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1. Introduction

Definition 1. (Balanced incomplete block design) A block design D(v, b, r, k) is resolvable if the b
blocks each of size k can be grouped into r resolution (or parallel) classes such that

1. Each resolution class contains b
r blocks;

2. Every element is replicated exactly once in each resolution class.

A balanced incomplete block design (BIBD) or a 2 − (v, k, λ) design is an arrangement of v
elements into b = λ(v2−v)

(k2−k) blocks, each of size k(< v) such that each element appears r times and
each pair of distinct elements occurs λ times. We also denote such design as (v, k, λ)−BIBD. The
integers v, b, r, k, λ are called parameters of the (v, k, λ)−BIBD and they satisfy the relations: bk =
vr, r(k − 1) = λ(v − 1).

A BIBD with k = 3 and λ = 1 is usually known as Steiner triple system (STS) or Steiner 2–design
and a resolvable Steiner triple system is known as Kirkman triple system (KTS), see [1–3].

Example 1. Consider a resolvable BIBD with parameters: v = 9, b = 12, r = 4, k = 3, λ = 1 whose
resolution classes are:

RI: [(1 2 3) (4 5 6) (7 8 9)]; RII: [(1 4 7) (2 5 8) (3 6 9)]; RIII: [(1 5 9) (2 6 7) (3 4 8)];
RIV: [(1 6 8) (2 4 9) (3 5 7)].

Definition 2. (Group divisible design, frames and their orthogonal resolutions)
A group divisible (GD) design is an arrangement of v = mn elements in b blocks such that

1. Each block contains k(< v) distinct elements;
2. Each element occurs r times;
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3. The elements can be divided into m groups each of size n such that any two distinct elements
occur together in λ1 blocks if they belong to the same group and in λ2 blocks if they belong to
different groups.

The integers: v = mn, b, r, k, λ1and λ2 are known as parameters of the GD design and they satisfy the
relations: bk = vr; (n − 1)λ1 + n(m − 1)λ2 = r(k − 1). Furthermore, if r − λ1 = 0 then the GD design
is singular (S); if r − λ1 > 0; rk − vλ2 = 0 then it is semi–regular (SR); and if r − λ1 > 0; rk − vλ2 > 0,
then the design is regular (R). A GD design with parameters: v = mn, b, r, k, λ1 = 0, λ2 = λ is also
known as (k, λ)−GD design of type nm for some positive integer m [4].

Example 2. Consider the following resolvable solution of an SRGD design SR9 with parameters:
v = 8, b = 16, r = 4, k = 2, λ1 = 0, λ2 = 1,m = 2, n = 4 as given in [5]:

RI: [(1 5) (2 6) (3 7) (4 8)]; RII: [(2 7) (1 8) (4 5) (3 6)]; RIII: [(4 6) (3 5) (2 8) (1 7)];
RIV: [(3 8) (4 7) (1 6) (2 5)].

The arrangement of v = 8 elements in 2 × 4 array is given as:
1 2 3 4
5 6 7 8

.

A holey or partial resolution class is a collection of blocks such that every element ofV\G, G ∈ G
occurs exactly once and the elements of G do not occur where G is a set of ′m′ groups each of size
n of the GD design. A uniform (k, λ)−frame of type nm and index λ is a GD design with parameters:
v = mn, b, r, k, λ1 = 0, λ2 = λ such that

1. The block set B can be partitioned into a family R : R1,R2, . . . ,Rm of partial resolution classes;
2. Each Ri∈ R can be associated with a group G ∈ G so that Ri(1 ≤ i ≤ m) contains every element

ofV\G exactly once.

Example 3. Consider a (3; 1)–frame of type 24 given in [6] whose holey resolution classes are given
below. This GD design is listed as R54 : v = b = 8, r = k = 3, λ1 = 0, λ2 = 1,m = 4, n = 2 in [5].

Holey Resolution Classes R1 R2 R3 R4

groups {1, 5} {2, 4} {3, 6} {7, 8}
blocks {2, 6, 7} {1, 6, 8} {1, 4, 7} {1, 2, 3}

{3, 4, 8} {3, 5, 7} {2, 5, 8} {4, 5, 6}

Example 4. The following solution of a (3; 1) –frame of type 44 may be found in [7]. This GD design
is listed as R86 : v = 16, b = 32, r = 6, k = 3, λ1 = 0, λ2 = 1,m = n = 4 in [5].

