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Abstract: In this paper, we study the submodular hitting set problem (SHSP), which is a variant of the
hitting set problem. In the SHSP, we are given a supergraph H = (V,C) and a nonnegative submodular
function on the set 2V . The objective is to determine a vertex subset to cover all hyperedges such that
the cost of submodular covering is minimized. Our main work is to present a rounding algorithm and
a primal-dual algorithm respectively for the SHSP and prove that they both have the approximation
ratio k, where k is the maximum number of vertices in all hyperedges.
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1. Introduction

The hitting set problem involves a supergraph H = (V,C), where V is a finite set with elements
called vertices and C is a family of subsets of V called hyperedges. Let k be the maximum size of
all hyperedges and ∆ be the maximum degree of all vertices. A hitting set of H, also called a vertex
cover of H, is a subset X ⊆ V such that each hyperedge in C contains at least one vertex from X. The
hitting set problem is to select a vertex subset of minimum size. For each vertex u ∈ V , if there is
an associated nonnegative weight cost w(u), we obtain the weighted version of the problem, the goal
of which is to select a vertex subset of minimum covering cost. The minimum hitting set problem is
NP-hard [1] and it is one of the fundamental combinatorial optimization problems. In this case, it is
conventional that for any subset X of V the covering cost of X is the sum of the covering cost of all
vertices in X, that is, w(X) =

∑
u∈X

w(u). Then this function w(·) induces a linear function from 2V to R+.

Most results of decision problems in combinatorial optimization, such as trees or cuts, vertex
cover in graphs, facility location, set cover, are in general asking for the linear costs. However,
nonlinear costs are more realistic in many settings and there have existed some works in the area of
combinatorial optimization problems with submodular costs. Assume E is a nonempty set and 2E is
the power set of E. Let F(·) : 2E → R+ be a nonnegative-valued set function. We call F(·) submodular
if for any X,Y ∈ 2E, F(X ∪ Y) + F(X ∩ Y) ≤ F(X) + F(Y) and F(·) modular if the equality holds. It is
obvious that all modular functions are submodular and so all linear functions. We call F(·) monotone
if F(X) ≤ F(Y) for each pair of subsets X,Y ∈ 2E with X ⊆ Y . Submodular functions occur very often
in a variety of subjects such as economics, engineering, computer science and management science.
There is a greedy approximation which achieves an approximation ratio of H(∆) for the hitting set
problem with linear costs, where H(∆) is the ∆-th harmonic number [1]. Moreover, using the greedy
approximation, Wan et al. [2] gave some similar results for the hitting set problem with submodular
costs.
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One of the most fundamental problems related to submodular functions is the submodular function
minimization problem. In this problem, we are given a finite set E and a submodular function F(·)
defined on 2E, then the goal is to select a subset X of E minimizing F(X) among the power set of E,
i.e., to select a minimizer of submodular function F(·) over 2E. It is known that this problem can be
solved in polynomial time. Recently, constrained variants of the submodular function minimization
problem have been extensively studied in various fields ( [3–6]). For instance, Hochbaum [4] stud-
ied the submodular minimization problem with linear constraints having at most two variables per
inequality. Kamiyama [5] studied the the submodular function minimization problem with covering
type linear constraints. Koufogiannakis and Young [3] studied the monotone submodular function
submodular minimization problem with general covering constrains. Iwata and Nagano [6] studied
the submodular function minimization problem with set cover constraints. In this paper, we are moti-
vated to study the submodular hitting set problem (SHSP). That is, given a nonnegative submodular
function f (·) : 2V → R+, the goal of the SHSP is to select a vertex subset X ⊆ V to cover all the hyper-
edges that minimizes the submodular cost f (X). We present a rounding algorithm and a primal-dual
program for the SHSP and prove that they both have the approximation ratio k.

The paper is organized as follows. In Section 2, we give some definitions about submodular
function. In Section 3, we present a rounding algorithm and a primal-dual program respectively for
the SHSP and prove that they both have the approximation ratio k, where k is the maximum number
of vertices in all hyperedges.

2. Lovász Extension of a Submodular Function

In this section, we introduce the Lovász extension of a submodular function. Let F(·) : 2E → R+ be a
submodular function.

