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Abstract

Let G = (V,E) be a graph. The transitivity of a graph G,
denoted Tr(G), equals the maximum order k of a partition 7 =
{VA,Va,...,V&k} of V such that for every i,j, 1 < i < j < k, Vi
dominates V;. We consider the transitivity in many special classes
of graphs, including cactus graphs, coronas, Cartesian products, and
joins. We also consider the effects of vertex or edge deletion and edge
addition on the transivity of a graph.

We dedicate this paper to the memory of Professor Bohdan Zelinka for
his pioneering work on domatic numbers of graphs.

1 Introduction

Analogous to the chromatic number with regard to vertex partitions of a
graph, the domatic number was defined by Cockayne and Hedetniemi [3]
in 1977 as the maximum order of a partition of the vertices of a graph
into dominating sets. In 2017, J. T. Hedetniemi and S. T. Hedetniemi [4]
generalized the concept of domatic number to the transitivity of a graph.
In this paper, we continue the study of graph transitivity. We begin with
some terminology.

Let G = (V, E) be a graph of order n = |V|. The open neighborhood of a
vertex v € V, denoted N(v), is the set of vertices u that are adjacent to v.
That is, N(v) = {u|uv € E}. The degree of a vertex v is deg(v) = |N(v)|.
The minimum and maximum degrees of a vertex in a graph G are denoted
0(G) and A(G), respectively. We say that a graph G is k-regular if every
vertex in G has deg(v) = k.

The closed neighborhood of a vertex v € V, denoted N[v], is the set
defined by N[v] = N(v)U {v}. The open neighborhood of a set S C V is
the set defined by N(S) = U,ecg N(v), while the closed neighborhood of a
set S is the set defined by N[S] = s N[v].

A set S is a dominating set of a graph G if N[S] = V, that is, if for every
v € V either v € S or v € N(u) for some vertex u € S. The minimum
cardinality of a dominating set in a graph G is called the domination number
and is denoted 7(G). Given two disjoint sets of vertices R,S C V, we say
that R dominates S, denoted R — S, if S C N(R), or equivalently, if every
vertex in S is adjacent to at least one vertex in R.

As previously mentioned, the domatic number of a graph G, denoted
d(G), is the maximum order k of a vertex partition 7 = {V4, Vs, ..., Vi}
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such that for every i, 1 <i < k, V; is a dominating set of G. To date over
100 papers have been published on the domatic number and its variations.
For examples, cf. [1, 7, 8, 9].

The transitivity of a graph Tr(G) was defined in [4] to be the maximum
order k of a vertex partition 7 = {V},Va,...,Vi} such that for all i, 7,
1 <i<j<k Vi=V, Avertex partition of V meeting this condition
is called a transitive partition and a transitive partition of G having order
Tr(G) is called a Tr-partition of G.

The transitivity T7(G) of a graph G is an immediate generalization of
the Grundy number I'(G) of a graph, as originally defined in 1979 by Chris-
ten and Selkow [2]. A set S C V of vertices is called independent if no
two vertices in S are adjacent. A Grundy coloring is a vertex partition
{V1, Va,...,Vi} such that (i) for 1 < i < k, V; is an independent set, and
(i) for all 4,5, 1 <4 < j < k, V; = V;. Thus, a Grundy coloring is a transi-
tive partition into independent sets. The Grundy number I'(G) equals the
maximum order of a Grundy coloring of G. It follows from the definitions
that for any graph G, I'(G) < Tr(G).

Preliminary results are presented in Section 2. In Section 3 we determine
the transitivity of several common classes of graphs, and in Section 4 we
consider transitively critical graphs. We conclude by listing some questions
for future study in Section 5.

2 Preliminary Results

In this section, we first present fundamental properties that will be helpful
in the remainder of the paper and next consider the complexity of transi-

tivity.

2.1 Basics

Let m = {V1, Va,..., Vi} be a Tr-partition of a graph G. Since every vertex
in V; is dominated by each of the sets V; for 1 < j < i —1, we make the

following straightforward, yet useful observation.

Observation 2.1 Ifm = {V,Va,..., Vk} is a Tr-partition of G andv € V;
for some i, then deg(v) >i—1.

The following results were given in [4].
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Proposition 2.2 [4] If a graph G has a transitive partition of order k, then
for every j, 1 < j < k, G has a transitive partition of order j.

Proposition 2.3 [4] If H is any subgraph of a graph G, then Tr(H) <
Tr(G).

It is straightforward to see that a T'r-partition of G is a Grundy coloring
for some spanning subgraph H of G.

Observation 2.4 If 7 is a Tr-partition for a graph G, then 7 is a Grundy
coloring for some spanning subgraph of G.

Proof. Given a T'r-partition 7 for G, H is the subgraph obtained from G
by removing any edges uv where u and v are in the same set in 7. [

Next we show that every graph with Tr(G) > 3 has a partition containing
two singleton sets. This was observed in [4] for graphs having T(G) > 4.

Proposition 2.5 Every connected graph G for whichTr(G) =k > 3 has a
Tr-partition m = {V4,Va,...,Vi} such that |[Vi—1| = |Vi| =1 and |Vi—;] <
2i-1 for2<i<k-2.