Groups: {1, 2, 3, 4}; {7, 8, 9, 10}; {13, 14, 15, 16}; {19, 20, 21, 22}

Holey Resolution Classes

1 2 3 4 7 8 9 10
7 13 20 7 15 21 1 13 21 1 14 22
8 16 22 8 14 19 2 15 22 2 16 21
9 14 21 9 16 20 3 16 19 3 15 20

10 15 19 10 13 22 4 14 20 4 13 19
13 14 15 16 19 20 21 22

1 7 19 1 8 20 1 9 15 1 10 16
2 10 20 2 9 19 2 8 13 2 7 14
3 8 21 3 7 22 3 10 14 3 9 13
4 9 22 4 10 21 4 7 16 4 8 15

A uniform (k, λ)−frame of type nm and index λ has a pair of orthogonal resolutions if it admits
R = R1,R2, . . . ,Rm and S = S 1, S 2, . . . , S m as different frame resolutions such that
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1. For any group G ∈ G, for any partial parallel class Ri associated with G in R and any partial
parallel class S j associated with G in S , Ri ∩ S j = φ;

2. For any different groups G1 and G2 of G, for any partial parallel class Ri associated with G1 in
R and any partial parallel class S j associated with G2 in S ,

∣∣∣Ri ∩ S j

∣∣∣ ≤ 1..

For details on frames, their orthogonal resolutions and applications we refer to Furino et al. [8],
Lamken [9] and Wang et al. [10].

A triangular association scheme is an arrangement of v = n(n−1)
2 elements in an n×n array such that

the positions on the principal diagonal are left blank, the n(n−1)
2 positions above and below the principal

diagonal are filled with the v elements in such a way that the resultant arrangement is symmetric about
the principal diagonal. Then any two elements which occur in the same row or same column are first
associates; otherwise, they are second associates. A partially balanced incomplete block (PBIB)
design based on triangular association scheme is called a triangular design.

The integers v = n(n−1)
2 , b, r, k, λ1and λ2 are known as parameters of the triangular design and they

satisfy the relations: bk = vr; 2(n − 2)λ1 +
(n−2)(n−3)

2 λ2 = r(k − 1).

Example 5. Consider a triangular design T9 given in Clatworthy [5] with parameters: v = b =
10, r = k = 3, λ1 = 1, λ2 = 0 whose blocks are given as: (1 2 5); (8 9 10); (2 3 8); (5 7 9); (2 4 9); (5
6 8); (3 4 10); (6 7 10); (1 4 7); (1 3 6)

The arrangement of 10 elements in 5 × 5 array is given as:

∗ 1 2 3 4
1 ∗ 5 6 7
2 5 ∗ 8 9
3 6 8 ∗ 10
4 7 9 10 ∗

.

An (r, λ)−design is a collection B of subsets (blocks) from a finite set V of elements such that
every element of V is contained in r blocks of B and every pair of distinct elements is contained in
exactly λ blocks.

Suppose b blocks of a block design D(v, b, r, k) can be divided into t (= r
µ
) classes, each of size

β = νµk such that in each class of β blocks every element of D is replicated µ times. Then these t classes
are known as µ−resolution (or parallel) classes and the design is called µ−resolvable design [11].
When µ = 1 the design is said to be resolvable and the classes are called resolution classes.

Any two resolutions R = R1,R2, . . . ,Rr and S = S 1, S 2, . . . , S r of a resolvable block
design D(v, b, r, k) are orthogonal if

∣∣∣Ri
⋂

S j

∣∣∣ ≤ 1, 1 ≤ i, j ≤ r. Further D(v, b, r, k) is doubly re-
solvable if it has a pair of orthogonal resolutions. It should be noted that the blocks of the design are
considered as labeled so that repeated blocks are treated as distinct. We write m−MORs if D(v, b, r, k)
has a set of m mutually orthogonal resolutions.

Corresponding to a doubly resolvable design: D(v, b, r, k), an r × r array A = (Aij)1≤i, j≤r =

Ri
⋂

S j; Ri ∈ R, S j ∈ S can be formed such that the rows are indexed by the elements of R and
columns by the elements of S . Hence any cell of A will either be empty or contain a block of D.
Clearly A is row–wise as well as column–wise resolvable.

