Journal of Combinatorial Mathematics and Combinatorial Computing, 120: 201–205 [DOI:10.61091](http://dx.doi.org/10.61091/jcmcc120-017)/jcmcc120-017 http://[www.combinatorialpress.com](http://www.combinatorialpress.com/jcmcc)/jcmcc Received 1 March 2019, Accepted 30 December 2020, Published 30 June 2024

Article

A Sufficient Condition for Fractional (2, *^b*, *^k*)-Critical Covered Graphs

Jie $Wu^{1,*}$

- ¹ School of Economic and management, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- * Correspondence: jskjdxwj@126.com

Abstract:

Zhou, Xu and Sun [S. Zhou, Y. Xu, Z. Sun, Degree conditions for fractional (*a*, *^b*, *^k*)-critical covered graphs, Information Processing Letters 152(2019)105838] defined the concept of a fractional (a, b, k) -critical covered graph, namely, a graph *G* is a fractional (a, b, k) -critical covered graph if after removing any *^k* vertices of *^G*, the remaining graph of *^G* is a fractional [*a*, *^b*]-covered graph. In this paper, we prove that a graph *G* with $\delta(G) \ge 2 + k$ is fractional $(2, b, k)$ -critical covered if $bind(G) > \frac{b+k}{b-1}$
where $k > 0$ and $b > 2 + k$ are two integers $\frac{b+k}{b-1}$, where $k \ge 0$ and $b \ge 2 + k$ are two integers.

Keywords: Minimum degree, Binding number, Fractional [*a*, *^b*]-factor, Fractional [*a*, *^b*]-covered graph, Fractional (*a*, *^b*, *^k*)-critical Covered graph

1. Introduction

All graphs discussed here are finite, undirected and simple. Let *G* be a graph with vertex set *V*(*G*) and edge set $E(G)$. For every $x \in V(G)$, we use $d_G(x)$ to denote the degree of x in G, and let $N_G(x)$ denote the neighborhood of *x* in *G*. Let *X* be a subset of $V(G)$. We write $N_G(X) = \bigcup$ $\bigcup_{x \in X} N$ *G*(*x*), and write *G*[*X*] for the subgraph of *G* induced by *X*. Define *G* − *X* = *G*[*V*(*G*) \ *X*]. A subset *X* ⊆ *V*(*G*) is called independent if $G[X]$ does not admit edges. The minimum degree of G is denoted by $\delta(G)$, the number of isolated vertices in *G* is denoted by $i(G)$, and the complete graph of order *n* is denoted by K_n . The binding number of *G* is defined by Woodall [\[1\]](#page-4-0) as

$$
bind(G) = min \left\{ \frac{|N_G(X)|}{|X|} : \emptyset \neq X \subseteq V(G), N_G(X) \neq V(G) \right\}.
$$

Let *a*, *b* and *k* be three nonnegative integers with $a \leq b$. Then a spanning subgraph *F* of *G* is called an [a, b]-factor of G if $a \leq d_F(x) \leq b$ holds for every $x \in V(G)$. Let h be a function from $E(G)$ to [0, 1]. Then we call $G[F_h]$ a fractional $[a, b]$ -factor of *G* with an indicator function *h* if $a \le \sum_{e \ni x} h(e) \le b$ for all *x* ∈ *V*(*G*), where *F*_{*h*} = {*e* : *e* ∈ *E*(*G*), *h*(*e*) > 0}. In particular, when *a* = *b* = *r*, a fractional *a* bl-factor is a fractional *r*-factor. A fractional *a* bl-factor is just an *[a* bl-fac $[a, b]$ -factor is a fractional *r*-factor. A fractional $[a, b]$ -factor is just an $[a, b]$ -factor if $h(e) \in \{0, 1\}$ for each $e \in E(G)$. A graph *G* is a fractional [*a*, *b*]-covered graph if for any $e \in E(G)$, there exists a fractional [a, b]-factor $G[F_h]$ such that $h(e) = 1$. In particular, when $a = b = r$, a fractional [a, b]covered graph is a fractional *^r*-covered graph. A graph *^G* is a fractional (*a*, *^b*, *^k*)-critical covered graph if after removing any *^k* vertices of *^G*, the remaining graph of *^G* is a fractional [*a*, *^b*]-covered graph.