Assume |E| = n. Then for any vector zzz ∈ Rn and any non-empty subset X ⊆ E, we define

zzz(X) =
∑
i∈X

zzz(i),

where zzz(i) is the i-th coordinate value of vector zzz. It is easy to see that zzz(·) is a modular function from
2E → R.

For any X ⊆ E, define χχχX ∈ {0, 1}n as follows:

χχχX(i) =
{

1, if i ∈ X,
0, otherwise,

called the characteristic vector of X.
Given a submodular function F(·), denote

P(F) = {zzz | zzz ∈ Rn, zzz(X) ≤ F(X),∀X ⊆ E}.

We call P(F) a submodular polyhedron and its elements subbases. For any subbase zzz ∈ P(F), a subset
X of E is called zzz-tight whenever zzz(X) = F(X). There is a property for the collection of all zzz-tight
subsets.

Proposition 1. For any given subbase zzz ∈ P(F), the collection of all zzz-tight subsets is closed under
union and intersection.

Proof. Since F(·) is submodular and zzz(·) is modular, the result holds. □

Now we introduce the Lovász extension of a submodular function and its properties. Given a vector
ppp ∈ Rn

+ and suppose p1, p2, · · · , pl are all distinct coordinate values of ppp with p1 > p2 > · · · > pl. For
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each j = 1, 2, · · · , l, denote N j = {i | ppp(i) ≥ p j}. Then we define a vector function over Rn
+ as follows:

F̂(ppp) =
l∑

j=1

(p j − p j+1)F(N j),

where pl+1 = 0. The function F̂(·) is said to be the Lovász extension of F(·). It is easy to see that for
any subset X of E, F̂(χχχX) = F(X) and F̂(000) = F(∅).

It is known from [7] that

F̂(ppp) = max

 n∑
i=1

ppp(i)zzz(i) | zzz ∈ P(F)

 . (1)

The problem (1) is a linear optimization over the submodular polyhedron, which is efficiently solved
by Edmonds [8]. Combining (1) with the primal-dual theory, we get that F̂(ppp) is equal to the optimal
value of the following program:

min
∑
X⊆E

F(X) · ζ(X)

s.t.
∑
X⊆E
i∈X

ζ(X) = ppp(i), ∀i ∈ E,

ζ(X) ≥ 0, ∀X ⊆ E.

(2)

There are some properties of the Lovász extension function and we list them here for later use.

Lemma 1. ( [7]) A set function F(·) is submodular if and only if F̂(·) is convex.

Lemma 2. ( [9]) Assume F̂(·) is the Lovász extension function of submodular function F(·), then we
have

(1) (positively homogeneous) for any real number α > 0 and any vector vvv ≥ 000, F̂(αvvv) = αF̂(vvv);
(2) the function F̂(·) is a monotonically increasing convex function.

3. Approximation Algorithms

In this section, we construct a rounding algorithm and a primal-dual algorithm for the SHSP.
For the given supergraph H = (V,C), assume |V | = n, C = {T1,T2, . . . ,Tm} and V = ∪m

i=1{Ti}.
Denote k = max{|Ti| | Ti ∈ C}. Assume there is a submodular function f (·) : 2V → R+ with f (∅) = 0,
where f (X) means the covering cost of X for any subset X of V .

Firstly we define a binary variable ζ(X) for any subset X ⊆ V as follows:

ζ(X) =
{

1, if X is selected to cover some hyperedges,
0, otherwise.

Therefore, the integer linear program for the SHSP is

min
∑
X⊆V

f (X)ζ(X)

s.t.
∑
X⊆V

X∩Ti,∅

ζ(X) ≥ 1, ∀Ti ∈ C,

ζ(X) ∈ {0, 1}, ∀X ⊆ V.

(3)

In the above program, the first constraint ensures that each hyperedge Ti ∈ C is covered by some
vertex subset X. Since f (·) is a submodular function, there must exist a unique subset X of V such
that ζ(X) = 1 in the optimal solution of (3).
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Recall that f̂ (χχχX) = f (X), the convex programming for the SHSP is:

min f̂ (xxx)

s.t.
∑
u∈Ti

xxx(u) ≥ 1, ∀Ti ∈ C,

xxx(u) ∈ {0, 1}, ∀u ∈ V.

