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Abstract: A node in the n-dimensional hypercube Q, is called an odd node (resp. an even node) if
the sum of all digits of the node is odd (resp. even). Let FF C E(Q,) and let L be a linear forest in
0, — F such that |[E(L)| + |F| < n—2 for n > 2. Let x be an odd node and y an even node in Q, such
that none of the paths in L has x or y as internal node or both of them as end nodes. In this note, we
prove that there is a Hamiltonian path between x and y passing through L in Q, — F'. The upper bound
n—2on |E(L)| + |F| is sharp.
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1. Introduction

We mostly follow [1] for graph-theoretical terminology and notation, and follow [2] for some
similar graph-theoretical operations not defined here. Denote by N, the set {0,1,---,n — 1} for a
positive integer n.

Given a bipartite graph G, a linear forest in G is a subgraph each component of which is a path.
Let F be an subset of E(G) and let L be a linear forest in G — F such that |E(L)| + |F| < k for some
non-negative integer k. For any two nodes x, y in different partite sets of G, {x, y} and L are said to be
compatible if none of the paths in L has x or y as internal node or both of them as end nodes. Denote
by n[x, y] a path between x and y. The graph G is said to be k-fault-tolerant-prescribed hamiltonian
laceable if G—F admits a hamiltonian path 7[x, y] passing through L under the condition that {x, y} and
L are compatible [3]. Particularly, G is said to be k-fault-tolerant-hamiltonian laceable if E(L) = 0
[4], and k-prescribed-hamiltonian laceable if F = (), and hamiltonian laceable if E(L) = F = 0 [5].

The n-dimensional hypercube is one of the most attractive interconnection networks for multipro-
cessor systems and it is bipartite, hamiltonian, n-regular, node-transitive, edge-transitive and recur-
sive [6,7]. Many real multiprocessors have taken hypercubes as underlying interconnection networks.
The problem of embedding hamiltonian paths and cycles with faulty edges and/or prescribed edges
in hypercubes has drawn considerable attentions (see, for example, [4,8—18] and references therein).

In [4], Tsai et al. investigated fault-tolerant hamiltonian laceability of hypercubes. One of their
important results can be restated as follows:

Theorem 1 (See Lemma 3 in Tsai et al. [4]). Given n > 2, Q, is (n — 2)-fault-tolerant hamiltonian
laceable but not (n — 1)-fault-tolerant hamiltonian laceable.
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In [18], Wang and Chen studied the problem of embedding fault-free hamiltonian cycles passing
through a linear forest in hypercubes with or without faulty edges and they obtained the following
generalized result.

Theorem 2 (See Theorem A in Wang and Chen [18]). Given n > 3, let F C E(Q,) and let L be a
linear forest in Q,,— F such that |[E(L)| > 1 and |F|+|E(L)| £ n—1. Then Q, — F admits a hamiltonian
cycle passing through L.

In [14], Dvordk and Gregor investigated the problem of embedding hamiltonian paths passing
through prescribed linear forests in hypercubes. One of their main results can be restated as follows:

Theorem 3 (See Theorem 10 in Dvorak and Gregor [14]). The hypercube Q, is (2n — 4)-prescribed
hamiltonian laceable if n = 2 or n > 5, and (2n — 5)-prescribed hamiltonian laceable if n € {3, 4}.

In this note, we will generalize Theorems 1 and 2, and prove that Q, with n > 2 is (n — 2)-fault-
tolerant-prescribed hamiltonian laceable but not (n— 1)-fault-tolerant-prescribed hamiltonian laceable.

2. Preliminaries

The n-dimensional hypercube Q, is a simple graph consists of 2" nodes, each of which is an n-bit
binary string with the form 6¢0; . ..d,-1. Two nodes are adjacent if and only if they differ in exactly
one bit. An edge (u,v) € E(Q,) is called an edge in dimension i if u and v differ in the i’ bit, where
i € N,. Anodein Q, is called an odd node (resp. even node) if the sum of all digits of the node is
odd (resp. even). Let X and Y be the set of all odd nodes and all even nodes in Q,,, respectively. Then
(X, Y) is a bipartition of Q,. Fixn > 2. Let F C E(Q,) and let L be a linear forest in Q,, — F'. There
are n different ways to decompose Q, into two disjoint copies, Q[0] and Q[1], of Q,_; by deleting all
the edges in dimension i of Q, for an arbitrary i € N,,, where each node of Q[i] has j in the i bit for
J € N,. For any j € N,, abbreviated V(Q[j]) as V;, and denote by L; and F'; the restrictions of L and
F in Q[ j], respectively. For an arbitrary node u € V;, there is exactly one neighbour of u in Q[1 — j],
and we denote it by u!~/.

The following two lemmas will be used in the proof of our main result in Section 3.

