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Abstract: A kite K is a graph which can be obtained by joining an edge to any vertex of K3. A kite
with edge set {ab, bc, ca, cd} can be denoted as (a, b, c; cd). If every vertex of a kite in the decom-
position lies in different partite sets, then we say that a kite decomposition of a multipartite graph is
a gregarious kite decomposition. In this manuscript, it is shown that there exists a decomposition of
(Km ⊗ Kn) × (Kr ⊗ K s) into gregarious kite if and only if n2s2m(m − 1)r(r − 1) ≡ 0 (mod 8), where
⊗, × denote the wreath product and tensor product of graphs respectively. We denote a gregarious
kite decomposition as GK-decomposition.
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1. Introduction

Many authors have been studied on kite-design and kite decomposition/ kite factorization and their
special properties such as gregarious kite decomposition/ gregarious kite factorization. Bermond and
Schonheim [1] proved that a kite-design of order n exists if and only if n ≡ 0, 1 (mod 8). Wang
and Chang [2, 3] considered the problem of a resolvable (K3 + e) and (K3 + e, λ)-group divisible
designs of type gtu1.Wang [4] have proven that the necessary conditions to find a resolvable (K3 + e)-
group divisible design of type gu are also sufficient. Fu et al. [5] have demonstrated that there exists
a GK-decomposition of Km(n) if and only if n ≡ 0, 1 (mod 8) for odd m or n ≥ 4 for even m.
Gionfriddo and Milici [6] considered the uniformly resolvable decompositions of Kv and Kv − I into
paths and kites. To know more about kite designs, refer [7–11]. Further, the authors A. Tamil Elakkiya
and A. Muthusamy [12] have shown that there is a GK-decomposition of Km × Kn if and only if
mn(m − 1)(n − 1) ≡ 0 (mod 8). Moreover, the authors A. Tamil Elakkiya and A. Muthusamy [13]
considered the existence of a GK factorization of tensor product of complete graphs.

In this way, our main concern is to find a existence of a GK-decomposition of (Km⊗Kn)×(Kr⊗K s).
In this document, it is demonstrated that a GK-decomposition of (Km ⊗ Kn) × (Kr ⊗ K s) holds, if and
only if, n2s2m(m − 1)r(r − 1) ≡ 0 (mod 8).

2. Preliminary Results

Definition 1. [12] A partition of a graph G into a collection of subgraphs G1, G2, . . . , Gr such
that each one of it is distinct mutually by their edges together with E(G) = ∪r

i=1E(Gi) is called a
decomposition of G; We then write G as G = G1 ⊕ G2 ⊕ . . .⊕ Gr, where ⊕ denotes edge-disjoint sum

http://dx.doi.org/10.61091/jcmcc120-026
http://www.combinatorialpress.com/jcmcc


A. Tamil Elakkiya 296

of subgraphs. For an integer s, sG denotes s copies of G.

Definition 2. [12] A kite K is a graph which can be obtained by joining an edge to any vertex of K3,
for instance see Figure 1. A kite with edge set {ab, bc, ca, cd} can be denoted as (a, b, c; cd). If every

Figure 1

vertex of a kite in the decomposition lies in different partite sets, then we say that a kite decomposition
of a multipartite graph is a gregarious kite decomposition. Here we may consider a Gregarious Kite
decomposition as a GK-decomposition for short.

Definition 3. [12] The tensor product G × H and the wreath product G ⊗ H of two graphs G and
H are defined as follows: V(G × H)=V(G ⊗ H) = {(u, v) | u ∈ V(G), v ∈ V(H)}. E(G × H) =
{(u, v) (x, y) | u x ∈ E(G) and v y ∈ E(H)} and E(G ⊗ H) = {(u, v) (x, y) | u = x and v y ∈ E(H) or
u x ∈ E(G)}.

As tensor product has commutative and distributive property over an edge-disjoint sum of
subgraphs, if decomposition of G = G1 ⊕ G2 ⊕ . . . ⊕ Gr holds, we then write as G × H =
(G1 × H) ⊕ (G2 × H) ⊕ . . . ⊕ (Gr × H).