If the r × r array A is based on a (v, 2, 1)−BIBD, then it is known as a Room square or Kirkman
square KS2(v; 1, 1) of side v − 1 otherwise it is called a generalized Room square. Further when a
doubly resolvable design is based on µ−resolvable BIBD, it is called doubly µ− resolvable and the
corresponding t × t (t = r

µ
) array based on it is known as a Kirkman square, KSk(v; µ, λ) Stinson [12]

and Abel et al. [13].

Example 6. A Kirkman square KS4(8; 3, 9)/ doubly 3– resolvable design based on a BIBD with
parameters v = 8, b = 42, r = 21, k = 4, λ = 9 with empty diagonals is presented Table 1.

A (v, k, λ)−BIBD is said to be near resolvable if its blocks can be partitioned into ′v′ near or holey
resolvable classes: R1,R2, . . . ,Rv such that such that for each element x of the design there is precisely
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– 1, 2, 7, 8 5, 6, 7, 8 3, 4, 5, 6 1, 2, 3, 4 1, 2, 5, 6 3, 4, 7, 8
1, 3, 5, 7 – 1, 2, 3, 4 1, 3, 6, 8 2, 4, 5, 7 2, 4, 6, 8 5, 6, 7, 8
1, 4, 6, 7 1, 4, 5, 8 – 2, 3, 5, 8 5, 6, 7, 8 2, 3, 6, 7 1, 2, 3, 4
1, 4, 5, 8 2, 3, 6, 7 3, 4, 7, 8 – 2, 4, 6, 8 1, 3, 5, 7 1, 2, 5, 6
2, 3, 5, 8 1, 3, 6, 8 1, 2, 5, 6 2, 4, 5, 7 – 3, 4, 7, 8 1, 4, 6, 7
2, 4, 6, 8 3, 4, 5, 6 1, 2, 7, 8 1, 4, 6, 7 1, 3, 5, 7 – 2, 3, 5, 8
2, 3, 6, 7 2, 4, 5, 7 3, 4, 5, 6 1, 2, 7, 8 1, 3, 6, 8 1, 4, 5, 8 –

Table 1. 7 × 7 KS4(8; 3, 9) with Empty Diagonals

one class which does not contain x in any of its blocks and each class contains v− 1 distinct elements
of the design. If D has a pair of near orthogonal resolutions then the design is known as doubly near
resolvable, DNR(v, k, λ)−BIBD [14].

Corresponding to a DNR(v, k, λ)−BIBD, a v × v array A = (Aij)1≤i, j≤v = Ri
⋂

S j; Ri ∈ R, S j ∈ S
can be formed such that the rows are indexed by the elements of R and columns by the elements of S
where R = R1,R2, . . . ,Rv and S = S 1, S 2, . . . , S v are near orthogonal resolutions of the design. Hence
any cell of A will either be empty or contain a block of the design. Clearly A is row–wise as well as
column–wise near resolvable. We write m−MNORs if a (v, k, λ)− BIBD has a set of m mutually near
orthogonal resolutions.

Example 7. The following example may be found in Abel et al. [13]. Rows and columns form orthog-
onal near resolutions (Table 2).

– – 3, 4, 8 1, 6, 7 – – – 2, 5, 9 – –
– – – 0, 4, 9 2, 7, 8 – – – 3, 5, 6 –

3, 8, 9 – – – 0, 1, 5 – – – – 4, 6, 7
1, 2, 6 4, 5, 9 – – – 0, 7, 8 – – – –

– 2, 3, 7 0, 5, 6 – – – 1, 8, 9 – – –
– – 1, 7, 9 – – – – 4, 6, 8 – 0, 2, 3
– – – 2, 5, 8 – 1, 3, 4 – – 0, 7, 9 –
– – – – 3, 6, 9 – 0, 4, 2 – – 1, 5, 8

4, 5, 7 – – – – 2, 6, 9 – 0, 1, 3 – –
– 0, 6, 8 – – – – 3, 5, 7 – 1, 2, 4 –

Table 2. A Doubly Near Resolvable (10,3,2)-BIBD

Let K be a finite key space and P be a finite set of participants. In a secret sharing scheme, a
special participant D < P, called the dealer, secretly chooses a key K ∈ K and distributes one share or
shadow from the share set S to each participant in a secure manner, so that no participant knows the
shares given to other participants. A (t, w)−threshold scheme is a secret sharing scheme in which if
any t(≤ w) or more participants pool their shares, where w = |P|, then they can reconstruct the secret
key K ∈ K , but any t − 1 or fewer participants can gain no information about it.