Lemma 1. Given j € N,, let P be a hamiltonian path passing through L; in Q[jl. If E(Lj))UE(L,_;) =
E(L), E(Lj-;) # 0 and 21 —|E(L)| - |[E(Lj-1)| > 0O, then there exists an edge (u,v) € E(P) \ E(L))
such that {u'~/,v'~} and L,_; are compatible.

Proof of Lemma 1. There are |[E(P) \ E(L;)| = 21— 1 —|E(L ;)| edge candidates in total. Note that
each component of a linear forest is a path. Let (u,v) € E(P) \ E(L;). Then it fails the lemma only if
(i). u'~/ or v!~/ is an internal node of L,_;, or

(if). '~/ and v'~/ are the two end nodes of some component of L;_ j

Let y be an internal node of L,_j, if any. Then it makes at most one candidate in E(P) \ E(L;) fail
if y/ is an end node of P, and at most two candidates fail otherwise (see, for example, in Figure 1,
an internal node y of the path (x,y, z), a component of L;_;, makes (s,y/) and (¢,y’) fail if (x/,2/) €
E(P) \ E(L;)). Note that each component of L,_; is a path. Let x[x,z] be a component of L,_; of
length at least 1. Then such a pair {x, z} makes no candidate in E(P) \ E(L;) fail if x/ is not adjacent
to z/ in P, and makes at most one candidate (x/, z/) fail otherwise (see, for example, in Figure 1, the
pair {x, z} of the end nodes of a component of L;_; makes (x/, z’) fail if (x/,z/) € E(P) \ E(L))).

Note that E(L;_;) # 0. Let m be the number of components of length at least 1 in L;_;, and let
Py, P,, ..., P, be the m components. Then m > 1 and the number of internal nodes of L,_; is
i (((E(P)| = 1) = |E(Li-j)| — m. Thus, the total number of edge candidates that fail the lemma
does not exceed m + 2(|E(L-j)| — m) = 2|E(L,_;)| — m. Since |[E(P) \ E(L;)| — Q|E(L,-j)| —m) =
2" =1 = [E(L)| = 2lE(Li_p)l +m = 2" = 1 = |E(L)| = |[E(Li_p)| + m = 2" = |[E(L)| - |[E(L,_1)| > 0,
the lemma follows. a
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Figure 1. Illustration of an Example in the Proof of Lemma 1

Lemma 2. Given j € N», let x € V;N X,y € Vi_jNY be two nodes such that they are incident with at
most one edge of L; and L,_;, respectively. If2=2 — (E(L)| + |E(L-j)|) > O, then there exists a node
u € V;NY such that {x,u} and L; are compatible, and \{y, u'=’} and L,_; are compatible.

Proof of Lemma 2. There are |V, N Y| node candidates in total. Let u € VyN Y. Then it fails the lemma
only if

(i). u is an internal node of L;, or

(ii). u'~/ is an internal node of L;_;, or

(iii). x and u are the two end nodes of some component of L;, or

(iv). y and u'~/ are the two end nodes of some component of L;_;.

If E(L;) = 0, then there is no u € V, N Y such that (i) or (iii) hold. If E(L;) # 0, then the number
of internal nodes of L; does not exceed |E(L;)| — 1 and the number of such u that (iii) holds does
not exceed 1. Therefore, the total number of such a node u that (i) or (iii) hold does not exceed
|E(L;)|. Similarly, the total number of such a node u that (ii) or (iv) hold does not exceed |E(L;_;)|.
Therefore, the number of such a node u that fails the lemma does not exceed |E(L;)| + |E(L;-;)|. Since
Vo N Y| = (E(L)|+ |E(Li-))|) = 22 (IE(L)| + |[E(Li-))]) > 0, the lemma follows. ]

3. Main Result

Theorem 4. Let n > 2. The hypercube Q, is (n — 2)-fault-tolerant-prescribed hamiltonian laceable
but not (n — 1)-fault-tolerant-prescribed hamiltonian laceable.

Proof of Theorem 4. By Theorem 1, Q, with n > 2 is not (n — 1)-fault-tolerant hamiltonian laceable,
and so it is not (n — 1)-fault-tolerant-prescribed hamiltonian laceable. It remains to prove that Q, is
(n — 2)-fault-tolerant hamiltonian laceable for n > 2. Let F C E(Q,) and let L be a linear forest in
O, — F such that [E(L)| + |F| < n—2. Let x € X and y € Y such that {x, y} and L are compatible. In
the following, it is enough to prove that O, — F admits a hamiltonian path 7[x, y] passing through L,
and it suffices to consider the case that |E(L)| + |F| = n — 2.

