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Abstract: The maximum-weight perfect matching inverse issue in graph theory and text clustering
are the two primary topics of this study. We suggest a novel approach to text clustering that makes
use of self-encoders and BERT embeddings for feature extraction in order to increase clustering ac-
curacy. According to experimental results, our technique enhances the clustering results greatly and
performs well on numerous short text datasets. In the context of graph theory, we examine the unit
paradigm inverse issue of maximum-weight perfect matching with value constraints and provide a ro-
bust polynomial-time method for its solution. In addition to effectively solving the maximum-weight
perfect matching inverse issue, our technique can also produce the best weight vector configuration
scheme for real-world uses. In conclusion, our work has advanced the domains of text clustering and
graph theory significantly, offering fresh approaches and theoretical underpinnings for future investi-
gations.

Keywords: Maximum weight perfect matching, Self-encoder, Text clustering, Bert embedding,
Feature extraction

1. Introduction

In the current information-explosion period, textual data is growing at an exponential rate and orig-
inates from a wide range of sources, including news articles, social media, scientific publications, and
many more fields [1]. In the domains of knowledge discovery, sentiment analysis, and information re-
trieval, efficiently organizing and evaluating this text data has grown in importance [2]. Among them,
text clustering is a crucial method of text data analysis that is applied extensively in text classification,
topic mining, information retrieval, and other related fields. It can classify a substantial amount of
text data into various categories with related topics or contents and offers fundamental support for
information management and utilization that follows [3].

Nevertheless, handling sparse and high-dimensional text data presents some difficulties for con-
ventional text clustering techniques [4]. First, approaches that rely on word vector representations or
conventional word frequency statistics struggle to capture contextual and semantic information across
texts and perform poorly in scenarios when words have various expressions but comparable mean-
ings [5]. Second, because short texts contain little information and standard clustering techniques
frequently depend on the length and richness of the text, they are not useful for clustering short
texts [6]. Furthermore, the efficiency and accuracy of conventional clustering methods are further
challenged by the high-dimensionality of text data and the existence of noisy data.
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Neural network-based representation learning and text data feature extraction techniques are now
gaining popularity as a result of the advancements in deep learning and self-supervised learning [7].
Specifically, acquire lexical contextual knowledge from extensive corpora, resulting in richer semantic
data for text representation and noteworthy outcomes [8]. As an unsupervised learning technique, self-
supervised learning, on the other hand, may make use of the structure and properties of the data itself
for model training, getting beyond the restriction of using labeled data and offering fresh concepts
and approaches to text clustering issues [9].

However, there are still certain difficulties in the field of text clustering, even with the advance-
ments made by these techniques. The first issue that has to be resolved is how to make the most of
the pre-trained language model in order to extract semantic information from text input and combine
it with clustering methods for efficient text representation. More efficient clustering methods must be
created for the properties of text data because, second, current text clustering techniques frequently
struggle to handle high-dimensional sparse text data [10]. Additionally, text clustering becomes more
challenging due to the diversity and complexity of text data, necessitating more investigation and
study.

Our goal in this paper is to solve the aforementioned issues and present a text clustering method
that fully utilizes the semantic information and structural features of text data to achieve accurate and
efficient text clustering. In order to achieve the meaningful organization and analysis of text data, this
study will specifically use the self-supervised learning approach to learn the representation of text
data and combine it with the clustering algorithm to cluster text data effectively.

2. Methods

2.1. BERT Pre-training Model

To capture the feature information representation of both word and sentence targets, researchers
have created the MLM (masked language model) and NSP (next sentence prediction) tasks [11, 12].
In order to increase the predictive power of the model, MLM uses three different techniques to hide
15% of the words in the input text. These tactics include offering the word three different odds:
10% to be replaced with a random word, 80% to be replaced with a MASK string, and 10% to be
kept. The BERT model trains the next sentence prediction task to enhance the model’s recognition
of consecutive sentences, which is necessary for the NSP task because some question-answer tasks
require the relationship between the two sentences [13]. This improves the model’s performance on
tasks like reasoning and question and answer.

