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Abstract: A ranking on a graph G is a function f : V(G) → {1, 2, . . . , k} with the following re-
striction: if f (u) = f (v) for any u, v ∈ V(G), then on every uv path in G, there exists a vertex w
with f (w) > f (u). The optimality of a ranking is conventionally measured in terms of the l∞ norm
of the sequence of labels produced by the ranking. In [1] we compared this conventional notion of
optimality with the lp norm of the sequence of labels in the ranking for any p ∈ [0,∞), showing that
for any non-negative integer c and any non-negative real number p, we can find a graph such that the
sets of lp-optimal and l∞-optimal rankings are disjoint. In this paper we identify some graphs whose
set of lp-optimal rankings and set of l∞-optimal rankings overlap. In particular, we establish that for
paths and cycles, if p > 0 then lp optimality implies l∞ optimality but not the other way around, while
for any complete multipartite graph, lp optimality and l∞ optimality are equivalent.

Keywords: Ranking, lp norm, l∞ norm, lp-optimal ranking, Max optimal ranking.

1. Introduction

A k-ranking (or simply “ranking”) on a graph G is defined to be a function f : V(G)→ {1, 2, . . . , k}
with the following restriction: if f (u) = f (v) for any u, v ∈ V(G), then on every uv path in G, there
exists a vertex w with f (w) > f (u). This vertex labeling problem has generated great interest because
of its applications to Cholesky factorization of matrices in parallel [2–4], VLSI layout [5, 6] and
scheduling steps in manufacturing systems [7, 8].

The focus of much of the literature on rankings has been on minimizing k. That is, given a graph
G, the goal is to determine the minimum number of labels required to produce a valid ranking on G.
The minimum number of labels required to produce a ranking on a graph G is called the rank number
of G, and is denoted χr(G). Note that on a graph G, a ranking with χr(G) labels is a ranking with
smallest l∞ or max norm.

However, in [9], Jamison and Narayan compare the rank number of G with the lowest possible
sum, or l1 norm, of all rankings on G. In particular, they show that for paths and cycles, l1-optimal
rankings are also max optimal.

The results in [9] give rise to the question of how changing the value of p affects lp optimality of
a ranking. While most commonly known applications of lp norms with finite p use p ∈ {1, 2}, some
applications have used finite p with p < {1, 2}. Some examples include machine learning [10, 11],
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compressed sensing [12], image deconvolution [13], and two-dimensional phase unwrapping [14].
Specific to k-rankings on graphs, a graph may have distinct lp-optimal rankings for two different
values of p, even if both values of p satisfy 1 < p < ∞. For example, Figures 1–2 display a graph
whose sets of l2- and l3-optimal rankings are disjoint.

In [1] we showed that for any p ≥ 0 and any non-negative integer c, we can construct a graph with
c cycles such that the sets of lp-optimal and l∞-optimal rankings are disjoint. In this paper, we show
that there are families of graphs including paths, cycles, and complete multipartite graphs such any
lp-optimal ranking is also l∞ optimal for any p with 0 ≤ p < ∞.

We will use the notion of minimality of a ranking throughout the paper.

Definition 1. A ranking is minimal if decreasing any label to a smaller label violates the definition of
a ranking.

The concept of a reduction, defined by Ghoshal, Laskar and Pillone will also be used throughout.

Definition 2. [15] For a graph G and a set S ⊆ V = V(G), the reduction of G with respect to S ,
denoted G♭

S , is the subgraph of G induced by V − S , with an additional edge uv ∈ E(G♭
S ) for each

u, v ∈ V − S if and only if there exists a uv path in G with all internal vertices belonging to S .

For a ranking f on a graph G, define S i( f ) by S i( f ) = {v ∈ G | f (v) = i} . In general, a reduction
can be applied with respect to any set S ⊆ V(G). However, for the purposes of our paper, we primarily
consider the case where S = S 1( f ) for some ranking f on G. When the set S is understood, we denote
G♭

S by G♭.
Because for our purposes the reduction often depends on the ranking we consider, we also define

a new ranking associated with G♭ as follows. Let G be a graph, and f a ranking on G. For any
subgraph H of G, we define a ranking fH by setting fH(v) = f (v) for all v ∈ V(H). If H = G♭

S 1( f ), set
fH(v) = f (v) − 1 for all v ∈ V(H). Note that fH is a ranking on H and is called a reduction ranking.

