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Abstract: In this paper, we address computational questions surrounding the enumeration of non-
isomorphic André planes for any prime power order q. We are particularly focused on providing a
complete enumeration of all such planes for relatively small orders (up to 125), as well as developing
computationally efficient ways to count the number of isomorphism classes for other orders where
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1. Introduction

In their seminal paper, Bruck and Bose [1] proved that every finite translation plane can be ob-
tained from a construction that starts with a spread of an odd-dimensional projective space. Letting
that space be PG(2n + 1, q), a spread is a partition of the space into qn+1 + 1 pairwise disjoint n-
dimensional subspaces. Much of this work was anticipated in 1954, by André [2] who provided a
similar construction of finite translation planes using a vector space model that was later shown to be
equivalent to the projective space model developed by Bruck and Bose. Moreover, André provided a
robust construction of spreads of PG(2n + 1, q) for any integer n > 0 and prime power q > 2 which
yields (n+1)q−1 distinct, though possibly isomorphic, spreads, which comprised one of the first known
infinite families of non-Desarguesian translation planes.

In addition to the André planes, the early days of the study of finite projective planes yielded sev-
eral infinite families of translation planes, as well as a number of sporadic examples with particularly
interesting automorphisms. Primarily in the 1990s and into the 2000s, there was an explosion in
both construction techniques for new planes, as well as in computational results classifying the finite
translation planes of orders 16 (Dempwolff and Reifart [3]), 25 (Czerwinski and Oakden [4]), 27
(Dempwolff [5]) and 49 (Mathon and Royle [6]). Ironically, this mass of data seems to have provided
a disincentive to continued work. On the one hand, the plethora of new construction techniques gives
the impression that most translation planes are “known”, while the computational results suggest that
a complete classification of finite projective planes, let alone translation planes, is infeasible.

Indeed, the André planes provide an example of this problem in microcosm. As described by
Johnson, et al. [7], the André planes are all “known,” in the sense that for any order q it is straight-
forward to construct all André planes; there are no new André planes to discover. But with modern
computing power, it is now possible to construct and compute with models for all André planes of
order up to and including 125. Looking to the future, the next order for which André planes exist
is 169, and while it is possible to construct all 212 André spreads from a regular spread of PG(3, 13)
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currently, the computational power required to determine isomorphism between more than 4000 pro-
jective planes of order 169, or even the equivalent problem of sorting isomorphism between more than
4000 spreads of PG(3, 13), is certainly formidable. Our goal in this paper is to develop algorithms
using group actions with a greatly reduced degree to determine representatives for all isomorphism
classes of André planes, as well as more efficient algorithms that count isomorphism classes of André
planes non-constructively with Burnside’s lemma.

We believe that the computational enumeration of existing families of translation planes, to truly
measure the robustness of known construction techniques against the existing classification results,
represents a fruitful way forward in the theory of finite projective planes. In addition to the censuses
of translation planes cited above, Moorhouse [8] has created an online database which contains pro-
jective planes of order up to 49, including the planes from existing censuses, as well as a large number
of planes obtainable from known planes using derivation and dualization. Using this resource as a
reference, the author [9] has created all of the translation planes of order 25 from known construction
techniques and correlated them against the list of translation planes of order 25 determined by Czer-
winski and Oakden [4]. This analysis showed that there is a translation planes of order 25, designated
B8 by Czerwinski and Oakden, which is not part of any known infinite family of translation planes.
The author was able to provide some theoretical context around how B8 might arise, but it remains
an open question whether this plane is sporadic, or if it is part of an infinite family yet to be found;
regardless, it provides an interesting question for further research.

2. Regular Spreads

In this section, we provide a framework for addressing the André planes obtained from PG(2n +
1, q). Many of the results here are well known for the case n = 1, and for the higher-dimensional
cases many of these results were certainly known to Bruck [10], but were never stated and proved.
Regardless, there is value in clearly articulating the results here in a unified manner, so that we may
refer to them as needed in what follows.

Let n ≥ 1 be an integer and q > 2 a prime power. Define F = GF(q), K = GF(qn+1), and let
F∗ denote the set of non-zero elements of F, with K∗ defined analogously. Let V = K ⊕ K be a
(2n + 2)-dimensional vector space over F. This vector space V is a model for PG(2n + 1, q) using
homogeneous coordinates, such that (x, y) and ( f x, f y) define the same point for all f ∈ F∗.

A spread of PG(2n + 1, q) is a set of qn+1 + 1 pairwise disjoint n-dimensional subspaces which
partition the points of PG(2n + 1, q). A regulus R in PG(2n + 1, q) is a set of q + 1 pairwise disjoint
n-dimensional subspaces such that any line that meets three spaces in R meets all of them. Bruck
and Bose [1] show that any three pairwise disjoint n-dimensional subspaces lie in a unique regulus,
and define a regular spread to be one that contains the regulus generated by any three of its elements.
Regular spreads are significant in that for any q > 2, the Bruck and Bose construction of translation
planes yields a Desarguesian plane if and only if the spread used to construct the plane is regular.
From this definition, it is easy to see that any two regular spreads that meet in at least three subspaces
must meet in at least an entire regulus; Bruck and Bose show that a regulus and a single space disjoint
from all elements of the regulus uniquely determine a regular spread, which shows that q + 1 spaces
is the largest possible intersection between two distinct regular spreads.

Bruck and Bose give a specific coordinate model for a regular spread which will be very useful in
what follows. Define J(∞) = {(x, 0) : x ∈ K}, and for any k ∈ K, let J(k) = {(kx, x) : x ∈ K}. These
are all n-dimensional subspaces, and are pairwise disjoint, hence we have a spread S = {J(∞)}∪{J(k) :
k ∈ K}; Bruck and Bose prove that this spread is regular.

Let Aut(K/F) denote the group of field automorphisms of K with fixed field F, which necessarily
has order n + 1, and let σ be any element of Aut(K/F). It is clear by linearity of σ that the sets
Jσ(k) = {(kxσ, x) : x ∈ K} are also n-dimensional subspaces of PG(2n+1, q). André [2] noted that for
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any f ∈ F∗, the set of subspaces J f = {J(k) : N(k) = f }, where N is the norm function from K to F,
can be replaced by the set Jσf = {J

σ(k) : N(k) = f }, for any σ to create a new spread of PG(2n + 1, q)
that is not regular. Moreover, each J f can be replaced (or not) independently as f varies over F∗,
yielding (n + 1)q−1 different, though potentially isomorphic, spreads. These spreads are called André
spreads, and the translation planes that arise from them are called André planes. The sets J f , and any
set of spaces in S isomorphic to them, are called norm surfaces in S.

An important notion when dealing with André spreads is the concept of a linear set of norm
surfaces. Bruck has developed an abstract definition of linearity, but ultimately a set T of norm
surfaces in S is linear if there exists a collineation of PG(2n+ 1, q) which leaves S invariant and maps
T onto a set of norm surfaces J f . André spreads are exactly those that are obtained by replacing
norm surfaces from a linear set; generically a spread obtained from replacing an arbitrary set of norm
surfaces in a regular spread is called subregular. We will shortly recall some of Bruck’s results about
linearity which require the abstract definition to prove, but we only need the cited results in what
follows.