Definition 4. [12] A graph G having partite sets V1, V2, . . . ,Vm with | Vi |= n, 1 ≤ i ≤ n and E(G)
={uv | u ∈ Vi and v ∈ V j, ∀ i , j} is called complete m-partite graph and is denoted by Km(n). Note
that Km(n) is same as the Km ⊗ Kn. where Kn is the complement of a complete graph on n vertices.

In order to prove our key result, we require the following:

Theorem 1. [5] There exists a GK-decomposition of Km(n) if and only if m ≡ 0, 1 (mod 8), for all
odd n (or) m ≥ 4, for even n.

Remark 1. [5] Let K is a kite. Then there exists a GK-decomposition of K ⊗ K s, for all s.

Lemma 1. [12] For all n, n , 2, there exists a GK-decomposition of K × Kn, where K is a kite.

Theorem 2. [12] There exists a GK-decomposition of Km × Kn if and only if mn(m − 1)(n − 1) ≡ 0
(mod 8).

3. Existence of GK-decomposition of (Km ⊗ Kn) × (Kr ⊗ K s)

Lemma 2. A GK-decomposition of (Km ⊗ Kn) × (Kr ⊗ K s) exists, if m ≡ 0, 1 (mod 8), n, s ≡ 1
(mod 2) and for all r, r , 2.

Proof. By Theorem 1, we have a GK-decomposition of (Km ⊗ Kn). Then (Km ⊗ Kn) × (Kr ⊗ K s) =
(K ⊕ K ⊕ . . . ⊕ K) × (Kr ⊗ K s) = K × (Kr ⊗ K s) ⊕ K × (Kr ⊗ K s) ⊕ . . . ⊕ K × (Kr ⊗ K s). Now
K × (Kr ⊗ K s) � (K × Kr) ⊗ K s. As we have a kite decomposition of K × Kr from Lemma 1, we
then write as (K × Kr) ⊗ K s = (K ⊕ K ⊕ . . . ⊕ K) ⊗ K s = (K ⊗ K s) ⊕ (K ⊗ K s) ⊕ . . . ⊕ (K ⊗ K s).
A GK-decomposition of K ⊗ K s can be obtained from Remark 1. Thus all together provides a GK-
decomposition of (Km ⊗ Kn) × (Kr ⊗ K s). □

Lemma 3. A GK-decomposition of (Km ⊗Kn)× (Kr ⊗K s) exists, if n ≡ 0 (mod 2) and for all m, r, s,
{m, r} , 2.
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Proof. Case 1: Let m = 3, n = 2b, b ≥ 0 and for all r, s, (r , 2).We write (K3 ⊗ Kn) × (Kr ⊗ K s) �
[(K3⊗Kn)×Kr]⊗K s = [(K3⊕ K3⊕ . . .⊕ K3)×Kr]⊗K s = [(K3×Kr)⊕ (K3×Kr)⊕ . . .⊕ (K3×Kr)]⊗K s

= [(K3×Kr)⊗K s]⊕ [(K3×Kr)⊗K s]⊕ . . .⊕ [(K3×Kr)⊗K s]. Theorem 2 gives a GK-decomposition for
K3×Kr. Now, we write as (K3×Kr)⊗K s= (K⊕ K⊕ . . . ⊕K)⊗K s = (K⊗K s)⊕ (K⊗K s)⊕ . . .⊕ (K⊗K s).
A GK-decomposition exists for K ⊗ K s according to Remark 1. As a consequence of it, a GK-
decomposition of (K3 ⊗ Kn) × (Kr ⊗ K s) has been derived.