(4)

The relaxation of (4) is:
min f̂ (xxx)

s.t.
∑
u∈Ti

xxx(u) ≥ 1, ∀Ti ∈ C,

xxx(u) ≥ 0, ∀u ∈ V.

(5)

3.1. A Rounding Algorithm for the SHSP

For a submodular function f (·), we define a set function f ◦(·) : 2V → R+ as

f ◦(X) = min{ f (Z) | X ⊆ Z ⊆ V}, ∀X ⊆ V.

Then f ◦(·) is monotone and submodular [10]. Moreover, this function f̂ ◦(·) has the following proper-
ties.

Lemma 3. ( [6])

(1) suppose X◦ is the exactly minimal subset Z satisfying X ⊆ Z ⊆ V and f (Z) = f ◦(X). Then
f ◦(X) = f (X◦) and f (X) ≥ f ◦(X) for every subset X ⊆ V;

(2) for each xxx ∈ Rn
+, f̂ (xxx) ≥ f̂ ◦(xxx);

(3) f̂ ◦(·) is monotonically increasing and positively homogeneous.

Since the program (5) can be solved in polynomial time via the ellipsoid method, we denote x∗x∗x∗ ∈
Rn
+ an optimal solution of (5). Based on the program (5), we give the following rounding algorithm.

Algorithm 1 (H). Step 0: Solve the program (5) and denote x∗x∗x∗ ∈ Rn
+ as the optimal solution.

Step 1: Define the subset A ⊆ V by

A = {u ∈ V | x∗x∗x∗(u) ≥
1
k
}.

Step 2: Define A◦ be the exactly minimal subset of V such that A ⊆ A◦ and f (A◦) = f ◦(A).
Step 3: Return A◦.

Recall that k = max{|Ti| | Ti ∈ C}. For every hyperedge Ti ∈ C, since
∑

u∈Ti

xxx(u) ≥ 1, at least one of

xxx∗(u) must be greater than 1
k , which ensures A is a hitting set. Since A ⊆ A◦, A◦ is also a hitting set.

Moreover, the hitting set A◦ can be obtained in polynomial time by submodular function minimization
theory. Therefore, Algorithm 1 can be implemented in polynomial time and the obtained A◦ is a hitting
set. Finally, we analyze the approximation ratio of Algorithm 1.

Theorem 1. With reference to f (·), f ◦(·) and A◦ defined above, then we have f (A◦) ≤ k f (M) for any
hitting set M, where k = max{|Ti| | Ti ∈ C}.

Proof. Since x∗x∗x∗ ∈ Rn
+ is an optimal solution of (5) and f̂ (χχχM) = f (M) for any hitting set M, we find

f̂ (x∗x∗x∗) ≤ f̂ (χχχM) = f (M).

Lemma 3 (2) guarantees
f̂ ◦(x∗x∗x∗) ≤ f̂ (x∗x∗x∗)
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and hence
f̂ ◦(x∗x∗x∗) ≤ f (M). (6)

The fact χχχA ≤ kx∗x∗x∗ and Lemma 3 (3) ensure that

f̂ ◦(χχχA) ≤ f̂ ◦(kx∗x∗x∗) = k f̂ ◦(x∗x∗x∗).

Note that f̂ ◦(χχχA) = f ◦(A) = f (A◦). Then we have

f (A◦) ≤ k f̂ ◦(x∗x∗x∗). (7)

Combining (6) with (7), we obtain f (A◦) ≤ k f (M) as desired. □

3.2. A Primal-dual Algorithm

In this subsection, we give a primal-dual algorithm for the SHSP. For any subset X ⊆ V , we denote
SX = {Ti ∈ C | Ti ∩ X , ∅} and we call X is a hitting set if SX = C.

Recall that for any given vector ppp ∈ Rn
+, f̂ (ppp) is equal to the optimal value of (2). Combining (2)

with (5), we consider the following relaxation program for the SHSP :

min
∑
X⊆V

f (X) · ζ(X)

s.t.
∑
u∈Ti

xxx(u) ≥ 1, ∀Ti ∈ C,∑
X⊆V
u∈X

ζ(X) = xxx(u), ∀u ∈ V,

ζ(X) ≥ 0, ∀X ⊆ V.