For the n = 1 case, Bruck [11] extensively developed an isomorphism between the regular spread
S of PG(3, q) and the Miquelian inversive plane M(q). For the higher-dimensional cases, Bruck [10]
generalized this connection to higher-dimensional circle geometries, keeping intact the isomorphism
between a regular spread of PG(2n + 1, q) and CG(n, q). The key takeaway from the circle geometry
connection is that it shows an isomorphism between the regular spread S of PG(2n + 1, q) and the
projective line PG(1, qn+1), coordinatized as K ∪ {∞}, where the spaces in S map to the points of
PG(1, qn+1), and the reguli in S map to order q sublines in PG(1, qn+1). Moreover, there is a homo-
morphism Ψ from the group of collineations of PG(2n + 1, q) leaving S invariant onto PΓL(2, qn+1);
this allows us to provide an explicit description of the group of collineations of PG(2n + 1, q) leaving
S invariant. Bruck [11] proved the following result for the n = 1 case, and Bruck [10] stated that the
corresponding result is true for all n; a detailed proof was provided by the author [12].

Proposition 1. Let S = {J(∞)} ∪ {J(k) : k ∈ K} be a regular spread in PG(2n + 1, q). Then the group
of collineations of PG(2n + 1, q) that leaves S invariant consists of the transformations{

χa,b,c,d,ρ : ρ ∈ Aut(K), a, b, c, d ∈ K, ad − bc , 0
}

acting via
(x, y)χa,b,c,d,ρ = (axρ + cyρ, bxρ + dyρ).

Moreover, the subgroup of this group that leaves each element of the spread S invariant is exactly the
set of transformations {

χk,0,0,k,1|k ∈ K∗
}
.

Reguli and norm surfaces are the same when n = 1, but in higher dimensions, the isomorphism
between the regular spread S of PG(2n + 1, q) and PG(1, qn+1) maps norm surfaces onto structures
in PG(1, qn+1) that Bruck calls covers. Bruck [10] shows that every cover satisfies an equation of the
form N(x − c) = f or N

(
x−a
x−b

)
= f , where a, b, c ∈ K, a , b and f ∈ F∗. For fixed a, b, or for fixed c,

the set of covers obtained by varying f over F∗ is a linear set of covers, which corresponds to a linear
set of norm surfaces of S. The two points not covered by these sets (∞, c in the first case, a, b in the
second) are called the carriers of the linear set.

Bruck has proven the following result about linear sets, which are collected here to illustrate an
important difference between the n = 1 and higher-dimensional cases:

Proposition 2. Let J be a norm surface in a regular spread S of PG(2n+ 1, q) with n > 1. Then J has
a unique pair of carriers, and lies in a unique linear set of norm surfaces. If n = 1, then the lines of
S off J are partitioned into pairs of carriers of J, and any norm surface (regulus) disjoint from J lies
together with J in a unique linear set.
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With this result in place, we can prove an important result about how two norm surfaces/covers
can intersect; the n = 1 case is an obvious corollary of the fact that norm surfaces are reguli, while
the author [12] proved the n = 2 case. This result feels like it should be known, but may have fallen
through the cracks based on its trivial reduction in the n = 1 case.

Proposition 3. Let N1 and N2 be distinct norm surfaces in a regular spread S of PG(2n + 1, q), each
consisting of qn+1−1

q−1 elements of the spread. Then N1 and N2 can intersect in at most 2qn−1
q−1 elements of

the spread.

Proof. For ease of notation, let µ = qn+1−1
q−1 and let ν = qn−1

q−1 . As discussed above, determining the
number of spread elements in which two norm surfaces in the regular spread S intersect is equivalent
to determining the size of the intersection of two covers C1 and C2 in PG(2, qn+1). Since all covers are
isomorphic, we may assume that C1 has equation N(x) = 1. We assume C2 has equation N(x − a) =
f N(x− b) for some a , b ∈ K, f ∈ F∗; the argument for the case where C2 has equation N(x− c) = f
is nearly identical and slightly easier. Suppose y ∈ C1 ∩C2. We know y ∈ K∗ and yµ = 1 since y ∈ C1,
and (y− a)µ = f (y− b)µ since y ∈ C2. Note that this latter equation has exactly µ solutions since C2 is
a cover, and thus is not identically zero.

Expand the second equation to yield:

(yqn
− aqn

)(y − a)ν = f (yqn
− bqn

)(y − b)ν.

Now multiply on both sides by yν, which is not identically zero, to obtain:

(yµ − aqn
yν)(y − a)ν = f (yµ − bqn

yν)(y − b)ν.

Since yµ = 1, we can simplify to obtain:

(1 − aqn
yν)(y − a)ν = f (1 − bqn

yν)(y − b)ν.

This equation yields a polynomial expression in y of degree at most 2ν satisfied by all elements of
C1 ∩ C2, and is not identically zero. Thus there are at most 2ν values for y satisfying this equation,
proving the result. □

A second key difference between the n = 1 and higher-dimensional cases is the number of potential
replacement sets for a norm surface. When sorting isomorphism classes, it becomes important to
understand what is happening with all potential replacements under collineations of PG(2n + 1, q).
To this end, recall that for any σ ∈ Aut(K/F) we have Jσ(k) = {(kxσ, x) : x ∈ K} is an n-dimensional
subspace, and our replacements for J f are the sets Jσf = {J

σ(k) : N(k) = f }. Define Sσ = {J(∞)} ∩
{Jσ(k) : k ∈ K}, and let λσ be the collineation defined via (x, y)λσ = (x, yσ). Clearly λσ leaves J(∞)
invariant and maps Jσ(k) onto J(k), hence each of the Sσ is a regular spread, and there is a collineation
of PG(2n + 1, q) that maps S to Sσ that has the net effect of replacing all of the spaces of the norm
surfaces J f in S with Jσf .

Our final general result describes the stabilizer groups associated with various collections of the
norm surfaces in J = {Jσf : σ ∈ Aut(K/F), f ∈ F∗}.

Theorem 1. In PG(2n + 1, q), where n ≥ 1 and q > 2 is a prime power, and (n, q) , (1, 3), let S be
the regular spread {J(∞)} ∪ {J(k) : k ∈ K} with linear set L = {J f : f ∈ F∗} ⊂ J . Then

1. The collineation group of PG(2n + 1, q) leaving the set L of norm surfaces invariant consists of
the collineations GL = {χa,0,0,d,µ : a, d ∈ K∗, ad , 0, µ ∈ Aut(K)} ∪ {χ0,b,c,0,µ : b, c ∈ K∗, bc ,
0, µ ∈ Aut(K)};

2. the permutation action of GL acting on the sets J f ∈ L is action-isomorphic to the group of
transformations Ξ = {ξ±α,τ : α ∈ F∗, τ ∈ Aut(F)} acting via (J f )ξ

±
α,τ = Jα f ±τ;
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3. the collineation group of PG(2n + 1, q) leaving the set J of norm surfaces invariant consists of
the collineations GJ = {χλσ : χ ∈ GL, σ ∈ Aut(K/F)}; and

4. the permutation action of GJ acting on the sets Jσ ∈ J is action-isomorphic to the group of
transformations Υ = {υ±α,τ,σ : α ∈ F∗, τ ∈ Aut(F), σ ∈ Aut(K/F)} acting via (Jρf )

υ±α,τ,σ = Jρ
±1σ−1

α f ±τ .

