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Abstract: When using airborne LiDAR point clouds for city modelling and road extraction, point
cloud classification is a crucial step. There are numerous ways for classifying point clouds, but there
are still issues like redundant multi-dimensional feature vector data and poor point cloud classification
in intricate situations. A point cloud classification method built on the fusing of multikernel feature
vectors is suggested as a solution to these issues. The technique employs random forest to classify
point cloud data by merging colour information, and it extracts feature vectors based on point prim-
itives and object primitives, respectively. In this study, a densely populated area was chosen as the
study area. Light airborne LIDAR mounted on a delta wing was used to collect point cloud data at a
low altitude (170 m) over a dense cross-course. The point cloud data were then combined, corrected,
and enhanced with texture data, and the houses were vectorized on the point cloud. The accuracy of
the results was then assessed. With a median inaccuracy of 4.8 cm and a point cloud data collection
rate of 83.3%, using airborne LIDAR to measure house corners can significantly lighten the labour as-
sociated with external house corner measurements.This test extracts the texture information of point
cloud data through the efficient processing of high-density point cloud data, providing a reference
for the application of texture information of airborne LIDAR data and a clear understanding of its
accuracy.

Keywords: Airborne lidar, Multi-basic element feature vector fusion, House measurement, Texture
extraction, Accuracy analysis

1. Introduction

In the field of home surveying, airborne LiDAR technology has recently grown in importance.
A type of laser detection and ranging system known as airborne LIDAR combines laser ranging,
GPS, an inertial navigation system (INS), and a CCD camera mounted on fixed-wing aircraft or heli-
copters [1]. It has a high degree of accuracy and is capable of acquiring three-dimensional spatial data
of the terrain surface in real time [2, 3]. However, it is very difficult to conduct mapping operations
with LIDAR equipment on board aeroplanes in terms of time and money due to the restrictions of
aviation control and flight conditions. Small in size and light in weight, lightweight LIDAR lowers
the technical bar for airborne LIDAR while reducing data acquisition costs. It is suitable for mount-
ing on delta-wing or unmanned aerial vehicles with low altitude flight, simple takeoff conditions, and
minimal aviation control. This technology has been widely applied to the creation of urban 3D mod-
els, the extraction of urban roads, and the acquisition of DigitalTerrain Models (DTM) [4, 5]. For 3D
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modelling and the extraction of urban roads, automatic point cloud classification is crucial [6,7]. Two
categories of automatic point cloud categorization techniques are currently available: the first uses
geometric restrictions to categorise point clouds, while the second uses machine learning.

Multiple constraints must be set in the first geometric constraint-based point cloud classification
approach in order to categorise each category. The road network is first segmented using the region
growth law and the different characteristics of the various categories, and [8, 9] manually extracts the
seed points containing elevation information and reflection intensity information. The road network
is then refined and denoised to obtain a road network with redundant roads and noise removed. Ac-
cording to the notion of greatest inter-class variance, the ground and non-ground point patches are
split in [10, 11], and the non-ground classes are divided into buildings, vegetation, etc. depending
on a number of criteria. Three binary classifiers are employed in [12] to categorise the water bodies,
gravel, bedrock, and flora in point cloud data of nature settings. The corn is recognised by integrating
it with the remote sensing image in [13,14], and the feature points are then separated using Axelsson’s
modified asymptotic triangular mesh by removing the medium-height vegetation points.

In the second machine-learning-based method for categorising point clouds, [15] built various
feature vectors, merged the colour data to divide the point cloud into multiple scales, and then used
Random Forest (RF) to divide the point cloud into six groups. According to the regularity of the
feature distribution, a Bayesian model is presented in [16], and the discriminant rule based on the
JointBoost classifier is enhanced by applying contextualization, which decreases the dimension of
the feature vectors and the classification time. In [17], the point cloud data is clustered using the
surface growth method, the feature vectors are built face to face, and the point cloud is classified
using the Support Vector Machine (SVM), which has a higher level of classification accuracy because
the clustered point cloud data contains more semantic information. In [18], multiple scales are set
up, the dimensional features of the features are calculated at each scale, and the features are classified
by SVM to find the best combination of scales, realising the classification of point cloud through the
hyperplane’s best differentiation effect. Multiple scale features are extracted from the point cloud data
and used as the local features of the points in [19] to address the issue that the PointNet algorithm is
weak in describing the local features of the point cloud. After combining the local features with the
extracted global features, the PointNet algorithm is then used for classification. Studies reveal that
this approach outperforms other neural network methods in terms of classification accuracy.