According to Time Magazine (May 4, 1992, p. 13), control of nuclear weapons in Russia in early
1990s depended upon “two–out–of–three” access mechanism. The three parties involved were the
President, the Defense–minister and the Defense Ministry. This would correspond to a threshold
scheme with w = 3 and t = 2, op. cit. Stinson and Vanstone [15], Stinson [16].

2. (2,w)−threshold Schemes from Orthogonal Resolutions

Mutually orthogonal resolutions (m-MORs) of certain series of (v, k, λ)-BIBDs can be found in
the works of Mathon and Vanstone [17], Abel et al. [13], and Topalova and Zhelezova [18–20].
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Additionally, MORs of GD designs and (r, λ)-designs are discussed by Fuji-Hara and Vanstone [21],
Vanstone [22], Lamken and Vanstone [23,24], Chang and Miao [25], and Dong and Wang [26]. Some
key existence theorems on orthogonal resolutions are presented below:

Theorem 1. [9] For any integer k > 2, there exists m0 such that a (k; k − 1)-frame of type km with a
pair of orthogonal frame resolutions exists for any integer m ≥ m0.

Theorem 2. [27] Given any integers k ≥ 2, λ ≥ 1, and n ≥ 1 such that λn ≡ 0 (mod k − 1), there
exists m0 such that a (k; λ)-frame of type nm with a pair of orthogonal frame resolutions exists for any
integer m ≥ m0 that satisfies n(m − 1) ≡ 0 (mod k).

Theorem 3. [14] A DNR(ν, 4, 3)-BIBD exists for all ν ≡ 1 (mod 4) except for ν = 9 and possibly for
ν ∈ {17, 213}.

Theorem 4. [28] There exist DNR(3 · 19i + 1, 3, 2)-BIBDs and DNR(3 · 31i + 1, 3, 2)-BIBDs for any
positive integer i.

Theorem 5. [29] Let q = 3t + 1 be a prime power and (3, t) = 1. If 2 is a cube in the Galois field
GF(q), then there exists a set of four MNORs for a cyclically generated (q, 3, 2)-BIBD over GF(q).

Vanstone [29] also constructed a (31, 3, 2)-BIBD with seven MNORs; (29, 4, 3)-, (19, 3, 2)-, and
(37, 3, 2)-BIBDs with five MNORs.

A 2-MOR of an (n + 1, 2, 1)-BIBD is equivalent to a Room square of side n, see Topalova and
Zhelezova [19]. Chaudhry et al. [30] used the critical set of a Room square of side n or equivalently
orthogonal resolutions of an (n + 1, 2, 1)-BIBD in constructing perfect secret sharing schemes, while
Saurabh and Sinha [31] used critical sets of group divisible Room squares for the same purpose.
Pieprzyk and Zhang [32] derived ideal (t,w)-threshold schemes from a bt × (n + 1) orthogonal array
OA(bt, n + 1, b, t) by considering OA(i, j) as the shares of participants P j (where 1 ≤ j ≤ n) and
OA(i, 0) as a secret key (where 1 ≤ i ≤ bt), with OA(i, j) denoting the entry in the ith row and
jth column of OA(bt, n + 1, b, t). Stinson and Vanstone [15] obtained perfect threshold schemes from
Steiner systems S (t,w, v). Adachi and Lu [33] constructed (3, 3)-threshold schemes from magic cubes
by considering the magic cube as a secret key and the corresponding three cubes as the shadows.

Although various secret sharing schemes exist in the literature, more schemes are desirable from
the perspectives of secrecy and security. It is suggested to consider each of the w resolutions of a
block design as shares and a combination of any two orthogonal resolutions or the corresponding
Room square as a secret key of a (2,w)-threshold scheme. By considering w-MORs or w-MNORs
of (v, k, λ)-BIBDs, GD designs, (r, λ)-designs, triangular designs, or any combinatorial designs and
2-MORs of frames, we may obtain (2,w)-threshold schemes. Tables 3-5 present (2,w)-threshold
schemes derived from some combinatorial designs.