Proof. Suppose ϕ is a collineation of PG(2n+1, q) that maps L onto itself. Since ϕmaps q2−1 > q+1
spaces of S onto spaces of S, ϕ must leave S invariant. So by Proposition 1 ϕ = χa,b,c,d,µ for some
a, b, c, d ∈ K, ad − bc , 0 and µ ∈ Aut(K). Moreover, since ϕ leaves S invariant and L invariant,
it must leave {J(∞), J(0)} invariant, meaning ϕ must either leave both J(∞) and J(0) invariant, or
interchange them. In the former case, we must have b = c = 0, while in the latter we must have
a = d = 0, hence ϕ must be in the set of collineations GL.

Let χ = χa,0,0,d,µ ∈ GL. If (kx, x) ∈ J(k), then (kx, x)χ = (akµxµ, dxµ) ∈ J(akµ/d). Note that
N(a/d) = α for some α ∈ F∗, and there exists τ ∈ Aut(F) such that f µ = f τ for all f ∈ F. So if
N(k) = f , then we have N(akµ/d) = α f τ. As α and τ depend only on a, d, and µ, for all f ∈ F∗ we
must have (J f )χ = Jα f τ showing that χ leaves L invariant. The calculation for χ = χ0,b,c,0,µ is similar,
and these results together show that GL is the entire group of collineations of PG(2n + 1, q) leaving
L invariant. Moreover, these calculations show half of the claimed action isomorphism, namely that
every element of GL acts on L as some ξ±α,τ. To show that all such elements can be obtained, note
that χa,0,0,1,τ acts as ξ+α,τ for any a ∈ K∗ with N(a) = α, and χ0,b,1,0,τ acts as ξ−α,τ for any b ∈ K∗ with
N(b) = α.

Let H be the group of collineations of PG(2n+1, q) that leaveJ invariant, and let ϕ ∈ H. Suppose
first that n = 1. In this case, since q > 3, J contains at least three reguli lying in S and at least three
reguli lying in Sq. Thus ϕ must map at least two reguli R1 and R2 of S onto reguli of either S or Sq.
Since R1 and R2 are disjoint reguli, they contain 2q + 2 > q + 1 lines, forcing ϕ to map S onto either
itself or onto Sq; the analogous statement for Sq implies ϕ leaves the set of regular spreads {S,Sq}

invariant. If n > 1, the argument is similar, but slightly easier and works for q > 2. Since any norm
surface has more than q+ 1 spaces it lies in a unique regular spread, hence if ϕ maps Jρf to Jµf ′ , it must
map Sρ to Sµ; thus ϕ must leave the set of regular spreads {Sσ : σ ∈ Aut(K/F)} invariant.

Since the group of all collineations of PG(2n+1, q) leaving S invariant has order |GL|, the stabilizer
of S in H is certainly no bigger. We also know that the orbit of S under H has size at most n+1, hence
|H| is at most (n + 1)|GL|. Now, consider χλσ ∈ GJ , where χ ∈ GL and σ ∈ Aut(K/F), and first look
at the case where χ = χa,0,0,d,µ for a, d ∈ K∗ and µ ∈ Aut(K). Since d is non-zero, we can can write
N(a/dρ) = α for some α ∈ F∗. Looking at an arbitrary point of Jρ(k), we have

(kxρ, x)χλσ = (akµxρµ, dxµ)λσ

= (akµxρµ, dσxσµ)

=

(
akµ

dρ
(dσxσµ)ρσ

−1
, dσxσµ

)
.

This shows that χλσ maps every space Jρ(k) to Jρσ
−1

(akµ
dρ ). For all k with fixed norm N(k) = f , we have

N(akτ
dρ ) = α f µ; moreover, since µ is an automorphism of K, there exists an automorphism τ ∈ Aut(F)

such that f µ = f τ for all f ∈ F. Thus we find χλσ maps Jρf to Jρσ
−1

α f τ for some α ∈ F∗, τ ∈ Aut(F), and
thus leaves J invariant.

Now we address the case where χ = χ0,b,c,0,µ for some b, c ∈ K∗ and µ ∈ Aut(K). Here c is
non-zero, so we can write N(b/cρ

−1
) = α for some α ∈ F∗. Again we calculate

(kxρ, x)χλσ = (bxτ, ckτxρτ)λσ

= (bxτ, cσkστxρστ)

=

(
b

cρ−1kρ−1τ
(cσkστxρστ)ρ

−1σ−1
, cσkστxρστ

)
.
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Using calculations similar to the above, and again letting τ ∈ Aut(F) such that f τ = f µ for all f ∈ F,
we see that χλσ maps Jρf to Jρ

−1σ−1

α f −τ , and thus also leaves J invariant.
We have shown that GJ ⊆ H. To show equality, note that GJ ostensibly has (n + 1)|GL| elements,

but there could in principle be some collapsing wherein χ1λσ1 = χ2λσ2 . But if this occurs, we have
χ1 = χ2λσ1σ

−1
2

. Both χ1 and χ2 leaves S invariant, which forces λσ1σ
−1
2

to leave S invariant as well, but
this only happens if σ1 = σ2, in which case χ1 = χ2. Thus |GJ | = (n+1)|GL|, proving it is the entirety
of H.

The above calculations substantially show the action isomorphism of part 4 as well, since it shows
that every χλσ acts on J in the fashion of υ±α,τ,σ for some α ∈ F∗, τ ∈ Aut(F) and σ ∈ Aut(K/F). As
above, we note that χa,0,0,1,τλσ acts as υ+α,τ,σ for any a ∈ K∗ with N(a) = α, and χ0,b,1,0,τλσ acts as υ−α,τ,σ
for any b ∈ K∗ with N(b) = α. Hence there is an action isomorphism between GJ and Υ, completing
the proof. □

3. Two-Dimensional André Planes

Now that we have our basic machinery in place, we begin our enumeration with the n = 1 case,
two-dimensional André planes. Refreshing terminology, let S = {J(∞)} ∪ {J(k) : k ∈ K} be a regular
spread of PG(3, q), q > 2 a prime power, and let L = {J f : k ∈ F∗} be a linear set of reguli in S.
Letting I vary over all subsets of F∗, we can create every two-dimensional André plane of order q2

with the set of spreads
AI = {J(∞), J(0)} ∪

⋃
f∈I

Jq
f ∪

⋃
f∈F∗\I

J f .

We call the size of the set I the index of the André spread. An André plane of index either 0 or
q−1 is obviously regular. Albert [13] has shown that any plane obtained by switching a single regulus
in a regular spread is necessarily the Hall plane, thus any André plane of index either 1 or q − 2 is a
Hall plane. In what follows, we exclude these cases from consideration.