We can define a similar labeling if S , S 1( f ) by setting fH(v) = f (v) for all v ∈ V(H) where H
is the reduction. However, the resulting labeling is not guaranteed to be a ranking. In this case we

call the labeling a reduction labeling. An expansion of G is a graph G♯ such that
(
G♯
)♭

S
= G for some

S ⊆ V(G♯).
Finally, we note the following result from [15].

Lemma 1. [15] If f is a minimal ranking on G, then the reduction ranking fG♭
S 1( f )

is a minimal ranking

on G♭
S 1( f ).

1.1. Optimality of Rankings

For a graph G with ranking f , and 1 ≤ p < ∞, the lp norm of f is given by the lp norm of the
labels of f :

∥ f ∥p =

 ∑
v∈V(G)

[
f (v)
]p

1/p

. (1)

If p = 1, this describes the norm considered in [9], and p = 2 corresponds to the standard Euclidean
norm. The standard existing norm in the literature on graph rankings is the supremum or max, or l∞
norm:

∥ f ∥∞ = max
v∈V(G)

f (v).

For 0 < p < 1, || · ||p is defined as in (1), but fails to be a norm. The case p = 0 is considered separately
in Section 5.

We refer to a ranking f on G that achieves || f ||∞ = χr(G) as a max optimal ranking. Given a graph
G, a ranking f and non-negative real number p, we say that f is lp optimal if

∥ f ∥p = min
{
∥g∥p | g is a ranking on G

}
.
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Figure 1. An l3-Optimal Ranking, f

Figure 2. An l2-Optimal Ranking, g

We define an analog of the rank number to lp optimality.

Definition 3. For a graph G and non-negative real number p, the lp-rank number of G, χp
r (G) is ∥ f ∥p

where f is an lp-optimal ranking on G.

1.2. General Results about lp Optimality

For any non-negative real number p, if f is not minimal then we can reduce one of the labels to
produce a ranking f̃ with || f̃ ||p < || f ||p.

Observation 1. For p ∈ (0,∞), if f is an lp-optimal ranking on a graph G, then f is minimal.

Note that observation 1 does not hold if p = 0 or p = ∞.

Proposition 1. Let G be a graph, and let H be any subgraph of G. Then for any non-negative real
number p, χp

r (H) ≤ χp
r (G).

Proof. Suppose g is an lp-optimal ranking on G. Then gH is a ranking and

(
χp

r (H)
)p
≤ ||gH ||

p
p =
∑
v∈H

g(v)p ≤
∑
v∈G

g(v)p = ||g||pp =
(
χp

r (G)
)p .

□

Lemma 2. Let f be any lp-optimal ranking on a graph G. Also, let S be a non-empty subset of S 1( f )
and let G♭ = G♭

S
. Then χp

r (G♭) < χp
r (G).

Proof. Note that fG♭ is a ranking on G♭ because the only vertices removed have label 1. By the
definition of a reduction ranking, || fG♭ ||p < || f ||p. Hence, χp

r (G♭) < χp
r (G). □

We note here that a graph may have different lp-optimal rankings depending on the value of p,
even when p is restricted to 1 < p < ∞, as illustrated by the example shown in Figures 1–2. Figure 1
shows a ranking f that is l3 optimal but not l2 optimal, while Figure 2 shows a ranking g of the same
graph that is l2 optimal but not l3 optimal. Since f (v) = g(v) for all v ∈ V except for the vertex of
degree 3 and vertices u and w with g(u) = 7 and g(w) = 8, we can compute that ∥g∥33 − ∥ f ∥