Although the aforementioned techniques can produce classifications with a high degree of accu-
racy, significant issues remain. As an illustration, the raster grid classification method must be con-
verted from the geometric constraints classification method, and elevation conversion requires eleva-
tion interpolation, which introduces errors. Additionally, a single LiDAR data source may be affected
by issues like feature occlusion and data noise, thus, more sophisticated data processing techniques
are required to increase the precision and stability of measurements; When classifying point clouds
with multiple binary classifiers, cumulative errors are more likely to occur; however, feature vector
redundancy is simple to achieve when classifying point clouds with machine learning algorithms. It is
simple to produce cumulative errors when classifying point clouds with numerous binary classifiers;
when employing machine learning methods, it is simple to experience the feature vector redundancy
phenomena, which results in lengthy classification times or even overfitting issues [20].

This work suggests an airborne LiDAR point cloud classification approach based on the fusing
of several base eigenvectors to address the aforementioned issues. This method can increase the
classification accuracy by supplying additional semantic information for point cloud classification.
This paper considers using this technology to measure house corners in rural cadastral surveys in order
to decrease the workload of the field measurement of house corners and improve work efficiency.
The lightweight LIDAR carried by delta wings is characterised by high precision and easy flight
conditions. Beidachu Village in Beidachu Township of Yanqi County was chosen as the test object
to clarify the technical process, efficiency, and accuracy of light airborne LIDAR applied to rural
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residential housing survey, and the light LIDAR carried out ultra-low-altitude, high-density, and high-
overlap data collection by delta-wing in order to fully grasp the operational process of light airborne
LIDAR [21], to clarify its planimetric accuracy and constraints, and to determine.

2. Rationale and Fundamentals

Figure 1 depicts the flow chart for the classification technique used in this paper. The method
extracts point primitive feature vectors and colour information feature vectors in that order. The
point primitive feature vectors include 3- and 7-dimensional feature vectors that were extracted us-
ing surface information as well as eigenvalue- and elevation-based 7-dimensional feature vectors.
6-dimensional extracted feature vectors make up the feature vector for colour information. The data
is filtered, the feature points and ground points are separated, and then the ground points and feature
points are classified independently using the recovered feature vectors. The ground points are clas-
sified by combining the extracted feature vectors with the colour information feature vectors, while
the feature points are classified by extracting 8-dimensional feature vectors based on the objects after
obtaining the object primitives . In order to improve the classification accuracy, the redundant vectors
need to be removed in the final stage.

Specifically, it includes the following steps:

1) point primitive feature vector extraction;
2) color information feature vector extraction;
3) object primitive acquisition based on density clustering;
4) object primitive feature vector extraction;
5) redundant feature vector removal based on FSRF.

Figure 1. Flowchart of Point Cloud Classification

2.1. Vectors of Point Basic Feature Extraction

By statistically analysing the neighbouring points in the point cloud, it is possible to determine the
geometric properties of the LiDAR point cloud, which can be used to successfully discern things like
plants, buildings, and automobiles. The point cloud neighbourhood can be specified in one of three
ways:

1) k-neighborhood, or the neighbourhood made up of the k closest points to the current judgement
point;

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 120, 3–16



Liu, et al. 6

2) sphere neighbourhood, or the neighbourhood made up of points with a radius of less than r from
the current judgement point; and

3) cylinder neighbourhood, or the neighbourhood made up of points contained in a cylinder with
the current judgement point at the centre [22].