No. (v, k, λ)-BIBD Source w-MORs

1 (pn, p, 1) - BIBD; n ≥ 2 LV (1986) w = 2

2 (p + 1, 2, 1) - BIBD; p = 2kt + 1 LV (1986) w = t

No. (r, λ)-design Source w-MORs

1
(
p2 + p + 1, 1

)
- design FV (1980) w = 2

No. GD design: (v, r, k, λ1, λ2,m, n) Source w-MORs

1
(
p2 − ps, p, p − s, 0, 1, p − s, p

)
LV (1986) w = s + 1, 1 ≤ s ≤ p − 2

2
(
2n + 2, 2n, 2, 0, 1, 2n−1 + 1, 2

)
LV (1986) w = 2n−1; n ≥ 2

3
(
p3 − p, p2, p, 0, 1, p + 1, p2 − p

)
LV (1988) w = p2 − p

Table 3. (2,w)-threshold Schemes from w-MORs of Designs
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No. Near resolvable (v, k, λ) - BIBDs Source w-MNORs
1 (v, 4, 3) - BIBD; v ≡ 1 mod 4; except for v = 9 and possibly for v ∈ {17, 213} Abel and Chan [14] 2-MNORs
2

(
3 · 19i + 1, 3, 2

)
- and

(
3 · 31i + 1, 3, 2

)
- BIBDs; i a positive integer Lamken and Vanstone [28] 2-MNORs

3 (q, 3, 2) - BIBD; q = 3t + 1 a prime power and (3, t) = 1 Vanstone [29] 4-MNORs
4 (31, 3, 2) - BIBD Stinson [29] 7-MNORs
5 (29, 4, 3) -, (19, 3, 2) -, and (37, 3, 2) - BIBDs Vanstone [29] 5-MNORs

Table 4. (2, w) - threshold Schemes from w-MNORs of Near Resolvable Designs

Abbreviations

p is a prime or prime power, FV stands for Fuji-Hara and Vanstone [21], and LV stands for Lamken
and Vanstone, [28].

Given below are examples of mutually orthogonal resolutions of GD and triangular designs:

Example 8. For p = 5, s = 2 in Series No. 1 of GD designs given in Table 3, we obtain 3– MORs of
a GD design with parameters: v = 15, r = 5, k = 3, b = 25, λ1 = 0, λ2 = 1,m = 3, n = 5 which are
presented below. This GD design is listed as SR28 in Clatworthy [5].

I
(1, 2, 3); (6, 13, 14); (4, 9, 11); (5, 7, 15); (8, 10, 12)
(4, 5, 12); (6, 10, 11); (1, 14, 15); (3, 8, 13); (2, 7, 9)
(2, 10, 15); (5, 9, 13); (6, 7, 8); (1, 11, 12); (3, 4, 14)
(3, 7, 11); (4, 8, 15); (2, 12, 13); (9, 10, 14); (1, 5, 6)
(1, 8, 9); (7, 12, 14); (3, 5, 10); (2, 4, 6); (11, 13, 15)

II
(1, 2, 3); (6, 7, 8); (4, 5, 12); (9, 10, 14); (11, 13, 15)
(1, 8, 9); (2, 12, 13); (3, 4, 14); (6, 10, 11); (5, 7, 15)
(1, 5, 6); (3, 8, 13); (2, 10, 15); (4, 9, 11); (7, 12, 14)
(1, 11, 12); (4, 8, 15); (3, 5, 10); (6, 13, 14); (2, 7, 9)
(1, 14, 15); (2, 4, 6); (3, 7, 11); (5, 9, 13); (8, 10, 12)

III
(6, 13, 14), (4, 5, 12); (2, 10, 15); (3, 7, 11); (1, 8, 9)
(1, 2, 3); (6, 10, 11); (5, 9, 13); (4, 8, 15); (7, 12, 14)
(4, 9, 11); (1, 14, 15); (6, 7, 8); (2, 12, 13); (3, 5, 10)
(5, 7, 15); (3, 8, 13); (1, 11, 12); (9, 10, 14); (2, 4, 6)
(8, 10, 12); (2, 7, 9); (3, 4, 14); (1, 5, 6); (11, 13, 15)

The arrangement of v = 15 elements in 3 × 5 array is given as:
1 4 7 10 13
2 5 8 11 14
3 6 9 12 15

.

Considering each of three resolutions as shares and a combination of any two orthogonal resolu-
tions as secret key of the above GD design, we obtain a (2, 3) –threshold scheme.

