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Abstract: Fix integers k, b, q with k ≥ 2, b ≥ 0, q ≥ 2. Define the function p to be: p(x) = kx+b. We
call a set S of integers (k, b, q)-linear-free if x ∈ S implies pi(x) < S for all i = 1, 2, . . . , q − 1, where
pi(x) = p

(
pi−1(x)

)
and p0(x) = x. Such a set S is maximal in [n] := {1, 2, . . . , n} if S ∪ {t},∀t ∈ [n]\S

is not (k, b, q)-linear-free. Let Mk,b,q(n) be the set of all maximal (k, b, q)-linear-free subsets of [n], and
define gk,b,q(n) = minS∈Mk,b,q(n) |S | and fk,b,q(n) = maxS∈Mk,b,q(n) |S |. In this paper, formulae for gk,b,q(n)
and fk,b,q(n) are proposed. Also, it is proven that there is at least one maximal (k, b, q)-linear-free
subset of [n] with exactly x elements for any integer x between gk,b,q(n) and fk,b,q(n), inclusively.

Keywords: Integer, Maximal

1. Introduction

A set of integers S is said to be k-multiple-free if x , ky for all x, y ∈ S . Let gk(n) = max{|A| : A ⊆
[n] := {1, 2, . . . , n} is k-multiple-free}. E.T.H Wang [1], when working on double-free sets, showed
that

g2(n) =
⌈n
2

⌉
+ g2

(⌊n
4

⌋)
,

with g2(0) = 0, and an asymptotic formula for g2(n) is given by g2(n) = 2
3n + O(log n). In a similar

vein, Leung and Wei [2] proved that for every integer r > 1, gr(n) = r
r+1n + O(log n).

Instead of k-multiple-free subsets, one can ask more general questions about a subset S of [n] such
that: for any two elements x and y of S , y

x does not belong to C, where C is a fixed set of rational
numbers. For example, when C = {2, 3}, such a subset S is called strongly triple-free, which is a
subject of great interest in, for example, [3] and [4]. In fact, the genesis of this paper is the case when
C = {k, k2, . . . , kq}, where k and q are positive integers.

On the other hand, You, Yu, and Liu [5] studied an alternative, natural generalisation of multiple-
free sets, which are translation-free, or linear-free sets. In particular, a set X of integers is called
(k, b)-linear-free if x ∈ X implies kx + b < X. Obviously, when b = 0, X is k-multiple-free. De-
fine gk,b(n) = min{|X| : X ⊆ [n] is a maximal (k, b)-linear-free subset} and fk,b(n) = max{|X| : X ⊆
[n] is a maximal (k, b)-linear-free subset}. You, Yu, and Liu proposed explicit formulae for the two
functions and showed that there is a maximal (k, b)-linear-free subset of [n] with exactly x elements
for any integer x between the minimum and maximum possible orders. Moreover, Liu and Zhou [6]
also dealt with the same generalisation, albeit having a different approach.

This paper extends the aforementioned results by combining those two concepts. Henceforth, k, b,
and q will denote integers with k ≥ 2, b ≥ 0, and q ≥ 2. Define the function p to be: p(x) = kx + b. A
set S of integers is said to be (k, b, q)-linear-free if x ∈ S implies pi(x) < S ,∀i = 1, 2, . . . , q−1, where
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pi(x) = p
(
pi−1(x)

)
and p0(x) = x. Such a set S is maximal in [n] if S ∪ {t} is not (k, b, q)-linear-free

for any t ∈ [n]\S . Let Mk,b,q(n) be the set of all maximal (k, b, q)-linear-free subsets of [n], and define
gk,b,q(n) = minS∈Mk,b,q(n) |S | and fk,b,q(n) = maxS∈Mk,b,q(n) |S |. In this paper, formulae for gk,b,q(n) and
fk,b,q(n) are derived. Also, it is proven that there is at least one maximal (k, b, q)-linear-free subset of
[n] of cardinality x for any integer x between gk,b,q(n) and fk,b,q(n), inclusively.

Notice that when q = 2 we get back the notion of (k, b)-linear-free subsets: fk,b,2(n) = fk,b(n) and
gk,b,2(n) = gk,b(n).