In particular, when $a = b = r$, a fractional (a, b, k) -critical covered graph is a fractional (r, k) -critical covered graph.

Many scholars studied the problems of factors of graphs and fractional factors of graphs. Zhou, Xu and Sun [\[2\]](#page-4-1) derived a degree condition for the existence of fractional (*a*, *^b*, *^k*)-critical covered graphs. Zhou [\[3\]](#page-4-2) presented a neighborhood union condition for a graph being a fractional (*a*, *^b*, *^k*)-critical covered graph. In this paper, we study the fractional $(2, b, k)$ -critical covered graph problem, and get a result on fractional $(2, b, k)$ -critical covered graphs which is the following theorem.

Theorem 1. Let $k \geq 0$ and $b \geq 2 + k$ be two integers, and let G be a graph with $\delta(G) \geq 2 + k$. If

$$
bind(G) > \frac{b+k}{b-1},
$$

then G is fractional (2, *^b*, *^k*)*-critical covered.*

We immediately get the following corollary by setting $k = 0$ in Theorem [1.](#page-1-0)

Corollary 1. Let $b \geq 2$ be an integer, and let G be a graph with $\delta(G) \geq 2$. If

$$
bind(G) > \frac{b}{b-1},
$$

then G is fractional [2, *^b*]*-covered.*

We promptly obtain the following corollary if $b = 2$ in Corollary [1.](#page-1-1)

Corollary 2. Let G be a graph with $\delta(G) \geq 2$. If

$$
bind(G) > 2,
$$

then G is fractional 2*-covered.*

2. The Proof of Theorem [1](#page-1-0)

We begin this section with one definition. For any $X \subseteq V(G)$ and $Y = \{x : x \in V(G) \setminus X, d_{G-X}(x) \leq \emptyset\}$ *a*}, we define $\varepsilon(X, Y)$ as follows:

> $\varepsilon(X, Y) =$ $\begin{cases} 2, & \text{if } X \text{ is not independent,} \\ 1, & \text{if } Y \text{ is independent and} \end{cases}$ $\begin{array}{c} \n\end{array}$ $\begin{array}{c} \hline \end{array}$ 1, if *X* is independent and there is an edge joining
X and $V(G) \setminus (X \cup V)$ or there is an edge $a = 1$ *X* and *V*(*G*) \ (*X* ∪ *Y*), or there is an edge *e* = *xy* ioning *Y* and *Y* such that $d_{\text{max}}(y) = a$ for $y \in Y$ joining *^X* and *^Y* such that *^dG*−*X*(*y*) ⁼ *^a* for *^y* [∈] *^Y*, ⁰, otherwise.

Li, Yan and Zhang [\[4\]](#page-4-3) posed a necessary and sufficient condition for a graph to be a fractional [*a*, *^b*]-covered graph, which is a special case of Li, Yan and Zhang's fractional (*g*, *^f*)-covered graph theorem.

Theorem 2. *(* [\[4\]](#page-4-3)*)* Let $b \ge a \ge 0$ *be two integers. Then a graph G is a fractional* [a, b]-covered graph *if and only if for any* $X \subseteq V(G)$,

$$
a|Y| - d_{G-X}(Y) \le b|X| - \varepsilon(X,Y),
$$

where $Y = \{x : x \in V(G) \setminus X, d_{G-X}(x) \leq a\}.$

The proof of Theorem [1](#page-1-0) depends heavily on the following theorem, which is equivalent to Theorem [2.](#page-1-2)

Theorem 3. *(* [\[4\]](#page-4-3)*) Let* $b \ge a \ge 0$ *be two integers. Then a graph G is a fractional* [a, b]-covered graph *if and only if for any* $X \subseteq V(G)$ *,*

$$
\sum_{j=0}^{a-1} (a-j)p_j(G-X) \le b|X| - \varepsilon(X,Y),
$$

where $Y = \{x : x \in V(G) \setminus X, d_{G-X}(x) \le a\}$ *and* $p_i(G - X)$ *denotes the number of vertices in* $G - X$ *with degree j.*