Proof. Assume that m = {V},V5,...,V;} where k > 3 is a T'r-partition of
G. Assume that |Vi| > 2. We can move every vertex except one, say vertex
z, from the set V), to the first set V; and still have a transitive partition of the
same order. Thus, n’ = {V{ = ViU (Vi — {z}),V2,.--, Vk-1, V{ = {z}} is a
T'r(G)-partition in which |V}/| = 1. Similarly, let y be a vertex in Vx_; that
is adjacent to vertex z; there must be at least one such vertex since 7’ is a
transitive partition, that is, Vx_; — {z}. We can move every vertex in Vj_1
except ¥, in the transitive partition 7/, to set V{, and still have a transitive
partition of the same order. Thus, 7" = {VJU(Vk—1 - {y}), Vo,..., Vi, =
{y},{z}} is a Tr(G)-partition in which |V}",| =1.

Continuing in this manner, we note that for set Vi_; to dominate the 3
sets following it, at most |Vi_it1| + |Vk—ita| + ... + |Vk| = 2071 vertices
are necessary in Vi_;. The remaining vertices can be moved to V; as in the
previous arguments. Hence, |Vi_;| < 2071 O

It is well-known [3] that the domatic number d(G) is bounded above by
6(G) + 1, and graphs attaining this bound are called domatically full. The
following useful observation was noted in [4].
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Proposition 2.6 [4] For any graph G, Tr(G) < A(G) + 1.

Graphs G for which Tr(G) = A(G) + 1 are called transitively full. The
following results were given in [4].

Proposition 2.7 [4] For any graph G of order n,

I 1< T#(G) €%,

2. Tr(G) = n if and only if G is the complete graph K,
3. Tr(G) =1 if and only if G = K, and

4. Tr(G) =2 if and only if G is a disjoint union of stars.

Proposition 2.8 [4]

1. For the path P,, n > 4, Tr(P,) =3.

2. For the cycle C,, n >3, Tr(Cy) = 3.

3. For any cubic graph G, Tr(G) = 4.

By Proposition 2.7, Tr(Kp) = n = A(G)+1and Tr(K,) = 1 = A(K,)+
1, so both the complete graph K, and its complement are transitively
full. Note that no star having three or more vertices is transitively full.
Propositions 2.7 and 2.8 imply that paths, cycles, and cubic graphs are

transitively full. We shall see other families of transitively full graphs in
Section 3. The following proposition was also given in [4].

Proposition 2.9 [4] For any connected graph G and k € {0,1,2,3}, if
0(G) > k, then Tr(G) > k+1.

Thus, for a 4-regular graph G, Propositions 2.6 and 2.9 imply the follow-
ing.

Corollary 2.10 For a 4-regular graph G, 4 < Tr(G) < 5.

Both the values in Corollary 2.10 are attainable. For example, it is shown
in [4] that T'r(G) = 4 for the complete graph Kg minus a perfect matching
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M (sco Miguro 1), Also, thero aro transitively full d-regular graphs, includ-
ing tho comploto graph Ky and the comploto bipartite graph 4 4. That,

is, Tr(Kp) = Tr(Kq,4) =D

Figure 1: Tr(Ke — M) =4

Next we present a lower bound on the transitivity of a graph based on
an induced subgraph.

Proposition 2.11 If a graph G has an induced subgraph H such that every
vertez of H has a neighbor in V(G) = V(H), then Tr(G) 2 Tr(H) + 1.

Proof. Let H be an induced subgraph of a graph G, such that every
vertex of H has a neighbor in V(G) - V(H), and let {V},Vs,...Vk} be a
Tr-partition of H. It follows that (V(G) — V(H)) = V(H), and therefore
(V(G)=-V(H),W,Va,...,Vi} i8 a transitive partition of G of order T'r( H )+
1.0

The clique number w(G) of a graph G is the order of a largest clique in
G. By Proposition 2.11, if a graph G has clique K such that every vertex
of K has a neighbor in V(G) - V(K), then Tr(G) > |V(K)| + 1. Hence,
we have the following corollary.

Corollary 2,12 If §(G) 2 w(G), then Tr(G) 2 w(G) + 1.

Proof. Let K be a maximum clique of G. Since §(G) > w(G), every
vertex of K has a neighbor in V(G) - V(K). By Proposition 2.11, T'r(G) >
V(K)|+1=w(G)+1. O

Propositions 2.6 and 2,11 imply the next corollary.



Corollary 2.13 If A(G) = w(G), then Tr(G) = w(G) +1 = A(G) +1,
and so, G is transitively full.

2.2 Complexity

As defined in [5], the upper iterated domination number I'*(G) equals the
maximum order of a vertex partition 7 = {V4,V,,...,Vi} obtained by
repeatedly removing a minimal dominating set from G, until no vertices
remain. Notice that the transitivity of a graph G could equivalently be
defined as the maximum order of a partition produced by repeatedly re-
moving dominating sets from G. Hence, the only difference between Tr(G)
and I'*(G) is that I'*(G) is obtained by repeatedly removing minimal dom-
inating sets, while T'r(G) is obtained by repeatedly removing dominating
sets. Thus, the transitivity of a graph is a relaxation of the upper iterated
domination number, and so, I''(G) < Tr(G). In fact, it is shown in [4]
that I'*(G) = Tr(G). The decision problem associated with transitivity of
a graph follows.

TRANSITIVITY

INSTANCE: Graph G = (V, E), integer k

QUESTION: Does G have a transitive partition of order at least
k?

Proposition 2.14 TRANSITIVITY ts NP-complete.