There is yet another classical way to look at the topic. For a fixed r× s integer matrix A, let us call a

subset S A(n) ⊆ [n] A-missing if for every vector x =


x1

x2
...

xs

 with xi ∈ S A for all i, the column vector Ax

has none of its entries being equal to 0.With this definition, take A =
(
k −1

)
and B =

(
2 −1 0
3 0 −1

)
,

then A-missing subsets and B-missing subsets are, respectively, k-multiple-free subsets and strongly
triple-free subsets. Naturally, we can further fix a r × 1 matrix b and look at the entries of Ax+ b. We
specify the (q − 1) × q matrix A and the (q − 1) × 1 matrix b to be

A =


k −1 0 . . . 0
k2 0 −1 . . . 0
...

...
...
. . .

...

kq−1 0 0 . . . −1

 and b =


p1(0)
p2(0)
...

pq−1(0)

 .
Interpreted in terms of matrices, a (k, b, q)-linear-free subset S A,b(n) ⊆ [n] is equivalently a subset

which satisfies: for every vector x =


x1

x2
...

xq

 with xi ∈ S A,b for all i, the column vector Ax + b has

none of its entries being equal to 0. For instance, the case of (k, b)-linear-free subsets corresponds to

A =
(
k −1

)
and b =

(
b
)
, and none of the vectors x =

(
x1

x2

)
with x1, x2 ∈ S A,b is a solution to the

equation Ax + b = 0.

2. Main Results

To simplify expressions, we denote
〈
ki
〉
= (ki − 1)/(k − 1).

Theorem 1. The recurrence relation for fk,b,q(n) is given by

fk,b,q(n) =
⌈
n(k − 1) + b

k

⌉
+ fk,b,q

(⌊
n − b ⟨kq⟩

kq

⌋)
, ∀n > b

with fk,b,q(n) = 0,∀n < 0 and fk,b,q(n) = n,∀n ∈ [0, b]. Similarly,

gk,b,q(n) =
⌈
n(k − 1) + b

k

⌉
+ gk,b,q


n − b

〈
k2q−1

〉
k2q−1


 , ∀n > b

with gk,b,q(n) = 0,∀n < 0 and gk,b,q(n) = n,∀n ∈ [0, b].

Proof. Assume that F is a maximal (k, b, q)-linear-free subset of [n] with fk,b,q(n) elements. Fix k and
q, and partition [n] into

X =
{

1, 2, 3, ...,
⌊
n − b ⟨kq⟩

kq

⌋}
and
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Y =
{⌊

n − b ⟨kq⟩

kq

⌋
+ 1,

⌊
n − b ⟨kq⟩

kq

⌋
+ 2, ..., n

}
.

We will prove that, from the set Y, F cannot have more than
⌈

n(k−1)+b
k

⌉
elements. Indeed, for each

i =
⌊

n−b
k

⌋
+1,

⌊
n−b

k

⌋
+2, ..., n, let h(i) be the greatest non-negative integer such that p−h(i)(i) ∈ [n], where

p−i(x) is the inverse function of pi(x). Define

Yi =
{
p−t(i), 0 ≤ t ≤ min{h(i), q − 1}

}
.

The union of Yi, i =
⌊

n−b
k

⌋
+ 1,

⌊
n−b

k

⌋
+ 2, . . . , n

(
there are n −

⌊
n−b

k

⌋
=

⌈
n(k−1)+b

k

⌉
such sets

)
covers Y.

This is because, for every c ∈ Y , there exists j ∈ [1, q] satisfying
⌊

n−b⟨k j⟩
k j

⌋
+ 1 ≤ c ≤

⌊
n−b⟨k j−1⟩

k j−1

⌋
. As⌊

n−b
k

⌋
+ 1 ≤ p j−1(c) ≤ n, this guarantees c ∈ Yp j−1(c).

Because F cannot include more than one element in each Yi, and can have at most fk,b,q

(⌊
n−b⟨kq⟩

kq

⌋)
elements in X, so

fk,b,q(n) ≤
⌈
n(k − 1) + b

k

⌉
+ fk,b,q

(⌊
n − b ⟨kq⟩

kq

⌋)
.