3
3 = 81 > 0,

but ∥ f ∥22 − ∥g∥
2
2 = 7 > 0.
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Figure 3. The Standard Ranking on P7

1.3. Organization of This Paper

In Sections 2 and 3, we show any lp-optimal ranking on a path or cycle where p > 0 is also max
optimal, but that the converse does not hold. In Section 4 we show that on a complete multipartite
graph a ranking is lp optimal if and only if it is max optimal. Throughout Sections 2 – 4 we assume
0 < p < ∞ unless otherwise stated. Finally, in Section 5, we show that if p = 0, then lp optimality
does not imply max optimality in paths and cycles, but that the result for complete multipartite graphs
holds with the added assumption of minimality. We conclude with some open questions in Section 6.

2. Paths

Let Pn denote a path on n vertices, v1, v2, . . . , vn. We can construct a ranking f for Pn in a greedy
fashion by starting with v1, and defining f (vi) to be the lowest label possible without violating the
definition of ranking, producing the standard ranking of a path as shown in Figure 3.

Bodlaender et al. [2] showed that χr(Pn) =
⌊
log2 n

⌋
+ 1 and that the standard ranking f is a

max optimal ranking on Pn. Note that the standard ranking f on Pn can also be defined by letting
f (vi) = r + 1 where r is the highest power of 2 that divides i.

In this section, we show that any lp-optimal ranking on Pn is also a max optimal ranking. Through-
out the section, given a ranking f on G = Pn, we use the notation f ♭ to refer to the reduction ranking
on G♭

S where S = S 1( f ). Similarly, given a ranking f on a path P⌊n/2⌋, we use the notation f ♯ to refer
to the expansion ranking on Pn formed by adding 1 to all existing labels, inserting a vertex labeled 1
between each consecutive pair of vertices in P⌊n/2⌋ and to the front of the path, and, if n is odd, adding
one more vertex labeled 1 to the end of the path.

Observation 2. Suppose f is an lp-optimal ranking on Pn, and g an lp-optimal ranking on Pn+1. Then
|| f ||p < ||g||p.

Lemma 3. If f is an lp-optimal ranking on Pn, then |S 1( f )| = ⌈n/2⌉.

Proof. Since f is a ranking, if uv ∈ E(G), then f (u) , f (v). Therefore, |S 1( f )| ≤ ⌈n/2⌉. For the other
direction, suppose g is a ranking on Pn with |S 1(g)| < ⌈n/2⌉. Let h be an lp-optimal ranking on P⌊n/2⌋.
Then, applying Observation 2 to the second step,

||g||pp = 1p |S 1(g)| +
∑

v<S 1(g)

(
g♭(v) + 1

)p
> |S 1(g)| + (⌈n/2⌉ − |S 1(g)|) 2p +

∑
v∈V(P⌊n/2⌋)

(h(v) + 1)p

> ⌈n/2⌉ +
∑

v∈V(P⌊n/2⌋)

(h(v) + 1)p =
∥∥∥h♯∥∥∥p

p

Therefore g is not lp optimal since h♯ is a ranking on Pn. Hence, if f is an lp-optimal ranking,
|S 1( f )| = ⌈n/2⌉. □

Lemma 4. A ranking f on Pn is lp optimal if and only if f ♭ is an lp-optimal ranking on P⌊n/2⌋.

Proof. Let f be an lp-optimal ranking on Pn. We know that || f ||pp = ⌈n/2⌉ +
∑

v<S 1( f )

(
f ♭(v) + 1

)p
by

Lemma 3. If f ♭ is not an lp-optimal ranking on P⌊n/2⌋, then there exists an lp-optimal ranking g on
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P⌊n/2⌋, and an expansion g♯ such that

||g♯||pp = ⌈n/2⌉ +
∑

v∈V(P⌊n/2⌋)

(g(v) + 1)p

< ⌈n/2⌉ +
∑

v<S 1( f )

(
f ♭(v) + 1

)p
= || f ||pp,

contradicting the optimality of f . Hence, f ♭ is an lp-optimal ranking on P⌊n/2⌋.
Conversely, suppose that f ♭ is an lp-optimal ranking on P⌊n/2⌋. Then by construction, f is a ranking

on Pn with |S 1( f )| = ⌈n/2⌉. If f is not lp optimal, then there exists an lp-optimal ranking g on Pn. By
Lemma 3, |S 1(g)| = ⌈n/2⌉. But then the reduction ranking g♭ on P⌊n/2⌋ has ||g♭||p < || f ♭||p, contradicting
the optimality of f ♭. □

From Lemma 4, we get the following corollary.