(8)

We do not need to add the constraint that xxx(u) ≥ 0 for the second constraint of (8) ensures it for all
u ∈ V . And the dual program for (8) is:

max
∑
Ti∈C

y(Ti)

s.t.
∑
Ti∈C
u∈Ti

y(Ti) = zzz(u), ∀u ∈ V,

zzz ∈ P( f ),
y(Ti) ≥ 0, ∀Ti ∈ C.

(9)

Before proposing the primal-dual algorithm for the SHSP, we give some necessary facts.
Given a subbase zzz ∈ P( f ). Let ( f − zzz)(·) : 2V → R+ be defined by

( f − zzz)(X) = f (X) − zzz(X), ∀X ⊆ V.

Then ( f − zzz)(·) is a submodular function. Observe that the definition of ( f − zzz)(·) is related to the
modularity of zzz(·). So we get the function ( f −zzz)(·) for any subbase zzz ∈ P( f ) and there is a proposition
for the function.

Proposition 2. Given a subbase zzz ∈ P( f ), there exists the unique maximal subset X of V for the
function ( f − zzz)(·) such that f (X) = zzz(X).

Proof. Note that zzz ∈ P( f ), it is clear that

( f − zzz)(X) ≥ 0, ∀X ⊆ V.
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Moreover, we get that min
X⊆V

( f −zzz)(X) = ( f −zzz)(∅) = 0. This implies that the existence of X. According

to Proposition 1, we see that for every pair of minimizers X,Y of function ( f − zzz)(·), X ∪ Y is also a
minimizer. Thus, there exists the unique maximal subset X ⊆ V for the function ( f − zzz)(·) such that
f (X) = zzz(X). □

Lemma 4. Let zzz ∈ P( f ) and A be the unique maximal subset of V satisfying f (A) = zzz(A). Assume
C\SA , ∅ and a hyperedge T j ∈ C\SA. If we define

α = min
X⊆V

χχχT j (X),0

f (X) − zzz(X)
χχχT j(X)

and
zzz′ = zzz + α · χχχT j ,

then we have

(1) zzz′ ∈ P( f );
(2) furthermore, we define A′ as the maximal subset of V such that f (A′) = zzz′(A′). Then we have

A ⊊ A′.

Proof. To prove zzz′ ∈ P( f ), it suffices to prove zzz′(X) ≤ f (X) for every subset X of V . The assumption
zzz ∈ P( f ) implies that

zzz(X) ≤ f (X), ∀X ⊆ V.

On the one hand, for every subset X of V such that χχχT j(X) = 0, we have

zzz′(X) = zzz(X) + α · 0 = zzz(X) ≤ f (X).

On the other hand, for every subset X of V such that χχχT j(X) , 0, we have

zzz′(X) = zzz(X) + α · χχχT j(X) ≤ zzz(X) +
f (X) − zzz(X)
χχχT j(X)

· χχχT j(X) = f (X),

where the inequality follows from the definition of α. The result follows.
Next we prove A ⊊ A′. The assumption T j ∈ C\SA indicates A ∩ T j = ∅. The definition of zzz′

implies zzz′(u) = zzz(u) for every element u ∈ A.Moreover, we get zzz′(A) = zzz(A) = f (A). The definition of
A′ implies A ⊆ A′. Suppose Z is a subset of V which satisfies both χχχT j(Z) , 0 and

α =
f (Z) − zzz(Z)
χχχT j(Z)

.

Then we have f (Z) = zzz′(Z). The definition of A′ implies Z ⊆ A′. SinceχχχT j(Z) , 0, we have T j∩Z , 0.
Combining A ∩ T j = ∅ with T j ∩ Z , 0, we obtain A ⊈ Z. Since A ⊈ Z, A ⊆ A′ and Z ⊆ A′, it is
immediate that A ⊊ A′. □

Based on the dual program (9), we give the following primal-dual algorithm.

Algorithm 2 (H). Step 0: Set t = 1. Initialize y1 = 0, zzz1 = 0. Define A1 as the unique maximal subset
of V such that f (A1) = zzz1(A1).
Step 1: If C\SAt = ∅, go to step 2. If not, select a hyperedge T j ∈ C\SAt .