The neighbourhood information of the point cloud is obtained in this study using the k-neighborhood
definition method. The k-neighborhood definition approach is more effective than the other two meth-
ods and is appropriate for classifying huge amounts of point cloud data. Due to the homogeneous den-
sity of the point cloud data produced by airborne LiDAR, the k-neighborhood definition method can
reliably extract the geometric features of the point. Eigenvalue-based, elevation-based, and surface-
based eigenvectors are among the eigenvectors based on point primitives.

2.1.1. Extraction of Eigenvectors using Eigenvalues

The local 3D structure of the point cloud, as well as its unique geometric qualities, can be described
by the eigenvectors built using the eigenvalues. They can also be used to differentiate between dif-
ferent kinds of point clouds. This paper extracts three eigenvectors, Linearity, Planarity, and Scatter,
to represent the linear, planar, and three-dimensional structures of local point clouds, respectively,
and adds Anisotropy, Eigenentropy, and Omnivariance to take advantage of the differences in the
3D structure of point clouds among various categories. To describe the geometric properties of the
point cloud, the four feature vectors anisotropy, eigenentropy, omnivariance, and surfacevariation are
introduced [23].

The neighbouring point covariance tensor is created by using the current judgement point as the
centre and finding its nearest k points to form the neighbouring point set P = {p1,p2, · · · ,pi, · · · ,pk}.
The neighbouring point covariance tensor is then constructed as follows.

Cx =
1
k

k∑
i=1

(pi − p̂) (pi − p̂)T , (1)

where p̂ is the location of the centre of the k nearby points, calculated as

p̂ = argminp

k∑
i=1

∥∥∥∥∥∥∥pi −

k∑
i=1

pi

∥∥∥∥∥∥∥. (2)

From the covariance tensor can be calculated to obtain its three eigenvalues λ1 > λ2 > λ3 > 0,
which are normalized so that λ1+λ2+λ3 = 1, three eigenvalues can be constructed seven eigenvectors,
as shown in Table 1.

Eigenvector Size
Linearity V1 = (λ1 − λ2)/λ1

Planarity V2 = (λ2 − λ3)/λ1

Scatter V3 = λ3/λ1

Anisotropy V4 = (λ1 − λ3)/λ1

Eigenentropy V5 = −
3∑

i′−1
λi′ × ln (λi′)

Omnivariance V6 =
3√λ1 × λ2 × λ3

Surface variation V7 = λ3

Table 1. Eigenvector Sizes Based on Eigenvalues
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2.1.2. Using Elevation Data, Feature Vector Extraction

Since distinct feature point clouds have quite varied elevation characteristics, the features’ types
can be accurately determined by the elevation characteristics. For instance, the elevation distributions
of the nearby points in various point clouds differ, as do the elevation kurtosis and elevation skewness
of regular and irregular features. Additionally, the elevation of structures is typically higher than
that of vegetation. The elevation characteristic vectors added in this paper are shown in Table 2,
where Height above is the difference in elevation between the current point and the largest point in
the neighbouring point set, Heightbelow is the difference in elevation between the current point and
the smallest point in the neighbouring point set, and Heightaverage is the average value. This is done
in order to take advantage of the differences in elevation characteristics between different categories.
Heightaverage, zp is the elevation of the judgment point, z(pi) is the elevation of the neighboring
point, zmax(pi) is the maximum value of the elevation in the set of neighboring points, zmin(pi) is the
minimum value of the elevation in the set of neighboring points.

Eigenvector Size
Height above V8 = zmax (pi) − zp

Height below V9 = zp − zmin (pi)

Height average V10 =
k∑

i=1
z (pi) /k

Vertical Range V11 = zmax (pi) − zmin (pi)

Height standard deviation V12 =

√
1
k

k∑
i=1

[
z (pi) − V10

]2
Height kurtosis V13 =

k∑
i=1

[z(pi)−V10]3

{
k∑

i=1
[z(pi)−V10]2

} 3
2

Height skewness V14 =

k∑
i=1

[z(pi)−V10]4

{
k∑

i=1
[z(pi)−V10]2

}2

−3

Table 2. Sizes of Feature Vectors Based on Elevation Data

2.2. Feature Vectors with Colour Information Extracted

This work integrates the colour information for classification in order to increase the classification
accuracy of point clouds. The colour information of various sorts of elements varies greatly, for
instance, highways are grayish-white and vegetation is either light green or dark green, making it
easy to tell them apart. However, when collecting point cloud data, light is able to quickly modify
the colour information [24]. This study converts the RGB colour space to HSV colour space because
the HSV colour space can offer more information than the RGB colour space [25] and the extracted
hue (H) information can lessen the impact of ambient light. Smith [13] first developed the HSV
colour system, and the equation for translating the RGB colour space to the HSV colour space is The
following formula will convert RGB to HSV colour space:

H =


0◦, ∆ = 0,

60◦ ×
(

G′−B′
∆
+ 0
)
, Cmax = R,

60◦ ×
(

B′−R′
∆
+ 2
)
, Cmax = G,

60◦ ×
(

R′−G′
∆
+ 4
)
, Cmax = B,

(3)

S =
{

0, Cmax = 0,
∆

Cmax
, Cmax , 0, (4)
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V = Cmax, (5)

where H stands for hue, S for saturation, V for brightness, and R,G, and B are the point cloud data’s
values for the red, yellow, and blue colour channels;

R′ = R/255,
G′ = G/255,
B′ = B/255,
Cmax = max (R′,G′, B′) ,
Cmin = min (R′,G′, B′) ,
∆ = Cmax −Cmin.

(6)

In this study, the neighbouring points-defined as those with a distance from the present judgement
point of less than 3 meters-are the points whose HSV colour information and average HSV colour
information are employed as feature vector inputs.

2.3. Achieving the Acquisition of Object Primitives Based on Density Clustering

It is important to initially acquire the object primitives in order to extract the feature vectors based
on the objects. This research uses a density-based approach to extract object primitives from a point
cloud. The next phases are part of the algorithm flow for extracting object primitives, which is de-
picted in Figure 2, as following step:

1) Find an unvisited point in the point cloud.
2) Add the set of neighbouring points to the set of points if the number of neighbours is not zero;

otherwise, repeat step 1 for the set of neighbouring points.
3) Iterate through the unvisited points, add new set labels, and carry out step 1 if the number of

neighbouring points is 0.
4) Continue doing steps 1 through 3 until every point has been reached.

Figure 2. Flowchart for Extraction of Object Primitives

The schematic diagram for object primitive extraction is shown in Figure 3. Following the extrac-
tion of object primitives, Figure 3(a) displays the result seen in Figure 3(b). The colour of the feature
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points is displayed in Figure 3(b) in top view, and it can be seen that the point clouds of the various
objects can be recognised clearly.

Figure 3. Schematic Diagram of the Extraction of Object Primitives. (a) Raw Data; (b)
After Extraction of Object Primitives

2.4. Object Primitive Feature Vector Extraction

Each object is taken as the smallest unit after many object primitives have been extracted so that the
points in each object have the same feature vector. The maximum height, minimum height, average
height, and difference between the maximum height and minimum height of each object’s point cloud
are extracted from this article and added to the feature vector set. The following methods are used
to simultaneously extract the four properties of the object’s greatest surrounding rectangle and input
them as eigenvectors [18].

Regular buildings can be distinguished from other irregular objects by looking at the ratio of the
pixels on the xoy projected surface to the area of the greatest enclosing rectangle. Before determining
the maximum enclosing rectangle, it is required to turn the point cloud data into 2D grid data by
giving the grids containing point clouds a value of 1 and the grids without them a value of 0. The
results of this point cloud rasterization using various grid sizes are shown in Figure 4. It is clear that
the grid’s size significantly affects how the point cloud is rasterized. The rasterized shape is closer
to the projected shape of the point cloud when the grid size is small, as illustrated in Figure 4(b),
but the grid is denser. The shape of the rasterized shape differs from the projected shape of the point
cloud when the size of the grid is big, as seen in Figure 4(c). The upper right corner of Figure 4(c)
is gone, deviating from the geometry of the initial point cloud. Overall, point cloud rasterization
produces jagged results, which is another feature of point cloud rasterization. The grid size of the
point cloud rasterization in this study is set to 1m in order to combine the approximation of the point
cloud rasterized shape and the processing effectiveness of the point cloud rasterization computation.