Proof of Theorem [1.](#page-1-0) Let $Q \subseteq V(G)$ with $|Q| = k$, and let $H = G - Q$. It suffices to verify that *H* is a fractional $[2, b]$ -covered graph. Suppose, to the contrary, that *H* is not a fractional $[2, b]$ -covered graph. Then it follows from Theorem [3](#page-2-0) that

$$
2p_0(H - X) + p_1(H - X) \ge b|X| - \varepsilon(X, Y) + 1\tag{1}
$$

for some $X \subseteq V(H)$, where $Y = \{x : x \in V(H) \setminus X, d_{H-X}(x) \leq 2\}.$

We write $Y_0 = \{x : x \in V(H) \setminus X, d_{H-X}(x) = 0\}$ and $Y_1 = \{x : x \in V(H) \setminus X, d_{H-X}(x) = 1\}$. Obviously, we obtain $|Y_0| = p_0(H - X) = i(H - X)$ and $|Y_1| = p_1(H - X)$. The following proof will be divided into three cases.

Case 1. $Y_1 = \emptyset$.

Clearly, $p_1(H - X) = 0$. Combining this with [\(1\)](#page-2-1) and $\varepsilon(X, Y) \leq |X|$, we admit

$$
2p_0(H - X) = 2p_0(H - X) + p_1(H - X) \ge b|X| - \varepsilon(X, Y) + 1 \ge b|X| - |X| + 1 \ge 1,
$$

namely,

$$
p_0(H - X) \ge \frac{1}{2}.\tag{2}
$$

According to [\(2\)](#page-2-2) and the integrity of $p_0(H - X)$, we get

$$
p_0(H - X) \ge 1,
$$

which implies that there exists $x_0 \in V(H) \setminus X$ with $d_{H-X}(x_0) = 0$. Combining this with $\delta(G) \geq 2 + k$ and $H = G - Q$, we have

$$
2 + k \leq \delta(G) \leq d_G(x_0) \leq d_{G-Q}(x_0) + |Q|
$$

= $d_H(x_0) + k \leq d_{H-X}(x_0) + |X| + k = |X| + k$,

that is,

$$
|X| \ge 2.\tag{3}
$$

Note that $Y_0 \neq \emptyset$ by $p_0(H - X) \geq 1$, and so $N_G(Y_0) \neq V(G)$. In terms of (1), (3), $\varepsilon(X, Y) \leq 2$, *p*₁(*H* − *X*) = |*Y*₁| = 0 and *b* ≥ 2 + *k* ≥ 2, we get

$$
bind(G) \leq \frac{|N_G(Y_0)|}{|Y_0|} \leq \frac{|Q| + |X|}{|Y_0|} = \frac{k + |X|}{p_0(H - X)}
$$

\n
$$
= \frac{2k + 2|X|}{2p_0(H - X) + p_1(H - X)}
$$

\n
$$
\leq \frac{2k + 2|X|}{b|X| - \varepsilon(X, Y) + 1} \leq \frac{2k + 2|X|}{b|X| - 1}
$$

\n
$$
= \frac{2}{b} \cdot \left(1 + \frac{bk + 1}{b|X| - 1}\right) \leq \frac{2}{b} \cdot \left(1 + \frac{bk + 1}{2b - 1}\right)
$$

\n
$$
= \frac{4 + 2k}{2b - 1} \leq \frac{2b + 2k}{2b - 1} < \frac{2b + 2k}{2b - 2} = \frac{b + k}{b - 1},
$$

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 120, 201–205

which contradicts *bind*(*G*) > $\frac{b+k}{b-1}$
Case 2, $V_+ \neq \emptyset$ and $V_+ = N_{++-1}$ $rac{b+k}{b-1}$. **Case 2.** *Y*₁ ≠ ∅ and *Y*₁ = $N_{H-X}(Y_1)$.