The Transformer block, the central component of BERT, is stacked in groups of 12 or 24 to create
a deep neural network that extracts semantic information from texts. The self-attention mechanism
SelfAttention of the long-range dependency problem is the solution to the traditional natural language
processing problem in Transformer [14]. To enhance the model’s recognition performance for various
locations, the calculation formula is displayed in Eq. (1):

Attention(Q,K,V) = Soft max
(

QKT

√
dk

)
V. (1)

The query vector Q ∈ Rn×dk is represented as Q =
[
q1, q2, · · · , qn

]
,T,K ∈ Rm×dk and the query

vector V ∈ Rm×dv is represented as K = [k1, k2, · · · , kn]T and V = [v1, v2, · · · , vn]T , respectively. An
n × dk sequence is encoded into an n × dv sequence by attention, and n × dk is inserted as a moderator
to avoid computing the problem of tiny gradient when the inner product is big.

The multi-head attention mechanism is introduced to further enhance the model’s attention to
various characteristics. Different attention headheads are spliced in accordance with Eq. (2). By
concurrently collecting word representation information from the input context and incorporating a
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Figure 1. BERT-AK Model Framework Structure

significant quantity of external knowledge information, BERT eventually acquires more complete
representation information of words when compared to other language models.

MultiHead = Concat ( head 1, eead 2, · · · , head k) . (2)

The final multi-head attention output, which is fed into the feed-forward network for the subse-
quent calculation, is derived by splicing each headi as a characterisation of the text vectors, where the
formula for headi is displayed in Eq. (3).

head i = Attention
(
QWQ

i ,KWK
i ,VWV

i

)
. (3)

2.2. Model Building

When compared to random initialization, self-coding network initialization of the feature extractor
encoder yields superior performance for downstream tasks. The BERT-AE-K-Means model presented
in this paper is depicted in Figure 1. It uses the trained EncoderEncoder mentioned above to further
reduce the dimensionality of features on the textual data representation, or embedding. It then com-
bines this portion with the Kmeans clustering network to adjust the network parameters inversely
based on the clustering results. The following procedure may be used to abstract the process.

1. Initialize the cluster centers of K-Means clustering algorithm µ j . Since the division-based K-
Means clustering algorithm is very sensitive to the selection of the initial cluster centers, this
paper carries out 100 experimental preliminaries using K-Means under different cluster centers,
calculates the cluster centers with the smallest division error, and then calculates the probability
that point i belongs to cluster j, qi j. The calculation formula is shown in Eq. (4) to obtain the
probability distribution Q of the sample points.

qi j =

(
1 +

∥∥∥zi − µ j

∥∥∥2
/v

)− v+1
2

∑
j′

(
1 +

∥∥∥zi − µ j′
∥∥∥2

)− v+1
2

, (4)

where µ j stands for the cluster center vector, zi stands for the feature vector of the sample points,
and v is the t -distribution’s degree of freedom—which, in this work, takes the value of 1.

2. This paper’s self-supervised learning target distribution uses the auxiliary target distribution p
from the study [15], which is more in line with the original data distribution [16], making it a
viable choice for an auxiliary target during the self-training phase. Eq. (5) displays the auxiliary
target distribution formula:
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pi j =

q2
i j/

∑
i

qi j

∑
j′

(
q2

i j′/
∑
i

qi j′

) . (5)

The estimated likelihood that sample i belongs to cluster center j is indicated by the symbolqi j .
3. Train the clustering network K-Means and the encoder Encoder simultaneously. Since evaluating

the disparity between the two distributions is required, this work used the KL-divergence as the
loss function to train the model, Q and P. The KL-divergence is computed as follows in Eq. (6):

L = KL(P||Q) =
∑

i

∑
j

pi j1b
pi j

qi j
. (6)

If qi j is the estimated probability value that sample i belongs to cluster center j , pi j is the approx-
imate probability that a sample belongs to cluster center j and Q is the auxiliary target distribution.