Case 2: A GK-decomposition for (Km ⊗ Kn) × (Kr ⊗ K s) have been described as follows:
Let m ≥ 4, n = 2b, b ≥ 0 and for all r, s, (r , 2). One can obtain a GK-decomposition of

(Km ⊗ Kn) from Theorem 1. Then (Km ⊗ Kn) × (Kr ⊗ K s) = (K ⊕ K ⊕ . . . ⊕ K) × (Kr ⊗ K s) =
K × (Kr ⊗ K s) ⊕ K × (Kr ⊗ K s) ⊕ . . . ⊕ K × (Kr ⊗ K s). Now K × (Kr ⊗ K s) � (K × Kr) ⊗ K s. A
kite decomposition exits for K × Kr by using Lemma 1. Moreover, we then write, (K × Kr) ⊗ K s

= (K ⊕ K ⊕ . . . ⊕ K) ⊗ K s = (K ⊗ K s) ⊕ (K ⊗ K s) ⊕ . . . ⊕ (K ⊗ K s). According to Remark 1, a
GK-decomposition of K ⊗ K s has been proved.

Consequently, Cases 1 and 2 lead a GK-decomposition for (Km ⊗ Kn) × (Kr ⊗ K s) when n ≡ 0
(mod 2) and for all m, r, s, {m, r} , 2.

□

Lemma 4. A GK-decomposition of (Km ⊗ Kn) × (Kr ⊗ K s) exists, if n ≡ 1 (mod 2), s ≡ 0 (mod 2),
and for all m, r, {m, r} , 2.

Proof. Case 1: Let m = 3, n = 2b + 1, b ≥ 0, s = 2c, c ≥ 0 and for all r, (r , 2). Let us
consider (K3 ⊗ Kn) × (Kr ⊗ K s) � [(K3 ⊗ Kn) × Kr] ⊗ K s = [(K3 ⊕ K3 ⊕ . . . ⊕ K3) × Kr] ⊗ K s =

[(K3×Kr)⊕ (K3×Kr)⊕ . . .⊕ (K3×Kr)]⊗K s = [(K3×Kr)⊗K s]⊕ [(K3×Kr)⊗K s]⊕ . . .⊕ [(K3×Kr)⊗K s].
By Theorem 2, a GK-decomposition exists for K3×Kr. Now (K3×Kr)⊗K s = (K⊕ K⊕ . . . ⊕ K)⊗K s

= (K ⊗ K s) ⊕ (K ⊗ K s) ⊕ . . . ⊕ (K ⊗ K s). Now, a GK-decomposition of K ⊗ K s follows from Remark
1. Thus, the above construction provides a GK-decomposition of (K3 ⊗ Kn) × (Kr ⊗ K s).

Case 2: Let m ≥ 4, n = 2b + 1, b ≥ 0, s = 2c, c ≥ 0 and for all r, (r , 2). By Theorem 1, there is
a GK-decomposition for (Kr ⊗ K s). Then (Km ⊗ Kn) × (Kr ⊗ K s) = (Km ⊗ Kn) × (K ⊕ K ⊕ . . . ⊕ K) =
[(Km ⊗ Kn) × K] ⊕ [(Km ⊗ Kn) × K] ⊕ . . . ⊕ [(Km ⊗ Kn) × K].

Now [(Km⊗Kn)×K] � K×(Km⊗Kn) � (K×Km)⊗Kn. By Lemma 1, we have a kite decomposition
of K × Km. Then (K × Km)⊗ Kn = (K ⊕ K ⊕ . . . ⊕ K)⊗ Kn = (K ⊗ Kn)⊕ (K ⊗ Kn)⊕ . . .⊕ (K ⊗ Kn). A
GK-decomposition of K ⊗ Kn follows from Remark 1. Thus, all together gives a GK-decomposition
of (Km ⊗ Kn) × (Kr ⊗ K s). □

Lemma 5. A GK-decomposition of (Km ⊗ Kn) × (Kr ⊗ K s) exists, if m ≡ 4, 5 (mod 8), n, s ≡ 1
(mod 2) and for all r, r , 2.