Since we are interested in sorting isomorphism classes, we may further restrict our attention to
André spreads of index at most q−1

2 . Under the collineation λq, AI is isomorphic to AF∗\I so every
equivalence class of isomorphic André planes contains at least one representative of index at most
q−1

2 .
These constraints show that the only André spreads of PG(3, 3) and PG(3, 4) are the regular spread

and the Hall spread. Thus we may restrict out attention to André spreads of PG(3, q) with q ≥ 5, and
of index 2 ≤ n ≤ q−1

2 .
The next two results are highly reminiscent of the work of Walker [14], [15]. In those papers,

Walker shows that the group of automorphisms that leaves a subregular spread derived from a regular
spread invariant almost always leaves the original regular spread invariant as well, with the exceptions
being André spreads with index either 1 or q−1

2 . Our problem is closely related, but not identical, and
we need to go into the details of the index q−1

2 case in order to sort isomorphisms, so we prove the
needed results directly. We begin with a straightforward lemma which describes how a regular spread
can meet an André spread.

Lemma 1. Let AI be an André spread, with index n satisfying 2 ≤ n ≤ q−1
2 in PG(3, q), q ≥ 5. The

regular spread S meets AI in 2+ (q−1−n)(q+1) > 2q+2 lines, Sq meets AI in 2+n(q+1) > 2q+2
lines, and no other regular spread meets AI in more than 2q + 2 lines.

Proof. The intersection sizes of AI with S and Sq are simple consequences of the construction of
AI, and the lower bounds on those sizes are a simple consequence of the bounds on n. Let T be a
regular spread distinct from S and Sq. We can write AI as the union of two partial spreads AI =
(S ∩ AI) ∪ (Sq ∩ AI). Two distinct regular spreads can meet in at most q + 1 lines, so T meets each
of the two components of this union in at most q + 1 lines, making the total size of the intersection at
most 2q + 2. □
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With this lemma in place, we can prove our key result to sort isomorphisms between two-
dimensional André planes.

Proposition 4. Let AI and AH be André spreads of PG(3, q) derived from the same regular spread
S, with indices between 2 and q−1

2 , inclusive. Then AI and AH are isomorphic if and only if:

1. there is a collineation of PG(2n+1, q) leaving S invariant that maps the set of reguli {J f : f ∈ I}
onto the set of reguli {J f : f ∈ H}; or

2. there is a collineation of PG(2n+1, q) leaving S invariant that maps the set of reguli {J f : f ∈ I}
onto the set of reguli {J f : f ∈ F∗ \ H}.

Proof. The reverse direction is relatively straightforward: clearly if there is an automorphism of S that
maps the set of reguli {J f : f ∈ I} onto the set of reguli {J f : f ∈ H}, it is an explicit isomorphism
from AI to AH . If there is an automorphism ψ of S that maps {J f : f ∈ I} to {J f : f ∈ F∗ \ H}, then
ψλq maps AI to AH , since λq interchanges J f and Jq

f for all f ∈ F∗, resulting in a spread derived from
S with exactly the reguli in {J f : f ∈ H} reversed, namely AH .

Now suppose AI and AH are isomorphic, with collineation ϕ mapping AI to AH . By Lemma 1,
each of AI and AH meets S and Sq in more than 2q+2 lines, and meet no other regular spreads in that
many lines. Hence ϕ must either leave S and Sq invariant, or must interchange them. The former case
forces AI and AH to have the same index, while the latter forces AI and AH to have indices summing
to q − 1. By hypothesis the indices of AI and AH are both at most q−1

2 , hence this case only occurs if
AI and AH both have index q−1

2 .
Suppose first the isomorphism ϕ leaves S invariant. Then ϕ maps AI ∩ S to AH ∩ S, and thus must

map the set of reguli in {J f : f ∈ I} onto a set of reguli contained in the union of lines of the reguli
in {J f : f ∈ H}. Since {J f : f ∈ H} has at most q−1

2 reguli, by the pigeonhole principle, the image
of each regulus in {J f : f ∈ I} under ϕ must meet some regulus in {J f : f ∈ H} in at least 3 lines,
forcing it to be identical to one of those reguli. Hence every regulus in {J f : f ∈ I} must map under
ϕ onto a regulus in {J f : f ∈ H}, and the fact that the indices of the two spreads are the same forces
ϕ to map the set of reguli {J f : f ∈ I} onto the set of reguli {J f : f ∈ H}.

If the isomorphism ϕ interchanges S and Sq, we know that the index of AI and AH is q−1
2 . Consider

the collineation ψ = λqϕ. For any f ∈ I, Jλq

f = Jq
f is a regulus in AI and also in Sq. Applying ϕ to

this regulus gives a regulus J, which lies in both AH = Aϕ

I
and S = (Sq)ϕ. Thus J must be a subset of

the union of the reguli {J f : f ∈ F∗ \ H}. But since the index of AH is q−1
2 , this union is of q−1

2 reguli,
and as before J must share at least 3 lines with one of the J f for f ∈ F∗ \ H , and thus must be equal
to that regulus. Therefore, ψ is a collineation of PG(2n+ 1, q) leaving S invariant that maps the set of
reguli {J f : f ∈ I} onto the set of reguli {J f : f ∈ F∗ \ H}, completing the proof. □

Suppose {J f : f ∈ I} and {J f : f ∈ H} are two sets of reguli with size between 2 and q−1
2

inclusive, in a linear set L of a regular spread S, and we wish to determine if they generate isomorphic
André spreads, and thus isomorphic André planes. From Bruck [11] L is the only linear set of reguli
containing {J f : f ∈ I}, and also the only linear set containing {J f : f ∈ H}. Moreover, since I and
H have less than q−1

2 elements, the complementary sets of reguli {J f : f ∈ F∗\I} and {J f : f ∈ F∗\H}
also have at least two elements, and thus are only contained in the linear set L. Thus any collineation
of PG(2n + 1, q) leaving S invariant which maps {J f : f ∈ I} to {J f : f ∈ H} or its complement in
L must leave L invariant. This allows us to apply Theorem 1, parts 1 and 2, from which we find that
the spreads AI and AH are isomorphic if and only if there exist α ∈ F∗ and τ ∈ Aut(F) such that
Iξ
±
α,τ = H , for some choice of sign, or in the case where |I| = q−1

2 , there exist α ∈ F∗ and τ ∈ Aut(F)
such that Iξ

±
α,τ = F∗ \ H , for some choice of sign.