Figure 4. Point Cloud Rasterization of the Building. (a) Plane Projection of the Point Cloud
of the Building; (b) Rasterization Result when the Grid Size is 0.5m; (c) Rasterization
Result when the Grid Size is 1m

It is evident from Figure 4(a) that the predicted rectangularity will be incorrect if the building’s
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maximum enclosing rectangle is acquired directly. The largest encompassing rectangle box in this
case has a lot of data gaps, thus it can’t accurately represent the building’s rectangular-like features.
This paper first determines the direction of the building’s largest parallel side (as indicated by the
dotted line in Figure 4(a)), then determines the angle between the parallel side’s vertical direction and
the direction of the x-axis, and finally rotates the building by the angle shown in Figure 4(b) to reflect
the building’s rectangularity. With this approach, it is simple to determine the length and width of the
greatest enclosing rectangle because the length and width of the rotated building are parallel to the
direction of the coordinate axis. Following rotation, each object’s length/width ratio (L/W), volume
of the largest enclosing box (V ′), and area of the largest enclosing rectangle (S ′) are retrieved and
added to the set of feature vectors.

S ′ = [max (i1) −min (i1)] ×
[
max ( j1) −min ( j1)

]
× c1, (7){

L/W =
[
max ( j1) −min ( j1)

]
/ [max (i1) −min (i1)] , j1 > i1

L/W = [max (i1) −min (i1)] /
[
max ( j1) −min ( j1)

]
, j1 ⩽ i1

,V ′ = S ′ × hmax, (8)

where i1 is the row number of the 2D grid projected on the xoy plane; j1 is the column number of the
2D grid projected on the xoy plane; c1 is the spacing of the 2D grid projected on the xoy plane; and
hmax is the maximum value of the object elevation.

3. Instrumentation and Survey Area State

3.1. Overview of the Survey Area

We selected Beidachu Village, a central and populous settlement in Beidachu Township, Yanqi
County, which is situated in the plains, with a north-south corridor and flat terrain, as the test place
for our experiment. The settlement contains a wide variety of homes, including multi-story buildings,
earth dwellings, historic brick homes, new mixed-use homes, and old mixed-use homes, all of which
serve as examples of various home types and are typical of rural residential land surveys. The test
region, depicted as the black box in Figure 5, is within the aerial survey area, which has a total area
of around 5km2 [22].

Figure 5. Aerial Photography Scope

3.2. Instruments and Equipment

This test used a 735kW power delta wing with a maximum load capacity of 250kg as the flight
platform, carrying a lightweight airborne LIDAR with an integrated airborne LIDAR laser transmit-
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ter system, an aerial inertial navigation system, a camera, and a total weight of 13kg, with planar
positioning accuracy of 10mm+110-6D and an elevation positioning accuracy of 20mm+110-6D.

3.3. Data Acquisition

The measurement accuracy of airborne LIDAR is mainly determined by the accuracy of eight
measurements such as laser ranging (S ), GPS positioning (Xs,Ys,Zs), and IMU attitude and tracing
angle (θ). In the case of a certain measurement error of each parameter, the coefficients change with
the scanning angle θ and the ranging value S . The scanning angle error is fixed and can be measured
in the factory, so the coefficients change with the ranging value S . The value of S is directly related to
the altitude of flight, and the lower the altitude of flight, the smaller the value of S is, and the smaller
the coefficients’ errors are. The lower the flight altitude, the smaller the S value, and the smaller the
error of each coefficient. Considering the factors of flight safety, the flight altitude is set to 170m [23].

In order to acquire the point cloud data, it was necessary to fly both horizontally and vertically
in the direction of the house arrangement. To increase the point cloud density as much as possible,
it was necessary to fly a low-altitude, high-overlap cross-course flight (see Table 3 for the technical
parameters of airborne dimensional laser scanning data acquisition). This allowed for the complete
acquisition of the houses’ texture information. The measuring area is just over 5 km2, consequently,
there would be no need for more than one base station in the centre. It is important to turn on the
GPS receiver 5 minutes before the delta wing lifts off and turn it off 5 minutes after the delta wing
stops during flight operation in order to synchronise the observation with the GPS carried on the delta
wing.