Define the real number αt by

αt = min
X⊆V

χχχT j (X),0

f (X) − zzzt(X)
χχχT j(X)
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Define yt+1 by

yt+1(Ti) =

yt(Ti) + αt, if Ti = T j ,

yt(Ti), otherwise

and let
zzzt+1 = zzzt + αt · χχχT j .

Define At+1 to be the unique maximal subset of V such that zzzt+1(At+1) = f (At+1).
Set t = t + 1.

Step 2: Let T = t and A = AT . Return A.

To obtain the ratio of Algorithm 2, we first prove the following lemmas.

Lemma 5. Algorithm 2 can be implemented in polynomial time.

Proof. Combining the definition of A with Lemma 4 (2), we get that the algorithm iterates after at most
|V | + 1 times. That is, T is at most |V | + 1. At every iteration, we can compute αt in polynomial time
[11]. The Proposition 2 guarantees there exists the unique maximal At+1 ⊆ V such that zzzt+1(At+1) =
f (At+1) and we can compute it in polynomial time [7]. Therefore, Algorithm 2 can be implemented
in polynomial time. □

Algorithm outputs {(y1, zzz1), (y2, zzz2), · · · , (yT , zzzT )}. Next we will prove it is a feasible region of the
dual program (9).

Lemma 6. For each t ∈ {1, 2, · · · ,T }, (yt, zzzt) is a feasible solution of the dual program (9).

Proof. Need to show for each t ∈ {1, 2, · · · ,T }, (yt, zzzt) satisfies all constrains of (9). We prove this
result by using induction on t.

Since (y1, zzz1) = 000 and f (·) is a nonnegative function, we obtain (y1, zzz1) is a feasible solution of (9).
Assume that this lemma holds when t = k. Suppose t = k + 1 and T j ∈ C\SAk . Firstly, according to
Lemma 4 (1), it is obvious that zzzk+1 ∈ P( f ). Combining zzzk ∈ P( f ) with the definition of αk, we have
αk ≥ 0, which implies yk+1 ≥ 0. Next, we prove that for each u ∈ V, (yk+1, zzzk+1) satisfies∑

Ti∈C:u∈Ti

yk+1(Ti) = zzzk+1(u). (10)

Since (yk, zzzk) is a feasible solution of (9), we have∑
Ti∈C:u∈Ti

yk(Ti) = zzzk(u), ∀u ∈ V. (11)

Note that V = T j ∪ (V\T j) and zzzk+1 = zzzk + αk · χχχT j . For each u ∈ V\T j, we obtain

zzzk+1(u) = zzzk(u) (12)

and ∑
Ti∈C:u∈Ti

yk+1(Ti) =
∑

Ti∈C:u∈Ti

yk(Ti). (13)

From (11)-(13), it is immediate that (10) holds for each u ∈ V\T j. For each u ∈ T j, we have

zzzk+1(u) − zzzk(u) = αk

and ∑
Ti∈C:u∈Ti

yk+1(Ti) −
∑

Ti∈C:u∈Ti

yk(Ti) = yk+1(T j) − yk(T j) = αk,

which implies that (10) holds for each u ∈ T j. Therefore, we have (10) for each u ∈ V . □
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We now analyze the approximation ratio of Algorithm 2.

Theorem 2. Algorithm 2 is a k-approximation algorithm, where k = max{|Ti| | Ti ∈ C}.

Proof. Algorithm 2 returns a hitting set A and the final feasible solution (yT , zzzT ) for the dual program
(9). Let OPT denote the optimal objective value for the SHSP. In what follows, we prove that

f (A) ≤ k · OPT.

Based on Lemma 6 and the dual program (9), we get

f (A) = zzzT (A) =
∑
u∈A

zzzT (u) =
∑
u∈A

∑
Ti∈C
u∈Ti

yT (Ti). (14)

Using the definitions of k and A, it is immediate that∑
u∈A

∑
Ti∈C
u∈Ti

yT (Ti) ≤ k
∑
Ti∈C

yT (Ti). (15)

The final feasible solution (yT , zzzT ) for (9) indicates that∑
Ti∈C

yT (Ti) ≤ OPT. (16)

From (14)-(16), we get f (A) ≤ k · OPT. □
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