Example 9. 2 –MOR of a triangular design with parameters: v = 15, r = 6, k = 3, b = 30, λ1 =

0, λ2 = 2 are presented below. Rows and columns form two different resolutions. This design is listed
as T17 in Clatworthy [5].
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– 1, 10, 15 4, 7, 12 5, 6, 13 3, 9, 11 2, 8, 14
1, 10, 15 – 2, 9, 13 3, 8, 12 4, 6, 14 5, 7, 11
3, 8, 12 5, 6, 13 – 1, 11, 14 2, 7, 15 4, 9, 10
2, 9, 13 4, 7, 12 1, 11, 14 – 5, 8, 10 3, 6, 15
5, 7, 11 2, 8, 14 3, 6, 15 4, 9, 10 – 1, 12, 13
4, 6, 14 3, 9, 11 5, 8, 10 2, 7, 15 1, 12, 13 –

Table 5. Doubly Resolvable Triangular Design

This arrangement may be found in Sinha [34]. Considering each of two resolutions as shares and
a combination of two orthogonal resolutions as secret key of the above triangular design, we obtain
a (2, 2) –threshold scheme.

3. Conclusion

Here, a brief survey on mutually orthogonal resolutions of some combinatorial designs is presented
and some (2,w)−threshold schemes are obtained from these mutually orthogonal resolutions. Two
orthogonal resolutions have been used to coordinatize a two–dimensional square, called Room square
however we could use t−MORs to coordinatize a t−dimensional hypercube. These t−MORs can also
be used in secret sharing schemes. When t = 3, k = 2, λ = 1, a set of 3−MORs is commonly called
a Room cube of side v − 1 based on D [29, 35]. Further considering each resolution as a share and
a secret as Room cube obtained from 3−MORs of a block design, we can obtain (3,w)−threshold
schemes. Some constructions and existence results of some other doubly resolvable combinatorial
designs namely H−designs and Canonical Kirkman packing designs can be found in Meng [36],
Wang [10] and Meng et al. [37]. The orthogonal resolutions of these designs can also be used to
obtain (2, 2) –threshold schemes. Some examples of doubly near resolvable designs which are not
frames can be found in Lamken and Vanstone [28] and Abel et al. [13].

An example of a doubly 3–resolvable BIBD is given below which is duplicate of an unreduced
BIBD. It seems that there is a possibility of presenting a construction rule of a doubly µ−resolvable
BIBD with parameters: v, b = 2

(
v
k

)
, r = 2

(
v−1
k−1

)
, k, λ = 2

(
v−2
k−2

)
; µ = k, obtained by the duplicate of

an unreduced BIBD with parameters: v, b =
(

v
k

)
, r =

(
v−1
k−1

)
, k, λ =

(
v−2
k−2

)
, provided that v divides b.

Example 10. Sinha and Kageyama [38] obtained a 3–resolvable BIBD with parameters: v = 7, b =
70, r = 30, k = 3, λ = 10 which is duplicate of an unreduced BIBD with parameters: v = 7, b =
35, r = 15, k = 3, λ = 5. A Kirkman square KS3(7; 3, 10) (or a doubly 3–resolvable design) as a
10 × 10 array with empty diagonals is presented in Table 6.

– – 2, 4, 5 3, 5, 6 2, 6, 7 – 1, 2, 3 1, 4, 6 1, 5, 7 3, 4, 7
3, 6, 7 – 1, 4, 6 1, 5, 7 1, 2, 3 3, 4, 5 – – 2, 4, 7 2, 5, 6
1, 3, 5 3, 4, 6 – 2, 5, 6 – 2, 3, 7 1, 2, 4 4, 5, 7 – 1, 6, 7
4, 5, 6 1, 3, 5 2, 5, 7 – – 1, 6, 7 3, 4, 7 – 2, 3, 6 1, 2, 4
1, 4, 7 1, 3, 6 – 2, 3, 4 – – 4, 5, 6 2, 6, 7 1, 2, 5 3, 5, 7
2, 4, 6 1, 2, 5 3, 4, 5 – 1, 4, 7 – 2, 3, 7 1, 3, 6 5, 6, 7 –

– 2, 5, 7 1, 2, 6 4, 6, 7 3, 5, 6 1, 4, 5 – 1, 3, 7 – 2, 3, 4
2, 3, 5 2, 4, 7 1, 3, 7 – 1, 4, 5 1, 2, 6 5, 6, 7 – 3, 4, 6 –
1, 2, 7 – 3, 6, 7 1, 3, 4 2, 4, 6 4, 5, 7 – 2, 3, 5 – 1, 5, 6

– 4, 6, 7 – 1, 2, 7 3, 5, 7 2, 3, 6 1, 5, 6 2, 4, 5 1, 3, 4 –

Table 6. 10 × 10 KS3(7; 3, 10) with Empty Diagonal
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