For q = 5, this problem is tractable by hand, since the only case we have to deal with is that of
index 2 = q−1

2 . One possible set of size 2 is {J1, J2}. There are no nontrivial automorphisms of GF(5),
so we see this set maps to {J2, J4}, {J1, J3} and {J3, J4} under ξ+α,1 for α ∈ GF(5) \ {0}. The inversion
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q Number Representatives
5 2 {1, 2}, {1, 4}
7 6 {3, 4}, {4, 6}, {3, 5}, {3, 5, 6}, {1, 3, 5}, {1, 3, 6}
8 3 {ω3, ω5}, {ω2, ω3, ω5}, {ω2, ω4, ω6} (ω3 = ω + 1)
9 12 {1, 2}, {1, τ6}, {τ2, τ3} (τ2 = τ + 1)

{τ, τ5, τ7}, {τ, τ3, 2}, {1, τ3, 2}, {1, τ, τ2}

{1, τ2, 2, τ6}, {1, τ3, 2, τ7}, {1, τ, τ3, 2}, {τ, 2, τ6, τ7},

{τ3, τ5, τ6, τ7}

11 42 {2, 9}, {6, 8}, {2, 8}, {1, 6}, {4, 6},
{1, 7, 8}, {1, 2, 4}, {1, 3, 5}, {1, 3, 4}, {1, 6, 10}, {1, 2, 7},
{1, 4, 8}, {3, 8, 9}, {1, 3, 8, 10}, {2, 4, 7, 9}, {1, 2, 4, 8},
{1, 7, 8, 10}, {1, 6, 9, 10}, {3, 5, 7, 10}, {2, 3, 5, 10},
{3, 4, 5, 8}, {1, 2, 6, 9}, {2, 4, 5, 6}, {4, 5, 8, 9}, {1, 3, 5, 7},
{2, 6, 9, 10}, {6, 7, 8, 10}, {4, 7, 8, 10}, {1, 8, 9, 10},
{1, 3, 4, 5, 9}, {2, 3, 6, 7, 10}, {2, 3, 4, 5, 10}, {3, 5, 6, 8, 9},
{4, 5, 8, 9, 10}, {3, 4, 5, 7, 8}, {2, 3, 4, 9, 10}, {2, 3, 5, 6, 9},
{3, 4, 8, 9, 10}, {1, 2, 6, 8, 10}, {3, 5, 6, 9, 10},
{2, 4, 6, 7, 10}, {1, 2, 4, 8, 10}

Table 1. Enumeration of André Planes of Order q2 With Index at Least 2

map ξ−1,1 interchanges {J1, J2} with {J1, J3} and {J2, J4} with {J3, J4}, and the complement of each of
these sets is already represented, so these four sets form one orbit under ξ. It is easy to see that the
remaining two pairs, {J1, J4} and {J2, J3}, form a second orbit. Hence there are two André planes of
order 25 with index 2. This is validated by the enumeration of all translation planes of order 25 by
Czerwinski and Oakden [4], where 5 subregular spreads are found in PG(3, 5): the regular spread, a
Hall spread, a subregular spread from a non-linear triple, and two André planes, one of which is in
fact the regular nearfield plane of order 25. Using MAGMA [16], we have automated this calculation
for small q; the code implementing this enumeration is in Appendix A. For some small values of q, all
of the two-dimensional André planes, excepting the Desarguesian and Hall planes, can be obtained
from the sets of Js in Table 1.

This method produces representative sets of reguli for each André plane, but bogs down as q in-
creases, due to the need to create the actual subsets of reguli for each index; for example, enumeration
with q = 19 runs in less than a minute, but increasing to q = 23 starts increase run-time significantly.
If we are only interested in the number of distinct André planes with a given index, we can appeal to
Burnside’s lemma to count the number of orbits under the group Ξ, with the exception of the André
planes of index q−1

2 , where complementation is again a confounding factor. Let us consider this case
in more detail.

Let B be the set of all subsets of F∗ of size q−1
2 . Each element of Ξ induces an action on B

through its action on the individual elements of {J f : f ∈ F∗}. Though it does not act element-wise,
complementation is also a permutation on B, which we denote as γ, acting on B via bγ = b for all
b ∈ B. Hence we can perform the same Burnside counting in this case, but we have to use the group
Ξ∗ generated by the elements of Ξ and γ. This turns out not to be as taxing as one might fear, based
on the following result.

Proposition 5. Let F = GF(q), q > 2 a prime power, and let Ξ be the group of transformations ξ±α,τ
acting on F∗, with α ∈ F∗ and τ ∈ Aut(F). Consider the induced group action of Ξ on the set B of
subsets of F∗ of size q−1

2 , and let Ξ∗ be the group generated by the permutations in Ξ and γ, acting on
B. Then:

1. For all ξ ∈ Ξ, ξ and γ commute;
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q
Index

2 3 4 5 6 7 8 9 10 11 12 13
5 2
7 3 3
8 1 2
9 3 4 5

11 5 8 16 13
13 6 12 29 38 35
16 3 7 18 34 54 66
17 8 21 72 147 280 375 257
19 9 27 104 252 561 912 1282 765
23 11 40 195 621 1782 3936 7440 11410 14938 8359
25 8 30 143 487 1517 3741 7934 13897 20876 26390 14632
27 5 20 112 434 1532 4264 10145 20121 34291 49668 62220 33798

Table 2. Numbers of André Planes of Order q2, by Index

2. |Ξ∗| = 2|Ξ|;
3. ξγ fixes some b ∈ B if and only if all orbits of ξ, when acting on F∗, have even length; and
4. if all orbits of ξ, when acting on F∗, have even length, then ξγ fixes 2o(ξ) elements of B, where

o(ξ) is the number of orbits of ξ when acting on F∗.

Proof. The first two statements are clear, since the action of ξ on B preserves complementation,
namely if aξ = b then aξ = b, and γ has order 2 as a permutation. Suppose now that for some b ∈ B
we have bξγ = b. For each element f ∈ b, we have f ξ < b in the action of ξ on F∗. Since |b| = |b| = q−1

2 ,
this implies for all f ∈ b, the preimage of f under ξ must be in b, hence for all f ∈ b, we have f ξ ∈ b.
So if O is any orbit of ξ in its action on F∗, its elements must alternate being in b and not in b, forcing
each such orbit to have even length. Conversely, suppose every orbit of ξ ∈ Ξ in its action on F∗

has even length. Pick one element from each orbit of ξ, and let b be the union of the orbits of these
elements under ξ2. This set contains exactly half of the elements of F∗, and ξ maps each element of
b to an element not in b, hence ξγ fixes b. This also shows the fourth claim, since each orbit of ξ in
its action on F∗ splits into two parts, each of which can be picked independently of all other orbits, to
add into a set b fixed by ξγ. □

With this proposition in place, we have developed code in MAGMA to implement this Burnside
counting; this code can be seen in Appendix B. For some small values of q, we obtain the counts of
André planes with a given index in Table 2, but note that the algorithm scales much better than the
enumeration algorithm; for example, a run with q = 59 counts all non-isomorphic André planes in
less than a minute.

4. Higher-Dimensional André Planes

The most significant difference between the two-dimensional André planes and the higher-
dimensional case is the presence of multiple replacements for a norm surface, which in turn yields
additional regular spreads which can have a substantial intersection with an André spread. This also
makes the concept of index ambiguous, because just knowing that a norm surface is reversed is not
enough information to determine an André spread; we need to know which replacement is chosen.
To this end, we define an indicator function I : F∗ → Aut(K/F), from which we obtain the André
spread AI = {J(∞), J(0)}∪

⋃
f∈F∗ JI( f )

f . Note that there are exactly (n+1)q−1 such indicator functions,
and they define all of the possible André spreads.

Our first lemma is an analog of Lemma 1 for the higher-dimensional case.
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Lemma 2. Let AI be an André spread of PG(2n + 1, q), n > 1, q > 2, defined via indicator function
I. Then the only regular spreads that meet AI in at least q2 spaces are the regular spreads Sσ for
σ ∈ Aut(K/F) in the range of I. Moreover, a spread Sσ meets AI in either exactly two spaces, or
more than q2.