Corollary 1. Let f be an lp-optimal ranking on Pn. Then for any j with 2 ≤ j ≤ χp
r (Pn),

∣∣∣S j( f )
∣∣∣ = n −

∑ j−1
i=1 |S i( f )|
2

 .
Lemma 5. A ranking g is a standard ranking on P⌊n/2⌋ if and only if g♯ is a standard ranking on Pn.

Proof. The ranking g is a standard ranking on P⌊n/2⌋ if and only if for each i, 1 ≤ i ≤ ⌊n/2⌋, g(vi) = r+1
where 2r is the largest power of 2 that divides i if and only if (1) g♯(v2i) = r+2 where 2r+1 is the highest
power of 2 that divides 2i, and (2) g♯(v2i−1) = 1 for any i. This is true if and only if g♯(v j) = r̃+1 where
2r̃ is the highest power of 2 that divides j for each j, 1 ≤ j ≤ n. Specifically, for even j, r̃ = r + 1 and
for odd j, r̃ = 0. □

Observation 3. Suppose f and g are rankings on a graph G, such that for any positive integer i,
|S i( f )| = |S i(g)|. Then for any positive integer i, |S i( fG♭

S 1( f )
)| = |S i(gG♭

S 1(g)
)|. The expansions of f and g

that label all new vertices with label 1 also have the same number of vertices of each label.

Given a path Pn, let S j;n denote the set of vertices with label j under the standard ranking on Pn.

Lemma 6. A ranking f on Pn is lp optimal if and only if |S j( f )| = |S j;n| for each j ≥ 1.

Proof. For n = 1, 2 or 3, we can see that the lp-optimal rankings are precisely the standard rankings
on Pn. Suppose that for any n up to l − 1, a ranking f on Pn is lp optimal if and only if |S j( f )| = |S j;n|

for each j ≥ 1.
Using Lemmas 3 and 4, a ranking f on Pl is lp optimal if and only if S 1( f ) = ⌈l/2⌉ and f ♭ is lp

optimal. Using the inductive hypothesis, f ♭ is lp optimal if and only if |S i( f ♭)| = |Si;⌊l/2⌋| for each i ≥ 1.
For i ≥ 1, note that by definition |S i( f ♭)| = |S i+1( f )|, and |Si;⌊l/2⌋| = |Si+1;l| by Lemma 5. Therefore f ♭

is lp optimal if and only if |S j( f )| = |S j;l| for each j ≥ 2.
Thus, f is lp optimal if and only if |S j( f )| = |S j;l| for each j ≥ 1. □

Theorem 4. Any lp-optimal ranking on Pn is a max optimal ranking.

Proof. This result is immediate from Lemma 6 and the fact that the standard ranking on Pn is max
optimal. □

Figure 4 illustrates that the converse of Theorem 4 does not hold, which we now state formally.

Proposition 2. A minimal max optimal ranking on Pn is not necessarily lp optimal.
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Figure 4. Two Max Optimal Rankings on P5, but only the Ranking on the Left is lp Optimal

3. Cycles

In [16], Bruoth and Horňák showed the following.

Theorem 5. [16] χr(Cn) = ⌊log2(n − 1)⌋ + 2.

The standard ranking f on the cycle Cn is as follows. Starting with any vertex, label the first n− 1
vertices v1, v2, . . . , vn−1 greedily in a clockwise direction. Thus, the first n − 1 vertices are labeled as
the standard ranking on Pn−1. Then the final vertex vn is labeled f (vn) = χr(Pn−1)+1. It is well known
that the standard ranking f on a cycle Cn is a max optimal ranking.

