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Abstract: We use a dynamic programming algorithm to establish a lower bound on the domination
number of complete grid graphs of the form Cn□Pm, that is, the Cartesian product of a cycle Cn and a
path Pm, for m and n sufficiently large.
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1. Introduction

A set S of vertices in a graph G = (V, E) is called a dominating set if every vertex v ∈ V is either
in S or adjacent to a vertex in S . The domination number of G, γ(G), is the minimum size of a
dominating set.

Let Pm denote the path on m vertices and Cn the cycle on n vertices; the complete cylindrical grid
graph or cylinder is the product Cn□Pm. That is, if we denote the vertices of Cn by u1, u2, . . . , un and
the vertices of Pm by w1, . . . ,wm, then Cn□Pm is the graph with vertices vi, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m, and
vi, j adjacent to vk,l if i = k and w j is adjacent to wl or if j = l and ui is adjacent to uk. It will be useful
to think of this graph as Pn□Pm, with the edge paths of length m glued together, that is, connected
with new edges.

P. Pavlič and J. Žerovnik [1] established upper bounds for the domination number of Cn□Pm, and
José Juan Carreño et al. [2] established non-trivial lower bounds. For n ≡ 0 (mod 5) the bounds
agree, so the domination number is known exactly. Here we improve the lower bounds, except of
course in the case that n ≡ 0 (mod 5). The method is similar, based on a technique first used in
Guichard [3], and later in Gonçalves, et al. [4], but we use a different programming technique than
that of [2].

2. Getting a Lower Bound

A vertex in Cn□Pm dominates at most five vertices, including itself, so certainly γ(Cn□Pm) ≥
nm/5. If we could keep the sets dominated by individual vertices from overlapping, we could get a
dominating set with approximately nm/5 vertices, and indeed we can arrange this for much of the
graph, with the exception of the the top and bottom copies of Cn in which the vertices have only 3
neighbors, and, except when n ≡ 0 (mod 5), in the leftmost and rightmost columns of Pn□Pm where
each vertex in the leftmost column is adjacent to the corresponding vertex in the rightmost column.
Figure 1 shows one of the nice examples, when n is divisible by 5.
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Figure 1. The Cylinder C10□P12 has Domination Number 28. (Vertices on the Right Side
Are Adjacent to the Corresponding Vertices on the Left Side)

Suppose S is a subset of the vertices of Cn□Pm. Let N[S ] be the set of vertices that are either in
S or adjacent to a member of S , that is, the vertices dominated by S . Define the wasted domination
of S as w(S ) = 5|S | − |N[S ]|, that is, the number of vertices we could dominate with |S | vertices in
the best case, less the number actually dominated. When S is a dominating set, |N[S ]| = mn, and if
w(S ) ≥ L then |S | ≥ (L + mn)/5. Our goal now is to find a lower bound L for w(S ).

Suppose a cylinder Cn□Pm is partitioned into subgraphs as indicated in Figure 2, where each Gi is
a subgraph Cn□Pmi . Let S be a dominating set for G and S i = S ∩ V(Gi). Then

w(S ) ≥
t∑

i=1

w(S i). (1)

Note that in computing w(S i) we consider S i to be a subset of V(G), not of V(Gi) (this affects the
computation of N[S i]). To verify the inequality, note that the following inequalities are equivalent:

w(S ) ≥
t∑

i=1

w(S i)

5|S | − |N[S ]| ≥
t∑

i=1

(5|S i| − |N[S i]|)

5|S | − |N[S ]| ≥
t∑

i=1

5|S i| −

t∑
i=1

|N[S i]|

|N[S ]| ≤
t∑

i=1

|N[S i]|.

The last inequality is satisfied, since each vertex in N[S ] is counted at least once by the expression on
the right.

Note that S i is a set that dominates all the vertices of Gi except possibly some vertices in the top
or bottom row of Gi (or in the cases of G1 and Gt, in the bottom row and top row, respectively). Let
us say that a set that dominates a cylinder G, with the exception of some vertices on the top or bottom
edges, almost dominates G. Given a cylinder H = Cn□Pmi (namely, one of the Gi), What we want to
know is the value of

min
A

w(A), (2)
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Figure 2. Partitioned Cylinder

taking the minimum over sets A that almost dominate H and computing w(A) as if A were a subset of
a larger graph Cn□Pmi+2 in which H occupies the middle mi rows, or in the case of G1 or Gt, A is a
subset of Cn□Pmi+1 in which H occupies the top mi rows. If we can compute this minimum for (small)
fixed mi and any n, we can choose G1 through Gt with a small number of rows and get lower bounds
on w(S i) for any dominating set S of the original Cn□Pm.