We easily see that $|Y_1| = 2t \ge 2$, where *t* is a positive integer. For $x_1 \in Y_1$, we admit $d_{H-X}(x_1) = 1$. Then using $H = G - Q$ and $\delta(G) \geq 2 + k$, we derive

$$
2 + k \leq \delta(G) \leq d_G(x_1) \leq d_{G-Q}(x_1) + |Q|
$$

= $d_H(x_1) + k \leq d_{H-X}(x_1) + |X| + k$
= $1 + |X| + k$,

namely,

 $|X| \geq 1$.

If $|X| = 1$, then $p_0(H - X) = 0$ (since $\delta(G) \ge 2 + k$) and $\varepsilon(X, Y) \le 1$. It follows from [\(1\)](#page-2-1) and the hypothesis of Theorem [1](#page-1-0) that

$$
\frac{b+k}{b-1} < \text{bind}(G) \le \frac{|N_G(Y_1 \setminus \{x_1\})|}{|Y_1 \setminus \{x_1\}|} \le \frac{|Q| + |X| + |Y_1| - 1}{|Y_1| - 1}
$$
\n
$$
= \frac{k+|Y_1|}{|Y_1| - 1} = \frac{k+p_1(H-X)}{p_1(H-X) - 1} = 1 + \frac{1+k}{p_1(H-X) - 1}
$$
\n
$$
= 1 + \frac{1+k}{2p_0(H-X) + p_1(H-X) - 1}
$$
\n
$$
\le 1 + \frac{1+k}{b|X| - \varepsilon(X,Y)} \le 1 + \frac{1+k}{b|X| - 1} = 1 + \frac{1+k}{b-1}
$$
\n
$$
= \frac{b+k}{b-1},
$$

which is a contradiction. Next, we consider $|X| \ge 2$.

In light of (1), $|X| \ge 2$, $\varepsilon(X, Y) \le 2$ and $b \ge 2 + k$, we deduce

$$
bind(G) \leq \frac{|N_G(Y_0 \cup (Y_1 \setminus \{x_1\}))|}{|Y_0 \cup (Y_1 \setminus \{x_1\})|} \leq \frac{|Q| + |X| + |Y_1| - 1}{|Y_0| + |Y_1| - 1}
$$
\n
$$
= \frac{k + |X| + p_1(H - X) - 1}{p_0(H - X) + p_1(H - X) - 1}
$$
\n
$$
= 1 + \frac{k + |X| - p_0(H - X)}{p_0(H - X) + p_1(H - X) - 1}
$$
\n
$$
\leq 1 + \frac{k + |X| - p_0(H - X)}{b|X| - \varepsilon(X, Y) - p_0(H - X)}
$$
\n
$$
\leq 1 + \frac{k + |X| - p_0(H - X)}{b|X| - 2 - p_0(H - X)} \leq 1 + \frac{k + |X|}{b|X| - 2}
$$
\n
$$
= 1 + \frac{1}{b} \cdot \left(1 + \frac{2 + bk}{b|X| - 2}\right) \leq 1 + \frac{1}{b} \cdot \left(1 + \frac{2 + bk}{2b - 2}\right)
$$
\n
$$
= \frac{2b + k}{2b - 2} \leq \frac{2b + 2k}{2b - 2} = \frac{b + k}{b - 1},
$$

which contradicts *bind*(*G*) > $\frac{b+k}{b-1}$
Case 3, $Y_t \neq \emptyset$ and $Y_t \neq N_{t-1}$. $\frac{b+k}{b-1}$. **Case 3.** *Y*₁ ≠ \emptyset and *Y*₁ ≠ *N*_{*H*−*X*}(*Y*₁).