3. Improving XGBoost Algorithm

Let G = (V, E;ω),V = {v1, v2, · · · , vn} be the set of vertices in the network (where n is an even
number of vertices), E = {e1, e2, · · · , em} be the set of edges, and w = {ω1, ω2, · · · , ωm} be the weight
vector of the edges, where ωi is the weight of the edge q . A lower constraint on the maximum-
right perfect matching is given by K . The set of perfect matchings is M0 (where |M0| =

n
2 ). Let

dω (M0) completely match M0 ’s rights in the weight vector w , that is, dω (M0) =
∑

ek∈M0

ωk. To find a

new weight vector ω̄ = {ω̄1, ω̄2, · · · , ω̄m} that minimizes the change cost ∥ω̄ − w∥∞ and makes M0 a
maximum-right perfect match for the network Gω̄ = (V, E; ω̄) , this is known as the maximum-right
perfect matching inverse problem.

4. Maximum-weight Perfect Matching Inverse Problem Algorithms

Using the unit L∞ paradigm, the following description of alternating circles is provided before
studying the maximum-weight perfect E-matching inverse issue with value constraints:

Definition 1. A circle C is said to be an alternating circle in a network G = (V, E;ω) if it is composed
of alternating edges that exactly match M0 and edges that are not M0 . The weight of the alternating
circle C under the weight vector ω is defined as a dω [(C\M0) − (C ∩ M0)] , and the edges of circle C
that exactly match M0 and the edges that are not M0 are denoted as C ∩ M0 and C\M0 .

Definition 2. dω [(C\M0) − (C ∩ M0)] = dω (C\M0) − dω (C ∩ M0) ⩽ 0 indicates that an alternating
circle C is nonpositive if its weight dω [(C\M0) − (C ∩ M0)] under the weight vector ω is not higher
than zero.

For the maximum-weight perfect matching inverse issue, bergel [17] provides the following theo-
rem.

Theorem 1. A prerequisite for M0 to be a perfect matching with maximum power in a network G =
(V, E;ω) is that every alternating circle C in the network G must be a nonpositive circle, that is, the
alternating circle C, dω [(C\M0) − (C ∩ M0)] ⩽ 0.

The following theorem describes how the maximum average alternating circle and the maximum
perfect E-matching are related, according to the study [18]:

Proof of Theorem 1. If at any point λ∗ ⩾ µ, that is, the minimum adjustment of λ∗ such that the graph
G′ does not have negative circles, has satisfied that the perfect matching M0 is a maximum-weighted
network matching of the network Gω

λ∗

=
(
V, E;ωλ

∗
)
.
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Dataset N T L
SearchSnippet 8 12296 14.42
StackOverflow 20 16408 4.05

Tweet 89 2474 8.66
Biomedical 20 19449 7.41

Table 1. A Brief Text Dataset

Choose p as the minimum adjustment cost of the maximum power perfect matching inverse prob-
lem with value constraints under the unit L∞ paradigm. This is done when λ∗ < µ, that is, at this time
so that the graph G′ does not have negative circles of the minimum adjustment amount of the λ∗, has
satisfied the perfect matching M0 is the network Gω

λ∗

=
(
V, E;ωλ

∗
)

of the maximum power network
matching, but dωλ∗ (M0) < K. □

As per the previous discussion and Theorem 1, we can obtain the following algorithm for the
maximum power perfect matching inverse problem with value constraints under the unit L∞ paradigm
by solving µ∗.

5. Analysis and Outcomes of the Experiment

5.1. Steps and Results from Experiments

In this research, we study four short text datasets through experiments:

(1) Google’s search engine’s SearchSnippets, which has 12,296 brief sentences in all divided into 8
categories.

(2) A collection of title information from a few Q&A situations, available on the Kaggle platform,
is called StackOverflow. It has 16,408 brief transcripts from 20 distinct categories in total [19].

(3) BioMedical, a dataset from biomedical-related domains that was posted on BioASQ’s official
website, with 20 categories and 19,449 samples in total [20].

(4) Tweet is a dataset with 2,474 brief messages divided into 89 categories. Table1 provides com-
prehensive details on each dataset, with N representing the number of categories, T representing
the number of texts, and L representing the average length of the samples in each dataset.