Proof. Let AI be as in the lemma statement, and let T be a regular spread distinct from the Sσ. Then
for each f ∈ F∗, T meets the set JI( f )

f ∪ {(J(0), J(∞)} ⊂ SI( f ) in at most q + 1 spaces, hence the
total number of spaces in T ∩ AI is at most (q + 1)(q − 1) = q2 − 1. For any field automorphism
τ ∈ Aut(K/F), if τ = I( f ) for some f ∈ F∗, then Sτ contains at least 2 + qn+1−1

q−1 > q2 spaces of AI;
otherwise Sτ meets AI in just J(∞) and J(0). □

We can now prove the key result we need to sort isomorphism classes of higher-dimensional André
planes. Unlike Proposition 4, this result has the advantage of providing a unified treatment of spreads
independent of the index; there is no special case for complementation since we are keeping track of
the replacement set for all norm surfaces in the linear set. The downside is that this result is not as
strong as Proposition 4, requiring more group-theoretic computation during enumeration. However, it
is a distinct improvement over having to work with groups acting on spreads of PG(2n+1, q) directly.

Proposition 6. Let AI and AH be non-regular André spreads of PG(2n+1, q), n > 1, q > 2, obtained
from the regular spread S with indicator functions I and H . Then any isomorphism ψ between AI
and AH must leave {J(∞), J(0)} invariant. Moreover, ψ maps the collection of sets of subspaces
J = {Jσf : σ ∈ Aut(K/F), f ∈ F∗} onto itself.

Proof. Suppose AI and AH are isomorphic, with isomorphism ψ a collineation in PG(2n + 1, q)
mapping AI onto AH . Since ψ is an isomorphism, it must map the set of regular spreads SI meeting
AI in more than q2 points to the set of regular spreads SH meeting AH in more than q2 points, hence
ψ must map the intersection of the SI onto the intersection of the SH . By Lemma 2, SI and SH are
both subsets of {Sσ : σ ∈ Aut(K/F)} and since AI and AH are not regular, SI and SH each contain at
least two spreads, implying the intersection is exactly {J(∞), J(0)}, which must be left invariant by ψ.

Suppose there exists σ ∈ Aut(K/F) such that (Sσ)ψ = Sσ; without loss of generality, we may
assume σ is the identity. Then ψ is a collineation of PG(2n + 1, q) that leaves S invariant, leaves the
set {J(∞), J(0)} invariant, and thus the linear set L = {J f : f ∈ F∗} invariant as well. By Theorem 1,
this implies ψ ∈ GL and thus ψ ∈ GJ , showing ψ leaves the set J invariant.

Suppose now there is no σ ∈ Aut(K/F) such that ψ leaves Sσ invariant. Since the set SI of regular
spreads meeting AI in more than q2 points has at least two members, there must be some spread in
SI that meets AI in at least one, but at most q−1

2 norm surfaces, plus {J(∞), J(0)}. Without loss of
generality, we may assume this spread is S. Since S ∈ SI, we know (S)ψ ∈ SH and thus (S)ψ = Sτ for
some τ ∈ Aut(K/F).

For each norm surface J = J f ⊂ AI ∩ S, Jψ is contained in the union of at most q−1
2 norm surfaces

Jτf ′ ⊂ AH ∩ Sτ; Jψ cannot intersect {J(∞), J(0)} as these two spaces are left invariant by ψ. But
by Lemma 3, Jψ must be identical with one of the Jτf ′ , for otherwise Jψ could only contain at most
q−1

2 × 2qn−1
q−1 < qn+1−1

q−1 spaces. By Proposition 2, a norm surface belongs to only one linear set of norm
surfaces in a regular spread, so this implies that ψ must map the set of norm surfaces {J f : f ∈ F∗} in
S onto the set of norm surfaces {Jτf : f ∈ F∗} in Sτ.

Recall the collineation λτ of PG(2n + 1, q) defined via (x, y)λτ = (x, yτ). Clearly λτ leaves each
of J(∞) and J(0) invariant, and maps Jτ(k) onto J(k) for all k ∈ K∗. Thus ψλτ leaves S invariant,
and leaves the set {J(∞), J(0)} invariant. Using the same trick as before with Theorem 1, this forces
ψλτ = χa,b,c,d,ρ with either b = c = 0 or with a = d = 0, and a similar calculation to the above shows
that ψ maps the collection of sets of subspaces J = {Jσf : σ ∈ Aut(K/F), f ∈ F∗} onto itself. □

In light of this proposition, we can use the group Υ of Theorem 1 to sort isomorphism between
André spreads. Letting I andH be indicator functions of two André spreads AI and AH , this propo-
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n q O # Representatives
2 3 27 1 {(1, 1), (2, 3)}
2 4 64 2 {(1, 1), (ω, 1), (ω2, 4)}, {(1, 1), (ω, 4), (ω2, 16)} (ω2 = w + 1)
2 5 125 6 {(1, 1), (2, 1), (3, 1), (4, 5)}, {(1, 1), (2, 1), (3, 1), (4, 25)}

{(1, 1), (2, 5), (3, 5), (4, 1)}, {(1, 1), (2, 5), (3, 1), (4, 5)}
{(1, 1), (2, 1), (3, 5), (4, 25)}, {(1, 1), (2, 1), (3, 25), (4, 5)}

3 3 81 2 {(1, 1), (2, 3)}, {(1, 1), (2, 9)}
3 4 256 3 {(1, 1), (ω, 1), (ω2, 4)}, (ω2 = w + 1)

{(1, 1), (ω, 1), (ω2, 16)}, {(1, 1), (ω, 4), (ω2, 16)}

Table 3. Enumeration of Higher-Dimensional André Planes for Small q. O is the Order of
the Plane, # Is the Number of Planes

sition shows that there exists an isomorphism between AI and AH if and only if there exists υ ∈ Υ
such that (JI( f )

f )υ = JH( f ′)
f ′ for some f ′ ∈ F∗. From a computational perspective, we can represent the

indicator functions as sets of ordered pairs {( f ,I( f )) : f ∈ F∗} and extending the action of υ naturally
to these ordered pairs, we see that AI and AH are isomorphic if and only if there exists υ ∈ Υ such
that {( f ,I( f )) : f ∈ F∗}υ = {( f ,H( f )) : f ∈ F∗}.

As before, this process is tractable for small cases by hand; let us consider the André planes of
order 27, whence n = 2 and q = 3. In this case, there are only 9 André spreads. Starting with
{(1, 1), (2, 1)}, which is just the regular spread S, we see this set is preserved under both multiplication
by −1 and inversion, so the only other spreads in its orbit are {(1, 3), (2, 3)} and {(1, 9), (2, 9)}, namely
S3 and S9. A non-Desarguesian André plane is represented by the set {(1, 1), (2, 3)}. Applying υ+1,1,3
twice shows that {(1, 3), (2, 9)} and {(1, 9), (2, 1)} represent isomorphic spreads, and applying υ+2,1,1
maps {(1, 1), (2, 3)} to {(2, 1), (1, 3)}. Thus all six of the non-regular André spreads are isomorphic,
and there is just one non-Desarguesian André plane of order 27.