3. The Algorithm

We describe the algorithm for G1 and Gt (which of course are isomorphic); the algorithm for the
other graphs Gi is nearly identical, and we describe it more briefly. Imagine a cylinder Cn□Pm with a
designated subset S of the vertices. Recall that the vertices are denoted by vi, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m
(say, numbering left to right and bottom to top). We describe a column, say column number i, in such
a diagram by a state vector s, in which s j is 0 if vertex vi, j is in S , 1 if vertex vi, j is adjacent to a
member of S in column i or column i− 1, and 2 otherwise. For example, the second column from the
right in Figure 1 has state vector (1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 1, 0). Let |s| denote the number of zeros in s.

Given a state vector s, we append a column 0 at the left of Pn□Pm. Let X be the set of vertices
in this column corresponding to the 0 entries in s, and let Y be the set of vertices corresponding to
the 2 entries in s. An (s, t)-almost-domination of Pn□Pm is a subset S of the vertices such that X ∪ S
dominates the first n− 1 columns of Pn□Pm and the elements of Y , except possibly vertices in the first
(i.e., bottom) row, and for which the state vector of the final column is t.

Suppose S is a subset of the vertices of Pi□P j and denote by wi, j(S ) the value of w(S ) computed
in Pi+1□P j+1, in which Pi□P j occupies the top j rows and leftmost i columns. Let

wi, j(s, t) = min
S

wi, j(S ),

taking the minimum over all (s, t)-almost-dominations of Pi□P j. If there is no (s, t)-almost-
domination of Gi, j, let wi, j(s) = ∞.
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Finally, to compute the desired minimum (equation 2), we compute

min
s

wi, j(s, s),

since an (s, s)-almost-domination of Pi□P j almost dominates Ci□P j.
Let P(t) be the set of state vectors u such that u is the state vector of the next to last column in an

(s, t)-almost-domination of Pn□Pm. Then

wn,m(s, t) = min
u∈P(t)

(
5|t| − nd(u, t) + wn−1,m(s,u)

)
,

where nd(u, t), the number of newly dominated vertices, may be computed as follows.

1. nd = 0

2. For each j = 1, . . . ,m for which t j = 0 and u j = 2, add 1 to nd. This counts the newly dominated
vertices vn−1, j.

3. For each j = 1, . . . ,m for which t j ≤ 1 and u j ≥ 1, add 1 to nd. This counts the newly dominated
vertices vn, j.

4. For each j = 1, . . . ,m for which t j = 0, add 1 to nd. This counts the newly dominated vertices
vn+1, j.

5. If t1 = 0, add 1 to nd. This counts the newly dominated vertex below vertex vn,1, recalling that
we compute w(S ) in Pn□Pm with an extra bottom row.

Now, given some n, the algorithm to compute wn,m(s, t), i = 1, . . . , n, is:

1. Initialization. Set w0,m(s,u) = 0 if u = s, and∞ otherwise.

2. Iteration. Suppose that i ≤ n and that wi−1,m(s,u) has been computed for all u. Then for each t,
set

wi,m(s, t) = min
u∈P(t)

(
5|t| − nd(u, t) + wi−1,m(s,u)

)
.

Thus, for fixed m and any n, we can compute mins wn,m(s, s), by computing wi,m(s, t) for all s, t, and
1 ≤ i ≤ n. Of course, what we want is to know this value for any n without an infinite amount of work.
Livingston and Stout [5] and Fisher [6] independently thought of looking for a sort of periodicity in
the values of γ(Pn□Pm) for fixed m. Since they succeeded, we might hope that for fixed m, there are
N, p, and q so that for n ≥ N and all s and t,

wn,m(s, t) = wn−p,m(s, t) + q.

In this case, after a finite amount of computation, we could determine mins wn,m(s, s) for all n.
It is easy to modify the algorithm so to check for this periodicity. When we do this, we find that

for n ≥ 65,
min

s
wn,10(s, s) = min

s
wn−1,10(s, s) + 1 = n.