Proof. In [4], it is shown that I'*(G) = Tr(G). The corresponding decision
problem for the parameter I'*(G) is NP-complete [5]. O

Proposition 2.15 TRANSITIVITY(K) is fized-parameter tractable.

Proof. There is a polynomial time algorithm for verifying that a vertex
partition is transitive. From 2.5, for a fixed k, there are a polynomial
number of possible configurations of V5,..., V. O

Proposition 2.16 There is a linear algorithm for determining Tr(T) for
any tree T'.
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Proof. It is shown in [4] that for any tree T, ['(T) = Tr(T). In 1982
Hedetniemi, Hedetniemi and Beyer [6] constructed a linear algorithm for
computing the Grundy number of any tree. O

3 The Transitivity of Special Classes of Graphs

In this section, we will consider the transitivity of a variety of classes of
graphs.

3.1 Inflated Graphs

The inflation G; of a graph G is obtained from G by replacing each vertex
¢ € V(G) with a clique K;, where deg(z) = t, and each zy € E(G) by an
edge between two vertices of the corresponding cliques X and Y in such
a way that the edges of G; which correspond to the edges of G form a
matching of G;. For example, the inflation of a cycle C, is the cycle Ca,.
For another example, see Figure 2 for the inflation of the house graph.

Note that A(G;) = A(G), and for graphs G with order at least 3, w(G;) =
A(G) = A(G;). Next we show that all inflated graphs are transitively full.

Proposition 3.1 For any graph G, Tr(G;) = A(G;) + 1.

Proof. Let G be a graph and G; be the inflation of G. If G € {K;, K2},
then G; = G. Since Tr(K;) =1 = A(K;)+1and Tr(K2) =2 = A(K2)+1,
the result follows for graphs of order n € {1,2}. Hence we may assume that
G has order n > 3. Since A(G;) = A(G) = w(Gj), Corollary 2.13 implies
that Tr(G;) = A(G;) +1. O

3.2 Coronas and Cacti

For a graph G of order n with vertices V(G) = {v1,v2,.-,Un} and a graph
H, the corona G o H is the graph obtained from G by adding n copies of
the graph H, with new edges such that the vertex v; is adjacent to each

vertex in the ith copy of H.

Proposition 3.2 For any graph G, Tr(G o Kp) = Tr(G) +p.
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G Gi

Figure 2: The house graph G and its inflation G;.

Proof. Let G be a graph of order n, and let = {Vl,Vg, ., Vi} be a
Tr-partition of G. In the graph G o K, let a:l, o ' Tp be the vertices in
the ith copy of Kp. Let X; = {z} |1 < i< n}, and let X = 5., X;. Then
the partition 7/ = {X1,X2,...,Xp,V1,V2,... , Vi } is a transitive partition
of order k 4+ p. Thus, Tr(Go K;) > k+p=Tr(G) + p.

Assume that Tr(G) = k, but T(G o K,) > k+p+ 1. By Proposition 2.2,
G o K}, has a transitive partition 7 = {V1,V5,...,V;}, where s=k+p+1.
Smce every vertex in X has degree p, Observatlon 2.1 implies that X C

e ' Vi. Assume that X N Vpt+1 # 0. Since V,41 dominates all sets V; for
J = p+2and s = k+p+1 > p+2, it follows that V41— X # 0. Furthermore,
no vertex in X N V;4; is necessary to dominate any vertex in any set V;
for j > p + 2. Therefore, moving all of the vertices in X NV, to the set
V1 results in another transitive partition, say =’ = {V{,VJ,..., Vot oo Wi
where X C | J}_, V/

U, V/ = X, then {V,,V],5,...,V,} is a transitive partition of G of

order k +1, a contradiction. Thus we may assume that X C Uf . V. Let

= V’ X. Then {UUV),;,Vp42,-..,V.)} is a transitive partition

of G of order k+1, again a contradiction. Thus, Tr(GoK,) <Tr(G) +p,
and the result holds. B

Since A(G o K,) = A(G) + p, we make the following observation.

Corollary 3.3 A graph G o K,, is transitively full if and only if G is tran-
sitively full.
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Proof. Assume that G o K, is transitively full. Then, by Proposition 3.2,
we see that Tr(G o Kp) = A(Go K,) +1= A(G) +p+1 = Tr(G) + p.
Thus, Tr(G) = A(G) + 1, and so G is transitively full.

Conversely, assume that G is transitively full. Then Tr(G) = A(G) + 1.
By Proposition 3.2, Tr(Go K,) = Tr(G)+p = A(G) + 1+ p. Since
A(G o K,) = A(G) + p, we have Tr(G o K;) = A(G o Kp) + 1, and so,
G o K, is transitively full. O

Corollary 3.4 For any graph G, Tr(G o K;) =Tr(G) + 1.
Corollary 3.5 For any integer n > 1, Tr(K, o K;) =n+1.

Note that d(K, o K1) = 2. Thus, we see that there can be an arbitrarily
large difference between d(G) and Tr(G).

Corollary 3.6 For any class of graphs G such that the corona G o K, is
also a member of that class, and for any positive integer k, there exists a
graph G in the class such that Tr(G) > k.

Proof. Let G be any member of a specified class of graphs that is closed
under the corona operation. Then consider the sequence G, G o K1, (G o
Ki)oKj, ((GoKi)oKj)o Kj, etc. In each case we create another member
of the class of graphs, and in each iteration the transitivity increases. O

Corollary 3.7 For any positive integer k, there exists a bipartite graph, a
planar graph, and a chordal graph G such that Tr(G) > k.