Representing our sets {( f ,I( f )) : f ∈ F∗} as a sequence of field automorphisms by defining a con-
sistent ordering of the elements of F∗, we have implemented this sorting algorithm in MAGMA. Note
that Υ can be generated by four elements: υ+ω,1,1, υ−1,1,1, υ+1,p,1, and υ+1,1,q, where p is the characteristic
of F, and we use MAGMA’s group generation algorithms to create the entire group. Table 3 provides
indicator functions for all non-Desarguesian André planes for some small orders with given n and q.

For larger values of q, we can again count André plane non-constructively using Burnside’s lemma
and the group Υ of Theorem 1. The situation in higher dimensions is messier than that with n = 1, as
we need to break into several cases to count the number of André spreads fixed by each element of Υ.
The cause of the difficulty is the inversion map (x, y)υ = (y, x); when n = 1 this map preserves both
the spreads S and Sq, but for larger n this map may interchange some of the replacements for norm
surfaces, making the analysis more intricate.

Let us start with the easy case, namely υ = υ+α,τ,σ, and define υ̂ : F∗ → F∗ via f υ̂ = α f τ. If AI is
an André spread left invariant by υ, and Jρf ∈ AI, then from the definition of υ, we know

(Jρf )
υ = Jρσ

−1

α f τ = Jρσ
−1

f υ̂
.

For any a ∈ F∗, let ℓ be the length of its orbit under υ̂. This implies that (Jρa)υ
ℓ
= Jµa for some

automorphism µ ∈ Aut(K/F). Since υ leaves AI invariant and AI contains only one norm surface
associated with norm a, we must have µ = ρ. We see that µ = ρσ−ℓ, so µ = ρ if and only if ℓ is
divisible by the order of σ as a field automorphism.

Therefore υ fixes an André spread AI if and only if all of the orbit lengths of υ̂ are divisible by
the order of σ. If this does occur, then much as in the n = 1 case we can count the number of André
spreads fixed by υ. For one member a of each orbit under υ̂, we may select an arbitrary ρa ∈ Aut(K/F)
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q
n

2 3 4 5 6 7 8 9 10
3 1 2 2 3 3 4 4 5 5
4 2 3 4 6 7 9 11 13 15
5 6 15 23 40 57 86 114 157 200
7 31 112 300 729 1503 2902 5134 8651 13795
8 25 114 402 1160 2877 6350 12804 24012 42445

Table 4. Number of Non-Desarguesian André Planes Obtained From André Spreads of
PG(2n + 1, q)

in n + 1 ways; then the union of the orbits of Jρa
a under υ, for each a, form an André spread fixed by

υ. Hence υ fixes (n + 1)o(υ̂) André spreads AI, where o(υ̂) is the number of orbits of υ̂.
If υ = υ−α,τ,σ, the situation is slightly more complex. Defining υ̂ as above, we have

(Jρf )
υ = Jρ

−1σ−1

α f −τ = Jρ
−1σ−1

f υ̂

and
(Jρf )

υ2
= Jρ

f υ̂2 .

Let a ∈ F∗. If the orbit length of a under υ̂ is even, then just like before we can pick ρ ∈ Aut(K/F)
arbitrarily, and the orbit of Jρa under υ will form part of an André spread. But if the orbit length of a
under υ̂ is odd, we must have ρ = ρ−1σ−1, or ρ2 = σ−1, which is eminently feasible since Aut(K/F) is
cyclic of order n+ 1. If n is even, then for every σ ∈ Aut(K/F) there is a unique ρ such that ρ2 = σ−1,
so any André spread fixed by this υ must contain Jρf for all f in the orbit of a under υ̂. If n is odd,
then for half of the σ ∈ Aut(K/F), there is no ρ such that ρ2 = σ−1, and those υ fix no André spreads.
For the remaining half there are two options for ρ, giving two orbits of Jρa which can be in an André
spread fixed by υ.

Based on this analysis, we have developed code in MAGMA to implement this counting procedure;
this code appears as Appendix D. Table 4 shows the number of non-isomorphic André planes, not
including the Desarguesian plane, for some small values of n and q. Note that one cannot say for a
given n and q that every André plane derived from an André spread of PG(2n + 1, q) has dimension
n + 1 over a full kernel GF(q); indeed the regular spread belies this notion. We do not attempt to
sort isomorphism between André planes for different n here, except to comment that of the planes
specifically enumerated in Tables 1 and 3, the only isomorphism that occurs is in order 81 between
the plane represented by {1, τ2, 2, τ6} in Table 1 and the plane represented by {(1, 1), (2, 9)} in Table 3.
This was determined by analyzing the quasifields derived from the André spreads, and in fact, this
plane is a regular nearfield plane of order 81.

5. Conclusion

Almost 30 years ago, Czerwinski and Oakden [4] used a computer search to determine the com-
plete list of twenty-one translation planes of order 25. Given the plethora of construction techniques
for translation planes now known, it is a reasonable assumption that each of these planes belongs to a
known infinite family, but this turns out not to be the case. Upon initial investigation by the author [9],
the plane denoted B7 by Czerwinski and Oakden required an extension of a result of Baker, et al. [17]
to explicate, and their plane B8 still has not been placed in an infinite family as of this writing. More
than 25 years ago, Mathon and Royle [6] determined that there are 1347 translation planes of order
49. Almost certainly there are translation planes discovered in this search that can be analyzed to
create new infinite families. And if not, McKay and Royle [18] have determined that there are 2833
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two-dimensional translation planes (plus the Desarguesian plane) of order 64. A researcher wishing
to discover new infinite families of translation planes has data in abundance to analyze.

Yet our researcher finds themselves in an interesting dilemma, the “unknown known.” There are
translation planes that have been discovered through computer search, but we have no idea if they
belong to a known infinite family. While there are some characterization results for certain families
of planes, there exists no complete dichotomous key which allows one to start with a plane given as
an incidence structure and determine its provenance.

We believe that the best way forward to bridge the gap between our theoretical canon and the
paydirt that computer searches have provided is to actually develop computational models of planes,
family by family, and correlate them against the search data we have. This paper provides one step
in this direction. Based on the results here, we have been able to identify the translation planes of
order 49 and 64 (two-dimensional) that are André planes, with data given in Table 5, where the search
serial is the index in the appropriate reference of the plane in question. The more we build out this
table into a true database, the easier it will be to identify those promising trailheads for the next paths
forward in the theory of translation planes.