Throughout the experiments presented in this paper, the context-dynamic word vector representa-
tions of words are obtained using the BERT pre-training model. Seventy-eight-dimensional vectors
derived from the [CLS] labels of the model represent the short text, or text representation containing
global information output from the BERT model for text categorization. The current obtained text
vector representation is highly dimensional, making direct clustering using the clustering algorithm
not only inaccurate but also resulting in a high time complexity of the model. Therefore, this paper
suggests using the AutoEncoder model to perform feature extraction and dimensionality reduction of
the aforementioned text vectors. The core portion of the self-coding network is split into Encoder
and Decoder sections by the AutoEncoder model. The Encoder module has an input layer, hidden
layer, and output layer with a total of 768, 1,000, and 128 neurons, respectively.Specifically, the de-
coder’s input is the encoder’s output. The Decoder module additionally incorporates a three-layer
network with 128, 1,000, and 768 neurons, respectively, to accomplish the reconstruction of the vec-
tor representation V of the input data. The optimisation strategy applied in the training stage is called
stochastic gradient descent (SGD). The feature extractor encoder, which is acquired after thirty opti-
mization rounds, is then utilized to extract features and perform downscaling on the input text vectors
V. F
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5.2. Comparison Experiments and Evaluation Indicators

5.2.1. Comparison Experiments

The comparison models are detailed in detail below. This study sets up six groups of comparison
experiments, all of which are run on four short text datasets.

The baseline models in the first two comparison groups are Word2Vec and TF-IDF, which provide
word vectors, respectively. Based on the word vectors, feature representations of the text are created,
and clustering is accomplished directly using the K-Means clustering method.

STC2 is a brief text clustering technique that makes use of word embeddings and convolutional
neural networks. Convolutional neural networks are used to learn the text representation throughout
the clustering process.

Based on the Dirichlet process, the GSDPMM polynomial mixture model for short text clustering
does not need the number of clusters to be predetermined and, as a result of the model’s architecture,
typically tends to yield more clusters.

SIF-Auto is a technique that uses SIF word vector format to represent text, then self-coding net-
works for feature extraction, and clustering as the final step. The paper presents two text representa-
tion methods: BERT-K-Means and BERT-AE-K-Means. Both models utilize the pre-trained model
BERT to extract the text’s semantic representation; however, the first model differs from the sec-
ond in that it bypasses the self-coding network for feature extraction and dimensionality reduction.
This process verifies the significance of the extracted higher-order features for the downstream text
clustering.

5.2.2. Evaluation Metrics

The model assessment criteria in this research were clustering accuracy (ACC) and normalized
mutual information (NMI), which were determined through many tests on four datasets. The follow-
ing is the formula for the clustering accuracy ACC:

ACC =

N∑
i=1
δ
(
yi,map (Ci)

)
N

, (7)

where N is the number of samples, yi is the sample point xi’s actual label, and Ci is the cluster label
that the model gave to it. Then, map (Ci) is used to map the cluster label that the model obtained to yi

’s form. Eq. (9) defines the discriminant function δ(x, y), which is used to determine if the real label
and the category produced from clustering are the same.

δ(x, y) =
{

1, if x = y,
0, otherwise.

(8)

The following is the typical formula for calculating mutual information NMI:
To normalize the mutual information value to fall within [0,1],

√
H(C),H(D) is employed, where

H(·) is the information first.The mutual information value between and is found by calculatingI(C,D).

I(C,D) =
∑

Ci∈C,Di∈D

P (Ci,Di) lb
P (Ci,Di)

P (Ci) P (Di)
. (9)

The conventional mutual information value takes the maximum value of 1 when the clustering
model separates the data C and D into two pieces properly.

5.3. Examining the Outcomes of the Experiment

In this paper, six groups of comparison experiments are conducted on the same data set, and the
results of the experiments are displayed in Table 2 and Table 3, respectively. The reliability of the
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experimental results is determined by taking the average of ten experiments as the final results of
each model. Three experiments are conducted to confirm the significance of various vector repre-
sentations of text for text clustering: K-Means, Word2Vec-K-Means, and BERT-K-Means. Table 3
shows that BERT-K-Means performs the best of the three in terms of accuracy, with a 20 percentage
point improvement over the Word2Vec-KMeans model and a 24 percentage point improvement over
the K-Means model when compared to the SearchSnippet dataset.According to the experimental find-
ings, using word frequency-based text representation directly on short texts yields the lowest results.
However, using a large corpus for pre-training can significantly increase the textual representation’s
capacity, which in turn increases the effectiveness of text clustering downstream.