Throughout this section, given a ranking f on G = Cn, we use f ♭ to denote the reduction ranking
on G♭

S where S = S 1( f ). Given a ranking g on C⌈n/2⌉, we use g♯ to denote the expansion ranking on
Cn obtained as follows: add 1 to all labels, then insert ⌊n/2⌋ vertices labeled 1, one between each
consecutive pair of vertices in C⌈n/2⌉. If n is odd, there will be one pair of consecutive vertices in C⌈n/2⌉
that do not receive a new vertex between them. For consistency, we omit the new vertex just before
the vertex with highest label in C⌈n/2⌉.

Using similar arguments to the proof of Lemma 3, and applying Lemma 2, we get the following
lemma.

Lemma 7. If f is an lp-optimal ranking on Cn, then |S 1( f )| = ⌊ n
2⌋.

Lemma 8. A ranking f on Cn is lp optimal if and only if f ♭ is an lp-optimal ranking on C⌈n/2⌉.

Proof. The proof follows from applying Lemma 7 to arguments similar to those in the proof of Lemma
4. □

Corollary 2. If f is an lp-optimal ranking on Cn, then for any j with 1 < j ≤ χp
r (Cn),

∣∣∣S j( f )
∣∣∣ = n −∑ j−1

i=1 |S i( f )|
2

 .
Proof. This follows from Lemmas 7 and 8. □

Lemma 9. A ranking g on C⌈n/2⌉ is a standard ranking if and only if g♯ is a standard ranking on Cn.

Proof. For v1 through vn−1, the lemma holds by noting that the standard ranking on a cycle is defined
to be the same as the standard ranking on a path for the first n − 1 vertices, and Lemma 5.

If g♯ is a standard ranking on Cn, then g♯(vn) = χr(Pn−1) + 1 = ⌊log2(n − 1)⌋ + 2. Then by
definition of a reduction ranking, g(v⌈n/2⌉) = χr(Pn−1) =

⌊
log2(n − 1)

⌋
+ 1 =

⌊
log2(⌈n/2⌉ − 1)

⌋
+

2 = χr(P⌈n/2⌉−1) + 1, the standard label. Conversely, if g is a standard ranking, then g(v⌈n/2⌉) =
χr(P⌈n/2⌉−1) + 1 =

⌊
log2(⌈n/2⌉ − 1)

⌋
+ 2 =

⌊
log2(n − 1)

⌋
+ 1 = χr(Pn−1). Then by definition of an

expansion, g♯(vn) = χr(Pn−1) + 1, the standard label, completing the proof. □

Lemma 10. A ranking f on Cn is lp optimal if and only if the number of v ∈ V with f (v) = j is the
same as the number of vertices in the standard ranking on Cn with label j.

Proof. The proof follows by applying Lemma 9 and Observation 3 to similar arguments to those in
the proof of Lemma 6. □
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Figure 5. f is lp optimal and max optimal.

Figure 6. g is max optimal but not lp optimal.

Theorem 6. Any lp-optimal ranking on Cn is also max optimal.

Proof. This is a result of Lemma 10 and the observation that the standard ranking on the cycle is a
max optimal ranking. □

The converse of Theorem 6 does not hold, as we demonstrate with the following proposition.

Proposition 3. A max optimal ranking on Cn is not necessarily lp optimal.

Proof. Figures 5 and 6 show max optimal rankings f and g on C6, but only f is lp optimal. □

4. Graphs for which Max Optimality Implies lp Optimality

We have shown that for paths and cycles, lp optimality implies max optimality, but that max op-
timality does not necessarily imply lp optimality. We now show that for any complete multipartite
graph Km1,m2,...,mr with partite sets of order m1 ≥ m2 ≥ · · · ≥ mr, the set of lp-optimal rankings and the
set of max optimal rankings are the same.