On the other hand, let A1 be a maximal (k, b, q)-linear-free subset of X and A2 ={⌊
n−b

k

⌋
+ 1,

⌊
n−b

k

⌋
+ 2, ..., n

}
. Then A = A1 ∪ A2 is a maximal (k, b, q)-linear-free subset of [n], hence

fk,b,q(n) ≥
⌈
n(k − 1) + b

k

⌉
+ fk,b,q

(⌊
n − b ⟨kq⟩

kq

⌋)
.

The upper and lower bounds complete the proof for the first part of Theorem 1.
The second recurrence relation regarding gk,b,q(n) can be proven in the same fashion. □

Based on the proof of Theorem 1, a straightforward algorithm to construct a maximal (k, b, q)-
linear-free subset F of [n] with fk,b,q(n) elements is proposed: first, check the largest number in [n],
which is n. As pi(n) < F,∀i = 1, 2, . . . , q − 1, we add n to F (initially, F is empty). Next, assume that
we have checked until x > 1. We then proceed to check x−1. If pi(x−1) < F,∀i = 1, 2, . . . , q−1, then
x − 1 is added to F. Otherwise, we proceed to check x − 2. This algorithm terminates after number 1
is checked.

The next theorem provides formulae to determine fk,b,q(n) and gk,b,q(n).

Theorem 2. For every positive integer n, n ≥ b ≥ 1:

fk,b,q(n) = fk,b,q


n − b

〈
kq(m+1)

〉
kq(m+1)


 + m∑

i=0

k − 1
k

n − b
〈
kqi

〉
kqi

 + b
k

 ,
where m =

⌊
logk((n(k−1)+b)/bk)

q

⌋
. Similarly,

gk,b,q(n) = gk,b,q


n − b

〈
k(2q−1)(m+1)

〉
k(2q−1)(m+1)


 + m∑

i=0

k − 1
k

n − b
〈
k(2q−1)i

〉
k(2q−1)i

 + b
k

 ,
where m =

⌊
logk((n(k−1)+b)/bk)

2q−1

⌋
.

It should be remarked that, by Theorem 1, fk,b,q

(⌊
n−b⟨kq(m+1)⟩

kq(m+1)

⌋)
is either 0 or

⌊
n−b⟨kq(m+1)⟩

kq(m+1)

⌋
, depending

on whether
⌊

n−b⟨kq(m+1)⟩
kq(m+1)

⌋
is negative or not, and gk,b,q

(⌊
n−b⟨k(2q−1)(m+1)⟩

k(2q−1)(m+1)

⌋)
is determined correspondingly.
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Proof. For fk,b,q(n), this is obtained by repeatedly applying Theorem 1 until
⌊

n−b⟨kqi⟩
kqi

⌋
≤ b, i.e., i ≥⌊

logk((n(k−1)+b)/bk)
q

⌋
. Also, notice that

⌊
n−b⟨kqi⟩

kqi

⌋
− b ⟨kq⟩

kq

 =
n − b

〈
kq(i+1)

〉
kq(i+1)

 .
The same argument can be applied to deduce the formula for gk,b,q(n). □

In Theorem 2, when q = 2, formulae for fk,b(n) and gk,b(n) are obtained, which are, however,
different from those of You, Yu, and Liu [5]. Particularly, You, Yu, and Liu suggested that

fk,b(n) =
n(1)∑
i=1

|Ni|

⌈
i + 1

2

⌉
and gk,b(n) =

n(1)∑
i=1

|Ni|

⌈
i + 1

3

⌉
,

where n(1) =
⌊
logk

n+b/(k−1)
1+b/(k−1)

⌋
and

|Ni| =


⌊

n−b⟨ki⟩
ki

⌋
− 2

⌊
n−b⟨ki+1⟩

ki+1

⌋
+

⌊
n−b⟨ki+2⟩

ki+2

⌋
for i < n(1),⌊

n−b⟨ki⟩
ki

⌋
for i = n(1).

These are essentially different from Theorem 2 as the two have different strategies: our approach
utilises recurrence relations while You, Yu, and Liu partition [n] from the beginning. Furthermore, it
seems that their approach can be suitably modified to accommodate for the more general cases when
q ≥ 3.