Name Parameter
Relative row height/m 1 75

Flight speed/(km/h) 110
Laser emission frequency/kHz 220

Laser scanning angle/θ 75
Laser bandwidth/m 250
Laser dot spacing/m 0.15

Table 3. Data Acquisition Technical Parameters

In order to measure the coordinate system conversion, Xinjiang Bazhou CORS has covered the
survey area. This ground control survey uses the network RIK method, measuring the ground control
points while simultaneously recording the results of the WGS-84 and CGCS2000 coordinate systems.

In order to ensure that the four measurement points were connected to the line formed by the
closed 4-sided area of more than 0.5m2, the distribution of the form shown in Figure 6 was used to
measure the control markers in the deployment of the control panel. For the point cloud’s absolute
accuracy adjustment, a total of 20 slopes were measured.

4. Precision Analysis

As checkpoints, a total of 36 house corner sites that were evenly spaced around the test area were
measured. Some texture information is lost as a result of the sparse point cloud on the wall surface
brought on by shading and occlusion, and the house corner points are not included in the point cloud.
Out of 36 checkpoints, 30 house corner points are grabbed, for an 83.3% capture rate and a median
error of 0.048 m. Table 4 displays the outcomes of the checking statistics.

The measurement accuracy of the home corner points of the rural residential land survey is in ac-
cordance with the measurement accuracy of the boundary points in the ”Cadastral Survey Procedure”
(TD/T1001-2012), as stated in the Land Resources Development [2014] No. 101 document [24]. The
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Figure 6. Distribution form of Selected Points on the Inclined Plane

Maximum value/m Min/m Average value/m Mean square error/m Collection rate/(%)
0.138 0.018 0.062 0.050 83.5

Table 4. Airborne Lidar Measurement Accuracy Statistics

outcomes of airborne LDAR point cloud vectorization of house corner points were analysed, and the
statistical results are provided in Table 5 with reference to the precision index of boundary points
in the ”Cadastral Survey Regulations”.In this test, 83.3% of the house corner points were collected.
Among them, 41.7% (14) of the house corner point errors are 5 cm, which can satisfy the ”Cadastral
Survey Regulations” requirements for the accuracy of the first level of boundary points, and 77.8%
(28) of the house corner point errors are 10 cm, which can satisfy the ”Cadastral Survey Regulations”
requirements for the precision of the error in the first level of boundary points; For the precision of
the error in the first level of boundary points, 83.3% (30) of the house corner points in the vectorized
data can satisfy ”Cadastral Survey Regulations,” and 83.3% (30) of the house corner points in the
vectorized data can satisfy ”Cadastral Survey Regulations” for the error in the first level of boundary
points. The Cadastral Survey Regulations’ allowable error precision standards for level II boundary
points can be met by all vectorized data, accounting for 83.3% (30) of the point location errors of
house corner points.

⩽5cm ⩽10cm ⩽15cm Point cloud data not collected
42.0 78.8 83.5 16.8

Table 5. Accuracy Statistics of the Permissible Errors of the House Corner Points in North
Tai Kuk Tsuen (%)

The point cloud data in this study is classified using Random Forest (RF), and the feature vectors
are made up of three types of primitive feature vectors: point, object, and colour information. In
this study, we use half of the test data as training data and half as test data. Fig. 7 illustrates the
classification error rate using various combinations of feature vectors, including the single primitive
and fused multi-subject feature vectors.

As demonstrated in Figure 7, the colour information feature vector set has the lowest classification
error rate when the three single primitive feature vectors are utilised for classification, but the single
primitive feature vector is unable to achieve this. However, utilising a single primitive feature vector
will not result in the lowest classification error rate. The classification error rates of the three data sets
are lower when multibasic feature vectors are merged than when utilising a single primitive feature
vector. It is obvious that multikernel feature vector fusion classification accuracy is greater than single
primitive feature vector classification accuracy.