Lemma 11. If f is an lp-optimal ranking on Km1,m2,...,mr , then under f every vertex in one of the largest
partite sets is labeled 1, and all other vertices are labeled using distinct labels.

Proof. Suppose f is lp optimal. Then by observation 1, f is minimal and thus by [15] f must label
each vertex in one of the partite sets W the label 1, and every other vertex using a distinct label. If W
is not the largest partite set, then a ranking g can be obtained by labeling every vertex in one of the
largest partite sets 1, and every other vertex using distinct labels. Now, ||g||p < || f ||p, which implies
that f is not lp optimal, a contradiction. □

Lemma 12. Let f be a minimal ranking on Km1,m2,...,mr such that under f every vertex in some largest
partite set is labeled 1, and other vertices are labeled using distinct labels. Then f is lp optimal.

Proof. Suppose f is a minimal ranking such that every vertex in one of the largest partite sets is
labeled 1 under f , and other vertices are labeled using distinct labels. Suppose g is an lp optimal
ranking. Then, by Lemma 11, g labels each vertex in one of the largest partite sets 1 and other
vertices using distinct labels. This means || f ||p = ||g||p, and thus f is lp optimal. □

Theorem 7. A ranking on a complete multipartite graph is max optimal if and only if it is lp optimal.
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Figure 7. A Max Optimal and lp-Optimal Ranking on K4,3,2

Proof. By [15, Theorem 8], f is a minimal ranking if and only if some partite set W has f (w) = 1 for
all w ∈ W, and all v ∈ V\W have unique labels from 2 up to |V | − |W | + 1. The minimal ranking f is a
max optimal ranking if and only if the partite set W has |W | = m1. Then by Lemmas 11 and 12, f is
max optimal if and only if f is lp optimal. □

By noting the a complete graph is a complete multipartite graph Km1,m2,...mr with m1 = m2 = · · ·mr =

1, we get the following immediate corollary.

Corollary 3. A ranking f on the complete graph Kn is max optimal if and only if it is lp optimal.

5. The Special Case of p = 0

Given a sequence of numbers, the l0 “norm” is defined as the number of non-zero terms in the
sequence. For a graph G with ranking f ,

|| f ||0 = |{v ∈ V(G) | f (v) > 0}| .

The quotation marks indicate that the map fails to satisfy the requirement of homogeneity. Depending
on the application [17–20] it is referred to as the zero, counting or Hamming “norm.”

In this section, we use labels 0 through k − 1 instead of 1 through k, because starting with 1 leads
to || f ||0 = |V(G)| for every ranking f on G. We do this on the standard rankings on paths and cycles
as well, subtracting 1 from each label in the standard ranking. For reductions and expansions, we
remove or add vertices with label 0 instead of 1.

Lemma 13. If f is an l0-optimal ranking on Pn, then |S 0( f )| = ⌈n/2⌉.

Proof. For any ranking f on a path Pn, ∥ f ∥0 = n − |S 0( f )|. Thus, maximizing the cardinality of S 0( f )
results in an l0-optimal ranking. Since |S 0( f )| ≤ ⌈n/2⌉ for any ranking f , and the standard ranking g
starting with label 0 has |S 0(g)| = ⌈n/2⌉, the result follows. □

Corollary 4. χ0
r (Pn) = ⌊n/2⌋.

The arank number of a graph G, denoted ψr(G), is given by ψr(G) = max{|| f ||∞} over any minimal
ranking f on G.

Lemma 14. [21] Let n = 3 or n ≥ 5. Then ψr(Pn) > χr(Pn).

The following theorem shows that neither Theorem 4 nor its converse applies if p = 0.

Theorem 8. There exist minimal max optimal rankings on paths that are not l0 optimal. If n = 6, 7 or
n ≥ 10, then there exists a minimal l0-optimal ranking on Pn that is not max optimal.