It is well known that for any nontrivial tree T, d(G) = 2. However, for
trees the transitivity can be arbitrarily large. :

Corollary 3.8 For any positive integer k, there ezists a tree T for which
Tr(T)=k.

A cactus is a connected graph G in which every edge appears in at most
one cycle. In [9] Zelinka obtained a necessary and sufficient condition for
the following upper bound to be achieved.

Proposition 3.9 [9] For any nontrivial cactus G, 2 < d(G) < 3.
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The transitivity of a cactus is more complicated than the domatic number

of a cactus.

Lemma 3.10 If G is a cactus, then so is the graph G o Ks.

By Proposition 3.2, Tr(G o K3) = Tr(G) + 2.

Corollary 3.11 For every positive integer k, there exists a cactus G with
Tr(G) 2 k.

Proof. Starting with an arbitrary cactus, for example the cycle Cy4, form
the sequence of graphs Cy 0 K2, (Cq0 K3) o K2, ((C40 K3) 0 K3) 0 K, etc.
With each iteration of this process, the transitivity increases by two and
the resulting graph, according to Lemma 3.10 is another cactus.

Notice that an even simpler construction is possible, namely, starting
with a cycle such as C, form the sequence of coronas Cyj0 K3, (C40K;)oKj,
((Cs0 K)o K1)oKj, etc. Each succeeding graph so formed is also a cactus,
and each iteration of this process increases the transitivity by exactly one.

a

3.3 Maximal Outerplanar Graphs and 2-Trees

An outerplanar graph is a graph having a plane embedding (no edges meet
except at a vertex) such that every vertex lies on the exterior face. A
mazimal outerplanar graph is an outerplanar graph having the property
that the addition of any edge between two non-adjacent vertices results
in a graph that is not outerplanar. The family of non-trivial maximal
outerplanar graphs can be defined recursively, as follows. Let G; = K3.
Then let G;; be the graph obtained from the graph G; by adding a new
vertex and joining it to any two adjacent vertices on the exterior face of G;.

The following result for maximal outerplanar graphs is well known and
easy to prove.

Proposition 3.12 For any mazimal outerplanar graph G, d(G) = 3.

For any maximal outerplanar graph G, one can define the graph GAK,
to be the graph obtained from G by adding a new vertex and joining it
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to two adjacent vertices on the exterior face of G, and performing this
operation for every edge on the exterior face of G. Notice that if G is a

maximal outerplanar graph, so is GAK].

Proposition 3.18 For any mazimal outerplanar graph G, Tr(GAK,;) =
Tr(G) + 1.

Proof. Let m = {V}, V4, ..., Vi} be a Tr-partition of a maximal outerplanar
graph G, and consider the maximal outerplanar graph GAK;. Let W be
the set of new vertices added to G to form GAK,. Then the new partition
n' = {W, W1, Va,...,Vi} is a transitive partition of GAK], since the set W
is a dominating set of GAK;. Thus, Tr(GAK,) > 1+ Tr(G).

Assume that Tr(G) = k > 2, but T(GAK,) > Tr(G) + 2. By Proposi-
tion 2.2, GAK, has a transitive partition of order s = T'r(G) +2 = k + 2.
Among all such transitive partitions, select # = {V;,V2,...,V;} be one
that maximizes |V} NW|. Since every vertex in W has degree two, Obser-
vation 2.1 implies that W C VUV,UV3. If W C V3, then {V5, V3, ..., V;} is
a transitive partition of some subgraph of G of order k+ 1, a contradiction
to Proposition 2.3.

Hence, we may assume that W N (V, U V3) # 0. Since V3 dominates all
sets V; for j > 4 and k + 2 > 4, it follows that V3 — W # 0. Furthermore,
no vertex in W is necessary to dominate any vertex in any set V; for j > 4.
Therefore, moving all of the vertices in V3 N W to the set V; results in
another transitive partition of GAK; having more vertices of W in V; than
7 has, a contradiction. Thus, we may assume that W C V; U V, and
WNV,#0. Let we WnN V. Then w has a neighbor, say z, in V5. If w
is not necessary in V2 to dominate a vertex in V; for some j > 3, then w
can be moved to V; resulting in another transitive partition having more
vertices of W in V; than 7 has, again a contradiction. Let y € V; for some
J > 3 such that N(y) NV, = {w}. By the construction of GAK, it follows
that N(w) = {z,y} and zy € E(G) is an edge on the boundary of G. That
is, z,y ¢ W. Consider swapping = and N(z) N W N V5, that is, putting
z in V3 and N(z) NW NV, in V}, forming a new partition 7/. If 7’ is a
transitive partition of GAK;, then n’ has more vertices of W in V; than
7 has, a contradiciton. Thus, we may assume that 7’ is not a transitive
partition of GAK]. This implies that z is necessary in V; of 7’ to dominate
a vertex, say z, in Vo — W. Now zz € E(G) is an edge on the boundary of
G. Hence, w' € W such that N(w') = {z,2}. But then w'is in V; of =’
and w’ dominates z, a contradiction. Thus, T7(GAK,) < Tr(G) + 1, and
the result holds. O
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Corollary 3.14 For any positive integer k > 3, there ewists a mazimal
outerplanar graph G for which Tr(G) = k.