Model SearchSnippet StackOverflow Tweet Biomedical
K-Means 33.82± 3.90 20.29 ±3.93 41.63 ±1.64 28.05± 2.79

Word2Vec-K-Means 53.42 ±1.79 30.50 ±0.31 65.72± 2.54 33.69 ±2.33
GSDPMM 38.69± 2.75 29.35± 1.48 84.40± 2.20 28.11± 1.79

STC2 78.26± 2.69 53.82± 3.36 75.15 ±3.15 44.82 ±1.73
SIF-Auto 79.15± 1.25 59.88 ±1.78 77.53 ±0.98 55.74 ±1.96

BERT K-Means 78.33± 1.22 57.34 ±2.12 80.32± 2.24 52.77± 1.06
BERT AE K-Means 82.29± 1.80 63.77± 1.33 83.73 ±1.64 56.66 ±0.82

Table 2. Accuracy Comparison of the Models on the Dataset

Model SearchSnippet StackOverflow Tweet Biomedical
K-Means 21.42± 4.33 15.59 ±4.67 34.25 ±2.12 25.42 ±3.21

Word2Vec-K-Means 36.92± 0.88 28.92± 0.15 39.33 ±1.83 30.11± 0.63
GSDPMM 40.58± 1.85 3.60± 1.15 76.14 ±1.90 32.03 ±1.59

STC2 64.73± 1.38 49.52 ±1.64 69.45 ±1.19 38.39± 0.92
SIF-Auto 57.75 ±1.39 55.60 ±1.22 7.14 ±1.23 47.22 ±1.18

BERT K-Means 62.12± 1.30 53.65± 1.14 73.22± 2.08 45.17 ±1.53
BERT AE K-Means 66.86± 1.51 57.82± 1.22 75.96± 1.69 50.02 ±1.46

Table 3. Standard Mutual Information Comparison of the Models on the Dataset

The methods that have been proposed in recent years to achieve good results on these four datasets
are known as experiments GSDPMM, STC2, and SIF-Auto. These methods are used in Table 2and
Table 3 to validate the effectiveness of the feature extraction and clustering methods proposed in
this paper. It is evident that GSDPMM performs best on the Tweet dataset because it contains 89
categories, which is four times more samples than the other datasets. The GSDPMM model also
tends to produce more clusters, which helps it achieve the best results on this data, where both the
ACC and NMI values are less than 1 percentage point higher than the model that is proposed in
this paper. The approach suggested in this paper produces the best results on the remaining three
datasets: on the StackOverFlow dataset, the ACC improves by 3 percentage points over the results of
the best comparison model, SIF-Auto, and on the BioMedical dataset, the NMI value improves by 2.8
percentage points over the results of the comparison model, SIF Auto.

The efficacy of the self-coding network suggested in this paper for text feature extraction and di-
mensionality reduction is finally verified by comparing two sets of experiments, BERT K-Means and
BERT AE KMeans. The representation vector of the text is better suited for downstream applications
following feature extraction and dimensionality reduction through this module. The clustering accu-
racy is improved on all datasets, as Tables 2 and 3 demonstrate. The three datasets with the exception
of the Tweet dataset yielded the best comparison experiment results, with the NMI value on the Stack-
Overflow dataset increasing by more than 4 percentage points when compared to BERT K-Means and
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the ACC increasing by 6 percentage points. It demonstrates how the dimensionality reduction and fea-
ture extraction approach for text representation put forward in this work may successfully enhance
text representation capabilities, enhancing the clustering algorithm’s performance.

The aforementioned experiments confirm the usefulness of the text representation and higher-order
feature extraction techniques suggested in this paper in terms of enhancing clustering accuracy. In
addition, this paper chooses the comparative experiments STC2 and SIF Auto, which were proposed
recently, as well as the BERT K-Means and BERT AE K-Means models, which are proposed here,
to conduct runtime tests on each of the four datasets with 10,000 samples. The comparison results are
displayed in Figure 2.