Proof. Let us consider (Km ⊗ Kn)× (Kr ⊗ K s) � [(Km ⊗ Kn)× Kr]⊗ K s.We write as (Km ⊗ Kn)× Kr �

Kr × (Km ⊗ Kn) � (Kr × Km) ⊗ Kn. By Theorem 2, we have a GK-decomposition of Kr × Km. Then
(Kr ×Km)⊗Kn = (K ⊕ K ⊕ . . . ⊕ K)⊗Kn = (K ⊗Kn)⊕ (K ⊗Kn)⊕ . . .⊕ (K ⊗Kn). By Remark 1, we
can obtain a GK-decomposition of K ⊗ Kn. Further, [(Km ⊗ Kn)× Kr]⊗ K s = (K ⊕ K ⊕ . . . ⊕ K)⊗ K s

= (K ⊗ K s) ⊕ (K ⊗ K s) ⊕ . . . ⊕ (K ⊗ K s). A GK-decomposition of K ⊗ K s follows from Remark 1.
Thus, all together gives a GK-decomposition of (Km ⊗ Kn) × (Kr ⊗ K s). □

Lemma 6. A GK-decomposition of (Km⊗Kn)× (Kr ⊗K s) exists, if m ≡ 2, 3 (mod 4), m , 2, n, s ≡ 1
(mod 2) and r ≡ 0, 1 (mod 8).

Proof. A GK-decomposition of Kr ⊗K s can be obtained from Theorem 1. We then write, (Km⊗Kn)×
(Kr⊗K s) = (Km⊗Kn)× (K⊕K⊕ . . . ⊕K) = [(Km⊗Kn)×K]⊕ [(Km⊗Kn)×K]⊕ . . .⊕ [(Km⊗Kn)×K].
Now, we write as [(Km ⊗ Kn) × K] � K × (Km ⊗ Kn) � (K × Km) ⊗ Kn. A kite decomposition
of K × Km has been derived from Lemma 1. Then (K × Km) ⊗ Kn = (K ⊕ K ⊕ . . . ⊕ K) ⊗ Kn =

(K ⊗ Kn) ⊕ (K ⊗ Kn) ⊕ . . . ⊕ (K ⊗ Kn). A GK-decomposition of K ⊗ Kn exists according to Remark 1.
Consequently, a GK-decomposition exists for (Km ⊗ Kn) × (Kr ⊗ K s). □
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Lemma 7. A GK-decomposition of (Km⊗Kn)× (Kr ⊗K s) exists, if m ≡ 2, 3 (mod 4), m , 2, n, s ≡ 1
(mod 2) and r ≡ 4, 5 (mod 8).

Proof. We write (Km⊗Kn)×(Kr⊗K s) � [(Km⊗Kn)×Kr]⊗K s.Now (Km⊗Kn)×Kr � Kr×(Km⊗Kn) �
(Kr × Km) ⊗ Kn. By Theorem 2, we have a GK-decomposition of Kr × Km. Then (Kr × Km) ⊗ Kn =

(K ⊕ K ⊕ . . . ⊕ K) ⊗ Kn = (K ⊗ Kn) ⊕ (K ⊗ Kn) ⊕ . . . ⊕ (K ⊗ Kn). A GK-decomposition of K ⊗ Kn

can be obtained from Remark 1. Further, [(Km ⊗ Kn) × Kr] ⊗ K s = (K ⊕ K ⊕ . . . ⊕ K) ⊗ K s =

(K ⊗ K s) ⊕ (K ⊗ K s) ⊕ . . . ⊕ (K ⊗ K s). A GK-decomposition of K ⊗ K s follows from Remark 1. Thus
the above describes a GK-decomposition for (Km ⊗ Kn) × (Kr ⊗ K s). □

4. Main Result

Theorem 3. There exists a GK-decomposition of (Km⊗Kn)×(Kr⊗K s) if and only if n2s2m(m−1)r(r−
1) ≡ 0 (mod 8).

Proof. Necessity: The number of edges of (Km ⊗ Kn) × (Kr ⊗ K s) is n2 s2m(m−1)r(r−1)
2 and number of

edges of a kite K is 4. Therefore, the edge divisibility condition for a graph (Km ⊗ Kn) × (Kr ⊗ K s) is
n2 s2m(m−1)r(r−1)

8 .
Sufficiency: It has been derived from Lemmas 2 - 7. □

5. Conclusion

In Section 3, we give a complete solution for the existence of a GK-decomposition of (Km ⊗ Kn)×
(Kr ⊗ K s). In future, one can find the existence of a GK-factorization of Tensor product complete
multipartite graph.
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