Closely related to the class of maximal outerplanar graphs is the class of
2-trees, that can be defined recursively as follows. Let G; = K3. Then let
Gi+1 be the graph obtained from the graph G; by adding a new vertex and
joining it to any two adjacent vertices in G;. It is easy to see that every
2-tree is a planar graph, although not necessarily an outerplanar graph.

Corollary 3.15 For any positive integer k, there exists a 2-tree G for
which Tr(G) = k.

Note that the complete graph K3 is a maximal outerplanar graph that
is transitively full. However, the next corollary to Proposition 3.13 shows
that for any maximal outerplanar graph G, the maximal outerplanar graph

GAK] is not transitively full.

Corollary 3.16 For any mazimal outerplanar graph G, GAK; is not tran-
sitively full, that is, Tr(GAK;) < A(GAK;,).

Proof. Suppose, to the contrary, that GAK] is transitively full for some
maximal outerplanar graph G. Then Tr(GAK;) = A(GAK;) + 1. Since
every vertex of the maximal outerplanar graph G lies on its exterior face and
is incident to exactly two new edges on the exterior face of GAKj, it follows
that A(GAK;) = A(G)+2. By Proposition 3.13, Tr(GAK:) = Tr(G) +1,
so we have Tr(GAK:) = A(GAK;) +1 = (A(G) +2)+1 = A(G) +
3 = Tr(G) + 1. But this implies that T7(G) > A(G) + 1, contradicting
Proposition 2.6. O

3.4 Cartesian Products

The Cartesian product GO H of two graphs G and H is the graph with
vertex set V(G) x V(H) and edges such that two vertices (u,v) and (w, )
are adjacent in F(G O H) if and only if either v = w and v is adjacent to
in H, or u is adjacent to w in G and v = z. The Cartesian product GO H
can be visualized as follows. The vertices of GO H are arranged in rows
and columns. The vertices in each column induce a subgraph isomorphic
to G, while the vertices in each row induce a subgraph isomorphic to H.

For Cartesian products involving paths P, and cycles Cy,, the following
is shown in [4].
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Proposition 3.17 [4]

1. Form,n >4, Tr(P,0PF,) =5.
2. Form,n >3, Tr(C,,OC,) =5.

We give a lower bound for (GO H) for arbitrary graphs G and H.

Proposition 3.18 For any graphs G and H,
Tr(GOH) > Tr(G)+ Tr(H) - 1.

Proof. If Tr(G) = 1, then G = K, for some n. Hence, GO H is a disjoint
union of n copies of H. Thus, it is clear that Tr(GOH) = Tr(H) =

Tr(G)+Tr(H) - 1.
If Tr(G) > 2, let 7 = {W4,V,...,Vi} be a Tr-partition for G such

that Vi = {u} is a singleton set, and let mp = {W1,W>,..., Wk, } be a
Tr-partition for H.

Form the partition Z = {Z;, Z,, ..., Zk+k,—1} where for 1 <7 < k — 1,
Z; = {(z,y)|z € V;andy € V(H)}, and for 1 < j < kg, Zj4p—1 =
{(u,v) |v € W;}. By construction, Z is a transitive partition for GO H. O

Since T'r(K,) = n, we have the following corollary to Proposition 3.18.
Corollary 3.19 For any graph G, Tr(GOK,) > Tr(G) +n — 1.

Proposition 3.20 If a graph G is transitively full, then GO K,, is transi-
tively full.

Proof. Suppose G is transitively full, that is, Tr(G) = A(G) + 1. By
Corollary 3.19, Tr(GOK,) > Tr(G)+n-1=A(G)+n = A(GOK,) +1.
By Proposition 2.6, Tr(GOK,) < A(GOK,) + 1, and so, Tr(GO K,,) =
A(GOK,) + 1. Hence, GO K, is transitively full. O

Since Tr(P3) = 2, by Proposition 3.18, Tr(GOPs) > Tr(G) + 1. Our
next result shows that this lower bound can be improved slightly.

Proposition 3.21 For any graph G with at least one edge, Tr(G 0O P3) >
Tr(G) + 2.
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Proof. Let V(P3) = {a,b,c} and E(P3) = {ab, bc}.

If Tr(G) > 3, let # = {W;,Va,...,Vk} be a Tr-partition for G such
that Vk_; = {u} and Vi = {v} are singleton sets. We note that this is
possible by Proposition 2.5. Define my = {W;, W5,...,Wg42} where for
1<i<k-2 W;={(z0),(zb)(z,c)|z € Vi}, W1 = {(y,0), (v,c)},
Wi = {(u,¢), (v,0)}, Wiy1 = {(u,d)}, and Wi 2 = {(v,b)}. It is not hard
to see that m is a transitive partition for Tr(G O P3).

If Tr(G) =2, let uv be an edge in G. Define W; = {(z,a), (z,b), (z,¢) |z €
V(G) - {v,v}} U{(v,a), (v,c)}, W2 = {(u,¢), (v,a)}, W3 = {(u,b)}, and
Wi={(v,c)}. O

Of special interest in the study of Cartesian products of graphs are the
prisms, that is, graphs of the form G O P,, consisting of two copies G; and

G, of a graph G, with a matching between the corresponding vertices of G,
and G2. Since Tr(P;) = 2, the following is a corollary to Proposition 3.18.

Corollary 3.22 For any prism GO P, Tr(GO PR,) > Tr(G) + 1.
Proposition 3.20 applied to prisms gives the following corollary.
Corollary 3.23 If G is transitively full, then GO P, is transitively full.