We will prove the above statement by induction on n. It is trivial for the base case n = 2. For
n =3, |E(L)| + |F| < 1, Theorems 1 and 3 imply that the statement holds. In the remainder, assume
that the statement holds for Q,_; and prove that it also holds for Q,, where n > 4. By Theorems 1 and
3, the statement holds for E(L) = 0 or F = 0, respectively. It remains to show that it also holds for
E(L) # 0 and F # Q. Since |E(L)| + |F| = n — 2 < n, there is a dimension, say dimension 0, such that
there is no edge of E(L) U F in this dimension. Let Q[0], Q[1] be a decomposition of Q, by deleting
all the edges in dimension 0. Without loss of generality, assume that |E(Ly)| + |Fo| > |E(Ly)| + |F4|.
There are three cases to be considered.

Case l. xe Vyandy € V.

Suppose first that |[E(Ly)| + |Fo| =n—2. Then Ly = L, Fy = F and E(L;) = F, = 0. Let f € F.
Then |E(Ly) U Fy \ {f}| = n — 3. By the induction hypothesis, Q[0] — F \ {f} has a hamiltonian path
n[x,y] passing through Ly. Let (u,v) = f if f lies on n[x,y], and let (&, v) be an arbitrary edge in
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Figure 2. Illustrations of Cases 1-2 of the Proof of Theorem 4

E(n[x,y]) \ E(Ly) otherwise. Clearly, ' and v! lie in different partite sets of Q[1], and so Q[1] has a
hamiltonian path 7[u', v'].

Suppose now that |E(Ly)| + |Fy| < n— 3. By the induction hypothesis, Q[0] — F,, has a hamiltonian
path n[x, y] passing through L,. Note that |F| > 1 and |E(L,)| < |E(L)| < |E(L)| + |F| = n — 2. Then
21 —|E(L)| - |E(Ly)| > 2""!' - 2(n—2) > 0, and so Lemma 1 implies that there exists an edge (u, v) €
E(n[x,y])\ E(Ly) such that {u',v'} and L, are compatible. Since |E(L;)| +|F;| < |E(Ly)|+|Fo| < n-3,
by the induction hypothesis, Q[1] — F; has a hamiltonian path 7[u', v'] passing through L.

For all the possible scenarios above, 7[x,y] U wr[u!, v'] + {(u, u'), (v,v")} — (u,v) is a hamiltonian
path of O, — F between x and y passing through L as illustrated in Figure 2 (a).

Case2. xe Viyandy € V.

Case 2.1. |E(Ly)| + |Fo| = n - 2.

In this case, |Fo| = |F| > 1, 1 < |[E(Ly)| = |[E(L)] £ n—-3, and E(L;) = F, = (. Theorem
2 implies that Q[0] — F has a hamiltonian cycle C, passing through Ly. Since |E(Cy) \ E(Ly)| =
|E(Co)| — |[E(Ly)| = 2! — (n — 3) > 1, there exists an edge (u,v) € E(C) \ E(Ly) such that {u',v'} #
{x,y}. Thus, {x,y} and the path (u!,v') are compatible. Combing this with |[{(u',v))}| =1 < n -3
(n > 4), by Theorem 3, Q[1] — F; has a hamiltonian path n[x,y] passing through (u',v'). Thus,
CoUn[x,y]+{(u,u"), v,v")} = {(u, v), (u',v")} is a hamiltonian path of Q, — F between x and y passing
through L as illustrated in Figure 2 (b).

Case 2.2. |E(Ly)| + |Fol < n-3.

Note that |E(Ly)| + |F1| < |E(Ly)| + |Fo| < n — 3. By the induction hypothesis, Q[1] — F has a
hamiltonian path 7[x, y] passing through L;. Since 2"~! —|E(L)| - |E(Lo)| > 2"'-2(n-2) > 0, Lemma
1 implies that there exists an edge (u,v) € E(x[x,y]) \ E(L;) such that {x°,°} and L, are compatible.
Since |E(Ly)| + |Fo| < n — 3, by the induction hypothesis, Q[0] — F, has a hamiltonian path 7[u°,1°]
passing through L. Thus, 7[u°,v°] U n[x, y] + {(u°, u), "*, v)} — (4, v) is a hamiltonian path of Q, — F
between x and y passing through L as illustrated in Figure 2 (c).

Case 3. xe Vyandye Vi,orye Vyand x € V.

Without loss of generality, assume that x € Vyand y € V.

Case 3.1. |[E(Ly)| + |[Fo| =n - 2.

In this case, E(L;) = F; = 0. Theorem 2 implies that Q[0] — F, has a hamiltonian cycle C
passing through L. Since {x, y} and L are compatible, x is not an internal node in L, and so there is a
neighbour u of x on Cy such that (x,u) ¢ E(Ly). Recall that x is an odd node and y is an even node.
Then u is an even node and u' is an odd node. Thus, u' and y are in different partite sets of Q[1], and
so there is a hamiltonian path nr[u!, y] in Q[1]. Therefore, CoUn[u', y]+ (u, u')— (x, ) is a hamiltonian
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Figure 3. Illustrations of Case 3 of the Proof of Theorem 4

path of O, — F between x and y passing through L as illustrated in Figure 3 (a).