These somewhat complicated formulae are illustrated in the following example:

Example 1. To determine f2,1,3(2021) and g2,1,3(2021), Theorem 2 gives:

f2,1,3(2021) = f2,1,3

(⌊
2021

84 −
84 − 1

84

⌋)
+

3∑
i=0

⌈
1
2

⌊
2021

8i −
8i − 1

8i

⌋
+

1
2

⌉
= 1155

and

g2,1,3(2021) = g2,1,3

(⌊
2021
322 −

322 − 1
322

⌋)
+

1∑
i=0

⌈
1
2

⌊
2021
32i −

32i − 1
32i

⌋
+

1
2

⌉
= 1043.

Corollary 1.

fk,0,q(n) =
kq−1(k − 1)

kq − 1
n + O(log n).

This is based on

fk,0,q(n) =
∑
i≥0

⌈
k − 1

k

⌊ n
kqi

⌋⌉
,

which is a direct corollary of Theorem 2. In fact, Corollary 1 can be extended by generalising the
method of Wakeham and Wood [7]. Particularly, for positive integers a, b whose greatest common
divisor is g and a < b, one has

fb/a,0,q(n) =
bq−1(b − g)

bq − gq n + O(log n).

Next, still in the case b = 0, if n is a perfect power of k then a much neater formula for fk,0,q(n) is
as follows:
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Theorem 3.
fk,0,q(kn) =

⌊
kq−1(kn − 1)(k − 1)

kq − 1

⌋
+ 1.

Proof. We will induct on n. First, let 0 ≤ n < q. The theorem is true for n = 0 as f (1) = 1. If
1 ≤ n < q, Theorem 1 suggests

fk,0,q(kn) =
⌈
k − 1

k
kn

⌉
+ fk,0,q(0) = kn−1(k − 1).

We can then prove that, for 0 ≤ n < q:

fk,0,q(kn) =
⌊
kq−1(kn − 1)(k − 1)

kq − 1

⌋
+ 1.

Lastly, the inductive step from n to n + q can be done as follows⌊
kq−1(kn − 1)(k − 1)

kq − 1

⌋
+ 1 =

⌊
kq−1(kn−q − 1)(k − 1)

kq − 1

⌋
+ 1 + (k − 1)kn−1.

This completes the proof. □

There is an alternative to determine fk,0,q(n). Partition [n] into geometric progressions of the form
{t, kt, k2t, . . . , k jt}, where t is not divisible by k and 1 ≤ t ≤ n. Each such subset’s cardinality is⌊
logk(n/t)

⌋
+ 1.Within each subset, if its cardinality is M, then at most ⌈M/q⌉ elements can belong to

the same maximal (k, 0, q)-linear-free subset of [n]. Therefore,

fk,0,q(n) =
∑

1≤t≤n
k∤t

⌈⌊
logk(n/t)

⌋
+ 1

q

⌉
.

Replacing n with kn−1, we obtain a result in The American Mathematical Monthly [8]:

Let k, q and n be positive integers with k ≥ 2, and let P be the set of all positive integers
less than kn that are not divisible by k. Prove∑

p∈P

⌈⌊
n − logk p

⌋
q

⌉
=

⌊
kq−1(kn−1 − 1)(k − 1)

kq − 1

⌋
+ 1.

Next, inspired by Theorem 2 in [5], we investigate the possible cardinalities of maximal (k, b, q)-
linear-free subsets. The following lemma is crucial to the proof of Theorem 4.

Lemma 1. A set S is said to be q-distanced if for all x, y ∈ S , x , y, then |x− y| ≥ q. Let the set Hq(n)
include every subset S of [n] such that: S is q-distanced but S ∪ {t},∀t ∈ [n]\S is not. Then, there
exists a set A ∈ Hq(n) whose cardinality is x if and only if

⌈
n
q

⌉
≥ x ≥

⌈
n

2q−1

⌉
.

Proof. Let a be an integer in [0, n]. From a numbers from 1 to a, pick all the numbers which are
congruent to 1 modulo q to be elements of S (initially, S is empty). For the other n − a numbers,
pick all the numbers which are congruent to a + q modulo 2q − 1 to be in S . Then S ∈ Hq(n) and
its cardinality is

⌈
a
q

⌉
+

⌈
n−a

2q−1

⌉
. It suffices to prove that there exists an integer a ∈ [0, n] such that⌈

a
q

⌉
+

⌈
n−a

2q−1

⌉
= x if and only if

⌈
n
q

⌉
≥ x ≥

⌈
n

2q−1

⌉
.