We note that the converse of Corollary 3.23 is not necessarily true. For
example, the prism P3P, is transitively full as A(P30P,) = 3 and
Tr(0PR) = 4 = A(P30P;) + 1, while P is not transitively full as
TT(P;;) =2 A(P;;) +1=3.

The class of graphs called n-cubes is defined recursively as follows. The
0-cube, denoted Qg is the graph K;. The n-cube @, is the graph @, =
Qn—10 P,. Thus, n-cubes are a sub-family of the family of prisms.

Proposition 3.24 For any positive integer n, Tr(Q,) = n+1 and so, the
n-cube Q,, is transitively full.

Proof. Note the n-cube is a n-regular graph. Since, Qg is transitively full,
applying Corollary 3.23 recursively yields that @, is transitively full. That
is, Tr(Qn) =AQ,)+1=n+1. 0

Our final result in this subsection strengthens Proposition 3.18.
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Proposition 3.25 For any graph G, if Tr(G) > 2, then Tr(GUO H)
Tr(G) +Tr(P,OH) -

\Y

Proof. If Tr(G) = 2, select an edge uv € E(G). It follows that m# =
{V(G) — {v}, {v}} is a Tr-partition for G; otherwise, if Tr(G) > 2, let # =
{V1,...,Vi} be a Tr-partition for G such that Vx—; = {u} and Vk = {v}
are smgleton sets. This is possible by Proposition 2.5.

Let G, be the P, subgraph of G induced by the vertices {u,v}. The
graph G; O H is a subgraph of GOH. Let W = {W;,Wa,...,Wk,} be a
Tr-partition for Gy OH. Define a function f : V(G) = {1,...,k}, such
that for y € V;, we have f(y) = z for 1 < z < k. Define a function
g:V(G:0H) - {1,...,|W]}, such that for v € W,, we have g(v) = =, for
1<z < |W)

A transitive partition Z = {Z1, 22, .., Zg4|w|-2} can be formed using
the function h: V(G) x V(H) = {1,2,...,k + |W| — 2} to define the sets,
where h(z,y) = f(z), if z € V(G) — {u,v} and h(z,y) = k -2+ g(y), if
z € {u,v}. The sets Z; = {(z,y) | h(z,y) = i},1 <i < k+ [W|— 2} form
the partition Z. O

3.5 The Join G + H of Two Graphs

The join G + H of two graphs G and H is the graph obtained from the
disjoint union of G and H by adding all possible edges between the vertices
of G and the vertices of H. We give both lower and upper bounds on
Tr(G+ H).

Proposition 3.26 Let G and H be graphs with order m and n. Then
Tr(G + H) < min{m + Tr(H),n+Tr(G)}.

Proof. Let G be a graph of order m, and let 7 be a T'r-partition for G+ H .
At most m sets in 7 contain a vertex in V(G) and the remaining sets form a
transitive partition for a subgraph of H. Hence, Tr(G + H) < m+Tr(H).
A similar argument holds for H. O

Proposition 3.27 Let G and H be graphs with order m and n, respectively,
such that m <n. Then m+1 < Tr(G + H).

Proof. Assume that |V(G)| =m < n=|V(H)|. Construct m — 1 sets of
order two consisting of one vertex from G and one vertex from H. And let
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the remaining vertex in G be a singleton set. Finally, place into one set all
remaining vertices in H. This collection of m + 1 sets forms a transitive

partition of G+ H. O

The next result follows directly from Propositions 3.26 and 3.27.

Corollary 3.28 Let G and H be graphs with order m and n, respectively,
such that m <n. Thenm+1<Tr(G+ H) < m+ Tr(H).

The complete bipartite graph K n, is the graph K, + K,,. The domatic
number of K, ,, is easy to determine.

Proposition 3.29 For any positive integers 1 < m < n, d(Kmn) = m.
The transitivity of K, » is one larger than the domatic number.
Corollary 3.30 For any positive integers 1 <m < n, Tr(Kmn) =m+1.

Proof. Note that Tr(K,) = 1. Thus, Proposition 3.26 implies that
Tr(Kmn) < m+1. Since m < n, Proposition 3.27 implies that Tr(Km ») >

m+1. 0

We give another lower bound.
Proposition 3.31 For any graphs G and H, Tr(G)+Tr(H) < Tr(G+H).

Proof. Let # = {U;,Us,...,U,} be a Tr-partition of G, and let # =

{V1,V>,...,V,} be a Tr-partition of H. Then ' = {Uy,Up,...,Ur, V1, V2, ...

is a transitive partition of G+ H. Therefore, Tr(G+ H) > Tr(G)+Tr(H).
O

Thus, for graphs G and H with order m and n, respectively, such that
m < n, we have that Tr(G+ H) > max{m+1,Tr(G) +Tr(H)}. The next
two corollaries follow from Propositions 3.26 and 3.31.

Corollary 3.32 For any graph G, Tr(G + K;) = Tr(G) + 1.

Corollary 3.33 For any graph G, Tr(G + K,) = Tr(G) +n.
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An improved lower bound for Tr(G + H) can be obtained as follows.
Recall that w(G) is the clique number of G.

Proposition 3.34 Let G be a graph of order m, H a graph of order m,
where m < n, and let w(H) = t. Then if w(H) = t < n— m, then
Tr(G+ H) > m+w(H), else Tr(G + H) 2 n.