In this case, there exists $x_2 \in N_{H-X}(Y_1) \setminus Y_1$ with $d_{H-X}(x_2) \geq 2$, and so there exists $x_3 \in Y_1$ such that $x_3 x_2 \in E(H - X)$ and $x_3 x \notin E(H - X)$ for any $x \in V(H) \setminus (X \cup \{x_2\})$. Thus, we deduce $|N_G(Y_0 \cup Y_1)| \leq |Q| + |X| + |Y_1|$. Combining this with [\(1\)](#page-2-1), $|X| \geq 1$ (since $Y_1 \neq \emptyset$ and $\delta(G) \geq 2 + k$), $\varepsilon(X, Y) \leq 2$, $b \geq 2 + k$ and the hypothesis of Theorem [1,](#page-1-0) we infer

$$
\frac{b+k}{b-1} < \text{ bind}(G) \le \frac{|N_G(Y_0 \cup Y_1)|}{|Y_0 \cup Y_1|} \le \frac{|Q| + |X| + |Y_1|}{|Y_0| + |Y_1|}
$$

$$
\begin{aligned}\n&= \frac{k + |X| + p_1(H - X)}{p_0(H - X) + p_1(H - X)} \\
&= 1 + \frac{k + |X| - p_0(H - X)}{p_0(H - X) + p_1(H - X)} \\
&= 1 + \frac{k + |X| - p_0(H - X)}{2p_0(H - X) + p_1(H - X) - p_0(H - X)} \\
&\leq 1 + \frac{k + |X| - p_0(H - X)}{b|X| - \varepsilon(X, Y) + 1 - p_0(H - X)} \\
&\leq 1 + \frac{k + |X| - p_0(H - X)}{b|X| - 1 - p_0(H - X)} \\
&\leq 1 + \frac{k + |X|}{b|X| - 1} = 1 + \frac{1}{b} \cdot \left(1 + \frac{1 + bk}{b|X| - 1}\right) \\
&\leq 1 + \frac{1}{b} \cdot \left(1 + \frac{1 + bk}{b - 1}\right) = \frac{b + k}{b - 1},\n\end{aligned}
$$

which is a contradiction. This finishes the proof of Theorem [1.](#page-1-0) \Box

3. Sharpness of Theorem [1](#page-1-0)

We show that the binding number condition *bind*(*G*) > $\frac{b+k}{b-1}$ $\frac{b+k}{b-1}$ in Theorem 1 cannot be replaced by $bind(G) \geq \frac{b+k}{b-1}$ $rac{b+k}{b-1}$.

We construct a graph $G = K_{1+k} \vee (\frac{b}{2})$ $\frac{b}{2}K_2$), where ∨ means "join", and *b* and *k* are two integers such that $b \geq 2 + k$ and *b* is even. We easily deduce that *bind*(*G*) = $\frac{b+k}{b-1}$ $\frac{b+k}{b-1}$. Let *Q* = *V*(*K_k*) ⊆ *V*(*K*_{1+*k*}) and *H* = *G* − *Q* = *K*₁ ∨ ($\frac{b}{2}$ $\frac{b}{2}K_2$). We select *X* = *V*(*K*₁) and *Y* = {*x* : *x* ∈ *V*(*H*) \ *X*, *d*_{*H*−*X*}(*x*) ≤ 2} in *H*. It is obvious that $\varepsilon(X, Y) = 1$ by the definition of $\varepsilon(X, Y)$. Hence, we admit

$$
2p_0(H - X) + p_1(H - X) = b = b|X| - \varepsilon(X, Y) + 1 > b|X| - \varepsilon(X, Y).
$$

In light of Theorem 3, *H* is not a fractional $[2, b]$ -covered graph, and so *G* is not a fractional $(2, b, k)$ critical covered graph.

References

- 1. Woodall, D.R., 1973. The binding number of a graph and its Anderson number. *Journal of Combinatorial Theory, Series B, 15*(3), pp.225-255.
- 2. Zhou, S., Xu, Y. and Sun, Z., 2019. Degree conditions for fractional (a, b, k)-critical covered graphs. *Information Processing Letters, 152,* p.105838.
- 3. Zhou, S., 2022. A neighborhood union condition for fractional (a, b, k)-critical covered graphs. Discrete Applied Mathematics, 323, pp.343-348.
- 4. Li, Z., Yan, G. and Zhang, X., 2002. On fractional (g, f)-covered graphs. OR *Transactions (China), 6*(4), pp.65-68.

© 2024 the Author(s), licensee Combinatorial Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://[creativecommons.org](http://creativecommons.org/licenses/by/4.0)/licenses/by/4.0)