Proof. For the first statement, Figure 9 demonstrates a minimal max optimal ranking that is not l0

optimal. For the second statement, if n = 6 or 7, then we have ⌊n/2⌋ = 3; otherwise we have
⌊n/2⌋ ≥ 5. In either case, by Lemma 14 we can find a minimal ranking on P⌊n/2⌋ that is not max
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Figure 8. A Minimal l0-Optimal Ranking that is not Max Optimal

Figure 9. A Minimal Max Optimal Ranking that is not l0 Optimal

optimal. Choose one such ranking f . Then the ranking f ♯ is a minimal ranking of Pn: if f ♯(v) > 0,
then we know it cannot be lowered to a label greater than 0 by minimality of f ; it cannot be lowered
to 0 because every vertex not labeled 0 is adjacent to a vertex labeled 0. Also, f ♯ is not a max optimal
ranking, but is l0 optimal by Corollary 4 since || f ||0 = n − |S 0| = ⌊n/2⌋. □

Lemma 15. If f is an l0-optimal ranking on Cn, then |S 0( f )| = ⌊ n
2⌋.

Corollary 5. χ0
r (Cn) = ⌈n/2⌉.

Neither Theorem 6 nor its converse applies to the case p = 0, as shown by the following theorem.

Theorem 9. There exist cycles with minimal max optimal rankings that are not l0 optimal. If
ψr(C⌈n/2⌉) > χr(C⌈n/2⌉), then Cn has a minimal ranking f that is l0 optimal but not max optimal.

Proof. For the first statement, note that subtracting 1 from each of the labels in Figure 6 results in a
max optimal ranking that is not l0 optimal. For the second statement, suppose ψr(C⌈n/2⌉) > χr(C⌈n/2⌉).
Let f be a minimal ranking on C⌈n/2⌉ that is not max optimal. Then f ♯ is a minimal l0-optimal ranking
of Cn, but is not max optimal. □

Figure 10 shows a minimal l0-optimal ranking on C14 that is not max optimal. Figure 11 shows the
standard ranking on C14, which is max optimal.

Finally, we show that unlike paths and cycles, complete multipartite graphs have the same property
with regard to l0 optimality as with lp optimality, as long as we require minimality of the l0-optimal
ranking.

Proposition 4. A ranking f on a complete multipartite graph is max optimal if and only if it is minimal
and l0 optimal.

Proof. Let Km1,m2,...mn be a complete multipartite graph with partite sets of order m1 ≥ m2 ≥ · · · ≥ mn.
By [15], and subtracting 1 from all labels, f is a max optimal ranking if and only if a partite set W
with |W | = m1 has all vertices labeled 0, and all v ∈ V\W have unique labels from 1 up to |V | − |W |.

Figure 10. An l0-Optimal Ranking
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Figure 11. A Max Optimal Ranking

Let g be a minimal l0-optimal ranking on Km1,m2,...mn . Since g is minimal, some partite set W has all
vertices labeled 0, and all v ∈ V\W have unique labels from 1 up to |V | − |W |. Then ||g||0 = |V | − |W |.
To minimize |V | − |W |, we must have |W | = m1, and then ∥g∥0 = |V | − m1. □

6. Conclusion and Open Problems

For paths and cycles, we have shown that lp optimality of a ranking implies max optimality for all
p > 0. For p = 0, we have shown that this does not hold. We have also shown that max optimality
does not imply lp optimality for these graphs. For complete multipartite graphs, however, we showed
that the set of lp-optimal rankings is the same as the set of max optimal rankings, including in the case
p = 0 if we restrict l0-optimal rankings to be minimal.

In [1], we constructed graphs — including trees — whose lp-optimal rankings and max optimal
rankings are disjoint. The construction included a cut vertex whose removal resulted in a graph with
three components. One question to investigate is whether any graph that has lp-optimal rankings
and max optimal rankings disjoint must have a cut vertex. Another potential problem is to consider
the analog of an arank number ψr(G) of a graph G under a norm different from the max norm. For
example, on a graph G, among all minimal rankings f , what is the largest possible l1 norm, or in other
words, what is max f

∑|V(G)|
i=1 f (v)? Finally, can we characterize graphs that have lp optimality and max

optimality equivalent, as with the complete multipartite graph?
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