Ng,, (u)| = n + 1. Therefore, Qnx — F cannot isolate the
vertex u. This implies that |[F| < n — 1 is impossible .

Case 2. [V(W)| 2 2

Because of Q, being a spanning subgraph of Q,x and lemma 1, we have
K1(Qnx) 2 k1(Q,) = 2n — 2. This means that we have to delete more than 2n -2
nodes to isolate the component W in Q4. But |F| < n. It is impossible. Therefore,
K'(Qn; K1,1) 2 nand k(Qny; K1,1) 2 n.

In words, lemma 5 is true.

Lemma 4 and lemma 5 lead to the theorem 6.

Theorem 6 x(Q,x; K),1) = nand €*(Qnx; K1,1) =nforn > 5.

Lemma 7 x(Qnx; K12) < [%1 and £*(Qnx; K12) < [9—;—'] forn>5,2<k¥%
n-3.

Proof: Letn+1=2t+r,0<r<1.Setu=00---0. According to the value
of r, we distinguish two cases.

Casel.r=0.
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F, = (e, u'?, %)
F2 = {uS’u3.4vu4]

F{ :{u"”;n'l-‘]

Then F = {Fy, F2,- - Fy} forms a K\ 2-structure-cut of 0,4, and |F| = [2L].
Casg 2. r=1

F =, d?d)
F2 = {!‘3,113'4, u4}

Ft =llf—l’u’l_]ﬁvu’l}
FH-l = las l-{ls al}

Then F = {Fy, F3,--- Fy, Fyy1} forms a K ,-structure-cut of Qny, and [F| =
2,
Consequently, k(Qa; K12) <[] and £°(Qny; K12) < [2L1.
Lemma 8 «*(Qnx; K12) 2 [%] and k(Qny; K12) 2 [%Hforn 25,2 <k <
n-3.
Proof: By contradiction.
I

! m

- o

Let F = (Ki, Ky, - , K1, K1, Kitoe o+ Kip, K12, Ky, K2} and |F] =
l+t+m< [%'I — 1. Suppose that Q,x — F is not connected and has at least two
components. Let W be a smallest component of Q,; — F. According to the order
of W, we consider two cases.

Case 1. [V(W)| =1

Let V(W) = {u}, then Np,, (1) = n + 1. With lemma 3, every element in F
contains at most 2 neighbors of u. Thus we have t delete at least [ %] elements of
F to isolate W. It is impossible since [F| < [%1]-1 < [2£1],

Case 2. [V(W)| 2 2

By lemma 1, k(Q,) = 2n - 2 and Q, being a spanning subgraph of Onx, then
k1(Qnx) 2 k1(Q,) = 2n — 2. This means that we have to delete more than 2n ~ 2
nodes to isolate W. But |F| < [%5+1-1leads to [V(F)| < 3(H-1) < 3 <2n-2.
Therefore, k*(Qnx; K1,2) = [%] and k(Qng; K12) 2 [

Lemma 7 and lemma 8 guarantee the following theorem.

The30mm 9 k(Qnx; K12) = %511 and £°(Qug; Ki2) = [%5H 1 forn 2 5,2 <
k<n-3.
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Lemma 10 «(Qnx; K13) < [%+] and k(@3 K13) S [% ] forn > 5,2 <k <
n-—2.

Proof: We set u = 00---0 being a node of Qpx.

When n = 2t is even, then we set

Fl {u u2 u12 1,2,3}

FZ [u u4 u34 345}

Fi.1 = {un-S’ un-z’ un-3,n-2, un—3.n—2.n-l ]
F, F [un—l,un’un—l.n’un—l.n.l}

Fl+| . {’-" l_‘lsazs a3}

Whenn=2t+1lisodd, forl <i<tandk #n—2, we set

F‘_ ={u2: ’uZ u21 121 21 121214-]}

Fia ={a,o,a™')
Ifk =n—2,in Qunu2, & = t?*13241 then select Fyyy = (", u™!, u™2, 13},

In words, |F| =t+1 = f"”'l and each element of F is 1somorph1c to K.
Since N(u) € V(F), and |V(F)| = 4[%1] < 2" — 1. Qu — F is disconnected and
one component of it is {u}. Hence k(Qnx; K13) <[] and &5 (Qnx; K13) <[4,

Lemma 11 £°(Qns; K13) 2 1% and k(Qni; K13) = 2L forn > 5,2 <k<
n-2,

Proof: By contradiction. Let

[

t m h

e .

F = {’kvil"" 9K;)k1,vi1.1v'°' ’KII’rKl,Z»Kl.Zv”' ,KE,’kl'S,Klj,"’ ,K],;l
and |F| = I+t+m+h < [%1]- 1. Suppose that Q, — F is not connected and has

at least two components. Let W be a smallest component of Q, x — F. We consider
the following cases.

Case 1. [V(W)| =1

Let V(W) = {u). Because Ng, ,(u) = n + 1, the girth of Qnx is 4 and lemma
3, then each element of F contains at most 2 neighbors of u. This leads that we
have to delete at least I'L’—;—"l elements of F to isolate W. It is impossible since
IFI <2 -1 <28

Case 2. |[V(W)| =2

Since W is a connected component and |V(W)| = 2 and Qnx is n + 1-regular,
we have to delete at least 2n nodes to isolate W. However from the assumption
|F| < [%27 =1, which infers to [V(F)| < 412311 - 1) < 4% - 1) =2n-2<n
is wrong when n is even.

Case 3. |[V(W)| 23

N
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Without loss of generality, we assume that {x,y,z} € V(W) and xy,yz are
edges of Qnx, then No,,({x,¥,2}) € V(F). Thus [V(F)| > Np,,(Ix,y,2}) > 3n - 1
> 4([%1 —1). It is a contradiction since |V(F)| < I'"ZL"I -1

Lemma 10 and lemma 11 conduct the following theorem 12.

Theorem 12 k(Q,y; Ky 3) = [%11 and K(Qnp: Ki3) = [%2 1 forn > 5,2 <
k<n-2.

The following examples provide some K| 3-structure-cut in Q73 and Q; s, re-
spectively. We select u = 0000000 and F = {Fy, F3, F3, F4} as follows.

In Q73,8 = 3

F = {u' = 1000000, 12 = 0100000, &% = 1100000, &% = 1110000}

F, = {(1® = 0010000, 4* = 0001000, >* = 0011000, 4>*5 = 0011100}

F3 = {u® = 0000100, 2® = 0000010, > = 0000110, %57 = 0000111}

F4 = (! = 0000001, = 0011111, = 0011110, ™ = 1011110}

In Q7_5,t = 3, the F,, F,, F3 are same as that in Q13,butF4 — {u",u"",u"l,u"J}
is different from that one in Q73 which is F4 = {u", &, @, @'}, otherwise some n-
ode will occur repeat.

F4 = (7 = 0000001, »™' = 1000001, "2 = 0100001, 4™ = 0010001}

4 Conclusion

This paper has performed the structural analysis of Q, and identified a num-
ber of good features, which then established the basis block of structural fault
tolerance. For the enhanced hypercube Q. and H € (K ), K| ,, K| 3} we deter-
mined k(Qnx; H) and «*(Qny; H) for n > 5,2 < k < n— 3. One may investigate
the structure connectivity and substructure connectivity of other networks.
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