Thus, for m ≥ 20 and n ≥ 64, if S is a dominating set in Cn□Pm,

w(S ) ≥
t∑

k=1

w(S k) ≥ w(S 1) + w(S t) ≥ 2n,

using the inequality (1), and so
|S | ≥ (mn + 2n)/5.
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José Juan Carreño et al. [2] have independently arrived at the same conclusion, using a substantially
different algorithm. When n � 0 (mod 5), (mn + 2n)/5 is also known to be an upper bound, so that
γ(Cn□Pm) = (mn + 2n)/5 (in fact, this is known to be correct for n ≥ 5). The implication, of course,
is that for optimal S , w(S k) = 0 for 1 < k < t, when n � 0 (mod 5). This is not true in general, so we
improve our lower bound by computing a lower bound on w(S k), 1 < k < t.

The only change required is to redefine an (s, t)-almost-domination as follows: Given a state vector
s, we append a column 0 at the left of Pn□Pm. Let X be the set of vertices in this column corresponding
to the 0 entries in s, and let Y be the set of vertices corresponding to the 2 entries in s. An (s, t)-almost-
domination of Pn□Pm is a subset S of the vertices such that X ∪ S dominates the first n − 1 columns
of Pn□Pm and the elements of Y , except possibly vertices in the top and bottom rows, and for which
the state vector of the final column is t. Corresponding to this change, in the computation of nd, we
add a sixth step:

6. If tm = 0, add 1 to nd. This counts the newly dominated vertex above vn,m, recalling that we
compute w(S ) in Cn□Pm as if it occupies the middle m rows of a copy of Cn□Pm+2.

Proceeding as before, we find that mins wn,10(s, s) = mins wn−5,10(s, s), when n ≥ 12. Specifically,
we find that mins wn,10(s, s) is 0, 6, 5, 9, or 6 as n is 0, 1, 2, 3, or 4 (mod 5). Thus, with a equal to 0,
6, 5, 9, or 6 as appropriate, we find that

|S | ≥
1
5

((m + 2)n + ⌊
m − 20

10
⌋ · a).

That is, lower bounds for the domination number of Cn□Pm, when m ≥ 20 and n ≥ 64, are:

(m + 2)n
5

, n ≡ 0 (mod 5)

(m + 2)n
5

+
6
5
⌊
m − 20

10
⌋, n ≡ 1 (mod 5)

(m + 2)n
5

+ ⌊
m − 20

10
⌋, n ≡ 2 (mod 5)

(m + 2)n
5

+
9
5
⌊
m − 20

10
⌋, n ≡ 3 (mod 5)

(m + 2)n
5

+
6
5
⌊
m − 20

10
⌋, n ≡ 4 (mod 5).

Known upper bounds (see [1]) for the domination number of Cn□Pm are:

(m + 2)n
5

, n ≡ 0 (mod 5)

(m + 2)n
5

+
7

40
(m + 2), n ≡ 1 (mod 5)

(m + 2)n
5

+
1

10
(m + 2), n ≡ 2 (mod 5)

(m + 2)n
5

+
2
5

(m + 2), n ≡ 3 (mod 5)

(m + 2)n
5

+
1
5

(m + 2), n ≡ 4 (mod 5).

For n ≡ 2 (mod 5) the lower and upper bounds are quite close, but for the other non-zero values of
n mod 5 there is considerable room for improvement. It seems likely that the upper bounds are closer
to the true values, as our computation allows vertices on the boundary (that is, the top and bottom
rows) of the subgraphs Gk to remain undominated. A small increase in the value of a in each case
would eliminate most of the gap.
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When m mod 10 is non-zero, we have effectively ignored one of the Gi, that is, used zero as a lower
bound for one of the w(S i). We can improve our lower bounds very slightly (by a small constant) by
correcting this. For example, for m > 20 and m ≡ 8 (mod 10), we can let all but one of the Gi have
height 10, and the remaining (interior) graph, say G2, have height 8. Then we run the algorithm again
for height 8 graphs. While we have in fact done the additional computations, the improvement is very
slight, so we omit the results.

Our approach gives us lower bounds for m ≥ 20; Crevals [7] computes exact values for m ≤ 22
and all n. He also computes exact values for n ≤ 30 and all m. In the course of our computations, we
also obtain lower bounds for 12 ≤ n < 64 (with only n > 30 of interest due to the Crevals results), but
they do not seem sufficiently illuminating to include here.
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