Indeed, consider a to be of the form (2q − 1)k, where k is a non-negative integer. Let the function
s :

[
0,

⌊
n

2q−1

⌋]
−→ N be

s(k) =
⌈
(2q − 1)k

q

⌉
+

⌈
n − (2q − 1)k

2q − 1

⌉
= k +

⌈
−k
q

⌉
+

⌈
n

2q − 1

⌉
.
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Then

s(k + 1) − s(k) =
(
1 +

⌈
−k − 1

q

⌉
−

⌈
−k
q

⌉)
∈ {0, 1}.

Hence, s is a non-decreasing function and each of its jump is exactly 1 unit. Furthermore, s(0) =⌈
n

2q−1

⌉
,
⌈

n
q

⌉
+

⌈
n−n

2q−1

⌉
=

⌈
n
q

⌉
and

s
(⌊

n
2q − 1

⌋)
=

⌊
n

2q − 1

⌋
+


−

⌊
n

2q−1

⌋
q

 +
⌈

n
2q − 1

⌉
.

Hence,

s
(⌊

n
2q − 1

⌋)
≥

n
2q − 1

− 1 −
n

(2q − 1)q
+

n
2q − 1

=
n
q
− 1

=⇒ s
(⌊

n
2q − 1

⌋)
≥

⌈
n
q

⌉
− 1.

This shows that
⌈

a
q

⌉
+

⌈
n−a
2q−1

⌉
can take any integral values between

⌈
n
q

⌉
and

⌈
n

2q−1

⌉
, inclusively, complet-

ing the proof. □

This leads to

Theorem 4. For any integer x in
[
gk,b,q(n), fk,b,q(n)

]
, there is at least one maximal (k, b, q)-linear-free

subset of [n] containing exactly x elements.

Proof. Equipped with Lemma 1, one can proceed by making obvious modifications to the proof
in [5]. □

Lastly, we determine values of n for which the lower bound and upper bound of the cardinalities
of (k, b, q)-linear-free subsets of [n] are, in fact, identical.

Theorem 5. gk,b,q(n) = fk,b,q(n) if and only if n < pq(1).

Proof. One can show that

fk,b,q(n + 1) =

 fk,b,q(n) if q ∤ h(n + 1),
fk,b,q(n) + 1 if q | h(n + 1).

Similarly,

gk,b,q(n + 1) =

gk,b,q(n) if 2q − 1 ∤ h(n + 1),
gk,b,q(n) + 1 if 2q − 1 | h(n + 1).

Hence, when n < pq(1), for any x ∈ [n], q | h(x) if and only if h(x) = 0, and so (2q − 1) | h(x). This
implies that fk,b,q(n) = gk,b,q(n) due to the recurrence relations. On the other hand, when n ≥ pq(1), the
rate of growth of fk,b,q(n) is evidently faster than that of gk,b,q(n), and thus, they cannot be equal. □

3. Further Research

For future research, it will be interesting to investigate the problem in a multi-dimensional space.
For instance, one can start from the following generalisation for the double-free subsets:

Let m and n1, n2, . . . , nm be positive integers. Define T = {(x1, x2, . . . , xm) : 1 ≤ xi ≤ ni,∀i =
1,m}. Let g(n1, . . . , nm) be the maximum number of lattice points one can choose from T such that if
(x1, . . . , xm) is chosen, then (2x1, . . . , 2xm) is not. Determine g(n1, . . . , nm).

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 120, 315–321



A Generalisation of Maximal (k,b)-Linear-Free Sets of Integers 321

It can be proven that

g(n1, . . . , nm) =
m∏

i=1

ni −

m∏
i=1

⌊ni

2

⌋
+ g

(⌊n1

4

⌋
, . . . ,

⌊nm

4

⌋)
.

Hence,

g(n1, . . . , nm) =
∑
i≥0

(−1)i
m∏

j=1

⌊n j

2i

⌋
.

It is unclear whether Lemma 1 can be extended in this case, even to the Cartesian plane, which is
critical to generalise Theorem 4.
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