The efficiency of the RF is examined in this research using comparative analysis using SVM and
back propagation (BP) neural network. Recall (Re), precision (Pr), and F1 score are the evaluation
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indices, and Tables 6, 7 and 8 display the experimental findings.
Precision is a measure of the percentage of accurate classifications, while recall is a measure

of categorization coverage. Recall and precision typically follow opposing trends in classification
problems, so any rise in one will be accompanied by a fall in the other. As a result, the F1 score
indication is added in this study as a reference for the previous two indicators [12].

Figure 7. Schematic Diagram of Experimental Data. (a) Ankeny; (b) Ankeny Manual
Classification Schematic; (c) Building; (d) Building Manual Classification Schematic; (e)
Cadastre; (f) Cadastre Manual Classification Schematic

Category
Recall/% Precision/% F1 score

RF SVM BP RF SVM BP RF SVM BP
Ground 96.25 95.98 11.95 85.26 84.78 8.15 0.95 0.95 0.21

High vegetation 44.87 43.85 95.68 83.45 78.98 78.62 0.55 0.56 0.88
Building 97.85 97.50 0 81.56 79.99 0.1 0.88 0.87 0.45

Road 67.8 64.58 46.01 95.68 96.65 1.84 0.89 0.87 0
Car 60.68 52.04 92.85 50.26 58.20 49.81 0.56 0.56 0.65

Human-made obiect 21.28 48.65 16.65 41.20 39.56 36.01 0.26 0.24 0.07
Mean 64.58 61.60 34.52 72.56 73.63 30.14 0.56 0.63 0.28

Table 6. Evaluation Metrics of the three Classification Methods Based on Ankeny Data

5. Conclusions

In this study, we will investigate a novel method for enhancing the use of aerial LiDAR in home
surveying, referred to as the multi-basic element feature vector fusion methodology. This method
combines feature vectors from many LiDAR data sources to increase the accuracy of building recog-
nition and measurement. We’ll go into the tenets and procedures of multi-basic element feature vector
fusion and see how it might be used for measuring houses. With the help of this paper, we intend to
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Category
Recall/% Precision/% F1 score

RF SVM BP RF SVM BP RF SVM BP
Ground 73.21 73.56 91.20 88.32 84.78 75.86 0.9 0.9 0.93

High vegetation 87.52 76.52 38.52 71.25 73.92 60.58 0.75 0.66 0.48
Building 91.88 77.50 2.05 71.56 73.59 60.32 0.78 0.77 0.45

Road 97.58 97.88 68.98 89.88 90.52 18.25 0.92 0.91 0.05
Car 50.98 7.15 30.25 54.85 60.21 18.89 0.96 0.94 0.25

Human-made obiect 50.28 0.1 0.1 13.05 0 0 0.52 0 0
Mean 67.78 58.72 38.52 68.52 66.32 42.52 0.66 0.58 0.35

Table 7. Evaluation Indicators of three Classification Methods Based on Building Data

Category
Recall/% Precision/% F1 score

RF SVM BP RF SVM BP RF SVM BP
Ground 73.25 74.56 2.25 88.95 90.25 7.86 0.85 0.85 0.03

High vegetation 82.54 80.65 62.05 61.25 70.82 58.58 0.72 0.76 0.68
Building 82.88 87.50 65.2 68.56 70.58 59.32 0.74 0.75 0

Road 77.58 78.82 10.25 90.58 85.26 15.32 0.85 0.82 0.02
Car 7.78 0 63.52 55.89 0 28.95 0.15 0 0.35

Human-made obiect 8.25 0.65 4.28 10.52 99.9 9.15 0.08 0.01 0.08
Mean 56.28 53.24 24.28 61.52 66.14 20.47 0.56 0.51 0.25

Table 8. Evaluation Metrics for three Classification Methods Based on Cadastre Data

introduce a fresh approach to measuring houses that can successfully get beyond some drawbacks
of the old ones. The effectiveness of the multi-basic element feature vector fusion technique will be
empirically verified, and its potential usage in actual house measurement projects will be investigated.
This study will advance the growth of industries including urban planning and land management as
well as increase the efficiency and accuracy of house surveying.
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