Proof. Let the vertices in graph G be U = {u1,uz,...,un} and the
vertices in graph H be V = {vy,v2,...,vs}. Assume that the maximum
size of a clique in H is ¢, where w(H) = t < n —m, and further as-
sume that the ¢ vertices in this clique appear in the list of vertices of V' as
UmyUm+1y - - -y Um+t—1. As in the proof of Proposition 3.27, construct the

following transitive partition of G + H:

= {{uh vl}a {u2a 'U2}, ey {um-—la'vm—l}y {um}1 {'Um}, {'Um-i—l}a {Um+2}a
cooy {Umt-1}}-

Finally, place any remaining vertices not in any set of 7 into set {u1,v1}-
It can be seen that the resulting partition is a transitive partition of order

m+t=m+w(H).

Assume that w(H) =t > n — m. In this case, order the vertices in the
clique so that they are the last ¢ vertices in V. It can be seen that the par-

tition ™ = {{ula Ul}a {‘U2, Uz}, sney {um—lw 'Um—l}a {um}a {vm}a {vm+1}1 Brene y
{vm+t-1}} is a transitive partition of G+ H of order m+n—m =n. O

4 Transitively Critical Graphs

As observed in [4], deleting a vertex v or an edge e, or adding an edge e
can change the transitivity of a graph by at most one.

Proposition 4.1 [4] For any graph G with a vertez v € V(G), edge e €
E(G), and edge f € E(G),

(i) Tr(G) -1 < Tr(G — v) < Tr(G),

(i) Tr(G) -1 < Tr(G —e) < Tr(G);

(1ii) Tr(G) < Tr(G + f) <Tr(G) +1.

We begin with the following definition.
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Definition 1 A graph G = (V, E) is called transitively vertez-critical if
Tr(G) > 1 and deleting any vertez v € V results in a graph whose transitiv-
ity is less than that of G. If G is transitively vertez-critical and Tr(G) =k,
we say that G is T'ri-critical.

By Proposition 2.7, Tr(G) = n if and only if G = K,, and so we make
the following observation.

Observation 4.2 A graph G of order n is T'rn-critical if and only if G is
the complete graph K,,.

Lemma 4.3 If G is Try-critical, then G is connected.

Proof. Suppose that G is disconnected. Let Cy,Co,...,C; be the com-
ponents of G. Notice that the transitivity of G is equal to the maximum
transitivity among its components, so Tr(C;) = Tr(G) for some i. But
then deleting a vertex from any component C; for j # i does not change
the transitivity of G, so G is not transitively vertex-critical. O

Consider Proposition 2.5 once again. If G is transitively vertex critical,
then the conditions in Proposition 2.5 must hold in all T'r-partitions of G.

Lemma 4.4 IfG is Trg-critical, and m = {V1, Va,..., Vik} is a Tr-partition
of G, then |Vg| = 1.

Proof. Assume that G is Trg-critical, and let m = {V1,V5,...,Vi} be a
Tr-partition of G. For the sake of contradiction, suppose that |Vi| > 2 and
that u,v € V.. We see that n’ = {V4, Va,...,Vk_1, V{ = {u}} is a transitive
partition of G — v, a contradiction. (J

Corollary 4.5 The only T'ry-critical graph is K;.

Lemma 4.6 If G is Try-critical with k > 2, and m = {V1,V2,...,Vk} is a
Tr-partition of G, then |Vk—1| = 1.

Proof. Assume that G is T'rg-critical for k > 2. Let 7 = {V, V2,..., Vk—1, Vi }
be a Tr-partition of G. By Lemma 4.4, we know that |Vix| = 1. Let
z € V. For the sake of contradiction, suppose that |Vk—1| > 2 and let
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u,v € Vi_1. Without loss of generality, suppose that uz € E(G). We
see that 7/ = {V,Va,. .., Vk—2, Vi_; = {u}, Vi} is a transitive partition of
G — v, a contradiction. O

Corollary 4.7 The only Try-critical graph is K,.

Lemma 4.8 If G is Try-critical with k > 3, and m = {V1,V2,...,Vk} is a
Tr-partition of G, then |Vk—o| < 2.

Proof. Assume that G is T'ry-critical with k > 3. Let 7 = {V4, ..., Vk—1, V& }
be a Tr-partition of G. By Lemma 4.4 and Lemma 4.6, we have that

Vel = 1 and |Vi_y| = 1. Let © € V; and y € Vik_;. For the sake of

contradiction, suppose that |Vx—| > 3. Let u be a vertex in Vi_2 that

dominates y, let v be a vertex in Vi_o that dominates z, and let w in

Vi—2 be distinct from u and v. Note that u = v is possible. We see that

= {V,...,Vi_y = Vik—2 — {u,v}, V-1, Vk} is a transitive partition of

G - w, a contradiction. O

Corollary 4.9 If G is Trs-critical, then 3 < |G| < 4.

Simple enumeration will show that the only T'r3-critical graph on 3 ver-
tices is K3, and the only two of order four are Py and Cjy.

Corollary 4.10 A graph G is Tr3-critical if and only if G € {K3, Ps, Ca}.
In general, we have the following.

Lemma 4.11 If G is Trg-critical with1 < j <k, and m = {W3, V5, ..., Vi }
is a Tr-partition of G, then |Vi—;| < Y920 [Vi—il.