Figure 2. Each Model’s Running Duration

Figure 2 illustrates that the BERT AE KMeans model proposed in this paper has a lower running
time than BERT K-Means on the four datasets, and a slightly longer running time than the two com-
parison experiments of STC2 and SIF Auto. This is because the BERT pre-training model produces
768-dimensional high-dimensional feature vectors, which need more computation time. In contrast
to BERT K-Means, in this paper, after extracting the higher-order features by AutoEncoder module,
not only does the computation amount decrease, but also the clustering model is easier to converge,
resulting in a lower running time than the BERT K-Means model. Therefore, it can be seen that the
model proposed in this paper does not substantially increase the time complexity while improving the
clustering accuracy.

For the dimensionality reduction process, the features of the sample data are reduced to a 2-
dimensional space by using the integrated model t-SNE in the Python Sklearn library. This allows
for a more intuitive understanding of the changes in the clustering results. This paper conducts a
comparative experiment on the clustering results under the SearchSnippet dataset. The visualization
effect is displayed in Figure 3. The STC2 model uses convolutional networks to extract the features
of the textual information, as compared with (a). For the short text dataset, the sample data contains
fewer words, and the core words that can reflect the meaning of the text are insufficient. The text
vectorization feature method through word frequency statistics results in a low weight reflecting the
core semantic words. In contrast to (b), the clustering method operates directly on the data space,
resulting in a more pronounced clustering impact and distinct border curves for each cluster once
the former characteristics are extracted. After extracting the text’s higher-order feature representa-
tion using the self-coding network, (d) employs SIF for text representation, therefore enhancing the
clustering impact. When compared to (b), it is evident that the pre-trained model BERT uses con-
textual environment information to dynamically obtain the text representation that is more conducive
to downstream clustering than that obtained by using Word2Vec, and that the boundaries of the indi-
vidual clusters are more clearly defined. (e) illustrates this process of using K-Means for clustering
after adopting the pre-trained model BERT for text representation in this paper. The clustering results
produced by the BERT AE K-Means model, which is suggested in this study, are shown in (f). By
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comparing with (e), it is further confirmed that the clustering model’s effectiveness can be further
enhanced by extracting the higher-order features for the text vectors obtained by BERT using the self-
coding network. The clustering results demonstrate the best effect in the SearchSnippet dataset, and
the obtained cluster boundaries are more distinct. The resultant clusters’ borders are more distinct.

Figure 3. A Comparison of the Searchsnippets Dataset’s Grouping Findings

Figure 4. A Longitudinal Analysis Comparing the Models’ Accuracy in Clustering

Figure 5. Longitudinal Comparison of the Models’ Mutual Information and Clustering
Criterion

The aforementioned experiments indicate that the vectorized characterization of text is crucial for
the text clustering task. This paper fully utilizes the large pre-training model BERT to extract the high
dimensional space between words of the semantic and syntactic and other information, which is es-
pecially important for the downstream text clustering task to improve the clustering task’s effect. The
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accuracy on the text clustering problem has significantly increased, along with the feature extraction,
dimensionality reduction, and clustering fine-tuning approaches suggested in this study. As seen in
Figures 4 and 5, which depict the longitudinal comparison results of clustering accuracy and standard
mutual information value in each model, we can infer from these that the model that is suggested in
this study achieves a greater accuracy rate.

6. Conclusion

In this work, we examine how deep learning and self-supervised learning are used to text clus-
tering and conclude that both techniques are critical to enhancing text representation and clustering
outcomes. A more accurate and enhanced representation is supplied for the text clustering job to
better capture the syntactic and semantic information of the text. Deep learning models are able to
better interpret the semantic and contextual information of text, which enhances the text clustering
impact when compared to the standard approaches based on word frequency statistics. The approach
in this study may better use the internal structure and features of the data by doing text clustering
trials, which will increase the accuracy and efficiency of clustering.

Data Availability

The experimental data used to support the findings of this study are available from the correspond-
ing author upon request.
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