Order Representative Search Serial Aut Gp p-rank Notes
49 {3, 4} 1344 7,375,872 897
49 {4, 6} 1343 3,687,936 901
49 {3, 5} 1345 3,687,936 899
49 {3, 5, 6} 1339 22,127,616 905 Regular Nearfield
49 {1, 3, 5} 1324 7,375,872 917
49 {1, 3, 6} 1328 3,687,936 917
64 {ω3, ω5} 17 9,289,728 994
64 {ω2, ω3, ω5} 10 13,934,592 1042
64 {ω2, ω4, ω6} 16 9,289,728 1042

Table 5. The Two-Dimensional André Planes of Orders 49 and 64
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Appendix A: Two-Dimensional André Enumeration Code
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/*Set up basic structures to implement group*/

q:=7; F<w>:=GF(q); F0:=SetToSequence(Set(F) diff {0}); Sq:=Sym(q-1);

/*Create multiplication and inverse permutations. Group creation

will ensure we get all.*/

phi:=[Sq![Position(F0,a*F0[i]):i in {1..#F0}]:a in F0] cat

[Sq![Position(F0,1/F0[i]):i in {1..#F0}]];

/*Make sure to add field automorphism if q is not prime.*/

if not(IsPrime(q)) then

Append(˜phi,Sq![Position(F0,F0[i]ˆ(Divisors(q)[2])):i in {1..#F0}]);

end if;

G:=sub<Sq|phi>;

/*Iterate through subregular indices, calculating orbits*/

for i in {2..Floor((q-1)/2)} do

S:=Subsets({1..#F0},i);

GS:=GSet(G,S);

O:=Orbits(G,GS);

reps:=[];

/*This iteration coalesces complements. Really only needed when
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2i+1 = q, but causes no harm otherwise*/

for j in {1..#O} do

if forall{x:x in reps|{1..#F0} diff x notin O[j]} then

Append(˜reps,Rep(O[j]));

end if;

end for;

print i,[{F0[j]:j in x}:x in reps];

end for;

Appendix B: Two-Dimensional André Counting Code
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q:=11; F<w>:=GF(q); F0:=SetToSequence(Set(F) diff {0}); Sq:=Sym(q-1);

/*Create multiplication and inverse permutations. Group creation

will ensure we get all.*/

phi:=[Sq![Position(F0,a*F0[i]):i in {1..#F0}]:a in F0] cat

[Sq![Position(F0,1/F0[i]):i in {1..#F0}]];

/*Make sure to add field automorphism if q is not prime.*/

if not(IsPrime(q)) then

Append(˜phi,Sq![Position(F0,F0[i]ˆ(Divisors(q)[2])):i in {1..#F0}]);

end if;

G:=sub<Sq|phi>;

/*Determine cycle structure of each group element, and store it as

a sequence of number of cycles of each length. There will be repeats,

so we will store by frequency.*/

gcyc:=[]; gfrq:=[];

for x in G do

x1:=CycleStructure(x);

gtmp:=[0:j in {1..q-1}];

for k in {1..#x1} do

gtmp[x1[k][1]]:=x1[k][2];

end for;

if Position(gcyc,gtmp) eq 0 then

Append(˜gcyc,gtmp);

Append(˜gfrq,1);

else

gfrq[Position(gcyc,gtmp)]+:=1;

end if;

end for;

for i in {2..Floor((q-1)/2)} do

Gfix:=0;

p1:=Partitions(i);

for p in p1 do

prt:=[#{k:k in {1..#p}|p[k] eq j}:j in {1..i}];

/* Convert partitions of i into sequences counting the number
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of occurrences of each integer */

for j in {1..#gcyc} do

coll:=1;

for k in {1..#prt} do

if prt[k] ne 0 then coll*:=Binomial(gcyc[j][k],prt[k]);

end if;

end for;

Gfix+:=gfrq[j]*coll;

end for;

end for;

/*Extra group elements in maximal case*/

if (2*i+1 eq q) then

for j in {1..#gcyc} do

if forall{m:m in {1..#gcyc[j]}|IsEven(m) or

gcyc[j][m] eq 0} then

Gfix+:=2ˆ(&+(gcyc[j]))*gfrq[j];

end if;

end for;

print i,Gfix/(2*Order(G));

else

print i,Gfix/Order(G);

end if;

end for;

Appendix C: Higher-Dimensional André Enumeration Code
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n:=3; q:=5; F:=GF(q);

/*Find a primitive element omega*/

omega:=Rep({f:f in F|f ne 0 and Order(f) eq q-1});

Fstar:=[omegaˆi:i in {0..q-2}];

/*Generate all sequences of automorphisms of length q-1*/

So:=[[qˆi]:i in {0..n}];

for j in {1..q-2} do

S:=[s cat [qˆi]:s in So,i in {0..n}];

So:=S;

end for;

G:=Sym(#S);

p1:=[]; p2:=[]; p3:=[]; p4:([]);

/*upsilon+{omega,1,1)...the ordering on Fstar implements this by

rotation of the sequence.*/

for i in {1..#S} do Append(˜p1,Position(S,Rotate(S[i],1))); end for;

g1:=G!p1;

/*upsilon-{1,1,1}*/

iseq:=[Position(Fstar,Fstar[i]ˆ(-1)):i in {1..#Fstar}];
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for i in {1..#S} do

Append(˜p2,Position(S,[(qˆ(n+1) div S[i][iseq[j]])

mod (qˆ(n+1)-1):j in {1..q-1}]));

end for;

g2:=G!p2;

/*upsilon+{1,p,1}*/

if not(IsPrime(q)) then

p:=Characteristic(F);

iseq:=[Position(Fstar,Fstar[i]ˆp):i in {1..#Fstar}];

for i in {1..#S} do

Append(˜p3,Position(S,[S[i][iseq[j]]:j in {1..q-1}]));

end for;

g3:=G!p3;

else g3:=G!1; end if;

/*upsilon+{1,1,q}*/

for i in {1..#S} do

Append(˜p4,Position(S,[S[i][j]*q mod (qˆ(n+1)-1):j in {1..q-1}]));

end for;

g4:=G!p4;

H:=sub<G|g1,g2,g3,g4>;

O:=Orbits(H); #O;

Appendix D: Higher-Dimensional André Counting Code
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F<w>:=GF(q); Fstar:=SetToSequence(Set(F) diff {0}); Sq:=Sym(q-1);

Gfix:=0;

for alpha in Fstar do

for tau in Prune(Divisors(q)) do /*Prune removes q*/

/* Do the plus version first*/

phi:=Sq![Position(Fstar,alpha*Fstar[i]ˆtau):i in {1..#Fstar}];

x:=CycleStructure(phi);

for o in Divisors(n+1) do /*Use cyclic structure of Aut(K/F)*/

Sfix:=1;

for i in {1..#x} do

if (x[i][1] mod o) eq 0 then

Sfix*:=(n+1)ˆx[i][2];

else

Sfix:=0;

break;

end if;

end for;

Gfix+:=Sfix*EulerPhi(o); /*phi(o) elements of order o*/

end for;
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/*Now the minuses*/

phi:=Sq![Position(Fstar,alpha/(Fstar[i]ˆtau)):i in {1..#Fstar}];

x:=CycleStructure(phi);

for o in Divisors(n+1) do

Sfix:=1;

for i in {1..#x} do

if IsEven(x[i][1]) then

Sfix*:=(n+1)ˆx[i][2];

else

if IsEven(n) then

Sfix*:=1;

else

if IsEven((n+1) div o) then

Sfix*:=2ˆx[i][2];

else

Sfix:=0;

break;

end if;

end if;

end if;

end for;

Gfix+:=Sfix*EulerPhi(o); /*phi(o) elements of order o*/

end for;

end for;

end for;

print Gfix/(2*(q-1)*#(Prune(Divisors(q)))*(n+1))-1;
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