1=

Proof. Suppose G is Trg-critical with k > j. Let 7 = {V,Vs,..., Vi}
be a Tr-partition of G. Each vertex in Vi_ji1,Vk_jia,...,Vk must be
dominated by a vertex in Vi_;. If |Vk_;| > Z{;l |Vk—;l, then there is at
Jeast one vertex in Vi_; whose removal will not decrease the transitivity, a
contradiction. [J

Thus, by combining our lemmas, we have the following result.

200



R A S S R A

Proposition 4.12 If G is Try-critical, then |V(G)| < 2k-1.

By Proposition 4.12, for any T'rs-critical graph G of order n, then 4 <
n < 8. By Observation 4.2, if G # K4, then 5 < n < 8. The corona Pso K;
is an example of a T'r4-critical graph of order n = 8.

Transitively edge-critical graphs are defined in a similar manner.

Definition 2 A graph G = (V, E) is called a transitively edge-critical graph
if Tr(G) > 1 and deleting any edge e € E results in a graph whose transitiv-
ity is less than that of G. If G is transitively edge-critical and Tr(G) = k,
we denote this by T'rg-critical.

Clearly, the complete graph K, is both vertex-critical and edge-critical.
Since C,, —v = P,,_, for any vertex v € V(C,,) and C,, — e = P, for any
edge e € E(C,), Proposition 2.8 implies that no cycle is edge-critical and
that the only vertex-critical cycles are C3 and Cjy.

Our first lemma concerning transitively edge-critical graphs is in distinc-
tion to Lemma 4.4. In addition, note that transitively edge-critical graphs
may be disconnected (see K3 U K; for example).

Lemma 4.13 IfG is Tri-critical and m = {V1,Va,...,Vi} is a Tr-partition
of G, then V; is an independent set for 1 <i < k.

Proof. Suppose G is a Trg-critical graph, and let 7 = {V;,V4,...,Vik} be
a T'r-partition of G. If e is an edge joining two vertices in Vj, for some j,
then 7 is a transitive partition of G — e. Our result follows. O

Corollary 4.14 If G is Trg-critical, then Tr(G) = ['(G).

Proof. Let G be a Trg-critical graph, and let 7 = {V4,V2,...,Vi} be a
Tr-partition of G. By Lemma 4.13, V; is independent for 1 < ¢ < k. Thus,

7 is a Grundy coloring, in which case I'(G) > Tr(G). As previously noted,
['(G) < Tr(G) for all graphs G. O

The converse of Corollary 4.14 does not hold in general. For instance, the
path Ps has Tr(Ps) = 3 = I'(Ps), but Ps is not transitively edge-critical.

Finally, we consider transitively critical graphs where the operation under
consideration is edge addition.
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Definition 3 A graph G = (V, E) is called a transitively edge* -critical
graph if adding any edge e € E(G) results in a graph whose transitivity s
more than that of G. If G is transitively edget -critical and TT(G) = k, we

denote this by Try ®-critical.

We note that vacuously the complete graph K, is edge*-critcal making it
vertex-critical, edge-critical and edge*-critical. Since Tr(G) = 1if and only
if G = Ky, it is straightforward to characterize the Tr} ¢-critical graphs.

Observation 4.15 A graph G is Tr{®-critical if and only if G = Kn.
Moreover, Proposition 2.7 implies the following.

Observation 4.16 A graph G is Tr¢-critical if and only if G is a disjoint
union of stars.

We conclude this section by noting that the graph K, —e is T} °;-
critical. In fact, the graph K, — M, where M is any matching with an odd
number of edges is edge™-critical.

5 Open Problems

1. What is a necessary and sufficient condition for a graph G to have
Tr(G) > 47 We can show that if Tr(G) > 4, then G must contain
one of 14 (not necessarily induced) subgraphs. Note that by Part 3 of
Proposition 2.8, this implies that every cubic graph contains one of
13 subgraphs, since one of these subgraphs contains a vertex of degree
greater than three.

2. What is a necessary and sufficient condition for a graph G to have

Tr(G) =3?

3. The independent domination number of a graph, denoted i(G), is the
minimum order of an independent dominating set. If G is a graph of
order n, is i(G) + Tr(G) < n+1?

4. For what classes of graphs is I'(G) = Tr(G)?
5. For what classes of graphs is d(G) = Tr(G)?

6. When does equality hold in Proposition 3.18? That is, for what classes
of graphs is Tr(GO H) = Tr(G) + Tr(H) - 17
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7. Let L(G), T(G), and S(G) denote the line graph, total graph, and
subdivision graph of G, respectively. For any graph G, what is the re-
lationship between T'r(G) and Tr(H¢) where Hg € {L(G), T(G), S(G)}.

8. Recall the operation GAK; that we applied only to the exterior edges
of a maximal outerplanar graph. Let GA.K; denote the graph ob-
tained by applying this operation to every edge of a graph G. What
is the relation between T'r(G) and Tr(GA.K1)?

9. Define a tournament transitive partition as a transitive partition with
the additional constraint that V; ¢ V;, for ¢ < j, and define the
tournament transitive partition number T'7r(G) as the maximum or-
der of a tournament transitive partition. For the graph K, the only
transitive partition is {V(K,)}. Investigate tournament transitive
partitions of graphs.

10. In Section 4, we briefly introduced transitively critical graphs, a rich
avenue for future research. What is a necessary and sufficient con-
dition for a a graph to be T'ri-critical for £ > 4. Answer similar
questions for edge-critical and edge™-critical graphs.
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