Case 3.2. |E(Ly)| + |Fo| < n - 3.

Since 2"°% — (|[E(Lo)| + |[E(Ly)|) = 2"°% — |E(L)| > 2”2 — (n — 3) > 0, Lemma 2 implies that there
exists a node u € Vy N Y such that {x,u} and L, are compatible and {y,u'} and L, are compatible.
Since |E(Ly)| + |F1| < |E(Ly)| + |Fo| < n— 3, by the induction hypothesis, Q[0] — F;, has a hamiltonian
path 7[x, u] passing through Ly, and Q[1] — F has a hamiltonian path n[y, u'] passing through L.
Thus, 7[x, u] Unly, u'] + (u, u') is a hamiltonian path of Q, — F between x and y passing through L as
illustrated in Figure 3 (b). O

4. Conclusion

In this note, we investigated the fault-tolerant prescribed hamiltonian laceability of hypercubes
and proved that the hypercube Q, with n > 2 is (n — 2)-fault-tolerant-prescribed hamiltonian laceable
but not (n — 1)-fault-tolerant-prescribed hamiltonian laceable. That is to say, given an arbitrary set
F c E(Q,) and a linear forest L in Q, with n > 2 such that |F| + |E(L)| < n — 2, for two nodes x and
y of different partite sets in Q,,, Q, — F has a hamiltonian path between x and y passing through L if
{u,v} and L are compatible. Since Q, is n-regular, the upper bound n — 2 on |E(L)| + |F| cannot be
improved. The main result in this note generalized some known results.

Acknowledgments

We would thank the anonymous reviewers for their useful suggestions and comments that im-
proved the quality of this paper.

References

1. Bondy, J.A. and Murty, U.S.R., 2008. Graph theory, volume 244 of Grad. Texts in Math. Springer,
New York, 7, pp.79-80.

2. Yang, Y., Li,J. and Wang, S., 2019. Embedding fault-free hamiltonian paths with prescribed linear
forests into faulty ternary n-cubes. Theoretical Computer Science, 767, pp.1-15.

3. Yang, Y. and Zhang, L., 2019. Fault-tolerant-prescribed hamiltonian laceability of balanced hy-
percubes. Information Processing Letters, 145, pp.11-15.

4. Tsai, C.H., Tan, J.J., Liang, T. and Hsu, L.H., 2002. Fault-tolerant hamiltonian laceability of
hypercubes. Information Processing Letters, 83(6), pp.301-306.

5. Simmons, G. J., 1978. Almost all n-dimensional rectangular lattices are Hamilton laceable, Con-
gressus Numerantium 21, pp.103-108.

6. Guo, L., Qin, C. and Xu, L., 2020. Subgraph fault tolerance of distance optimally edge connected
hypercubes and folded hypercubes. Journal of Parallel and Distributed Computing, 138, pp.190-
198.

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 120, 393-398



Yuxing Yang, Ningning Song and Ziyue Zhao 398

7. Saad, Y. and Schultz, M.H., 1988. Topological properties of hypercubes. IEEE Transactions on
Computers, 37(7), pp.867-872.

8. Caha, R. and Koubek, V., 2006. Hamiltonian cycles and paths with a prescribed set of edges in
hypercubes and dense sets. Journal of Graph Theory, 51(2), pp.137-169.

9. Chan, M.Y. and Lee, S.J., 1991. On the existence of Hamiltonian circuits in faulty hypercubes.
SIAM Journal on Discrete Mathematics, 4(4), pp.511-527.

10. Chen, X.B., 2007. Cycles passing through prescribed edges in a hypercube with some faulty
edges. Information Processing Letters, 104(6), pp.211-215.

11. Chen, X.B., 2009. On path bipancyclicity of hypercubes. Information Processing Letters, 109(12),
pp-594-598.

12. Chen, X.B., 2009. Hamiltonian paths and cycles passing through a prescribed path in hypercubes.
Information Processing Letters, 110(2), pp.77-82.

13. Dvorék, T., 2005. Hamiltonian cycles with prescribed edges in hypercubes. SIAM Journal on
Discrete Mathematics, 19(1), pp.135-144.

14. Dvoték, T. and Gregor, P., 2007. Hamiltonian paths with prescribed edges in hypercubes. Discrete
Mathematics, 307(16), pp.1982-1998.

15. Lai, C.J., 2009. A note on path bipancyclicity of hypercubes. Information Processing Letters,
109(19), pp.1129-1130.

16. Li, T.K., Tsai, C.H., Tan, J.J. and Hsu, L.H., 2003. Bipanconnectivity and edge-fault-tolerant
bipancyclicity of hypercubes. Information Processing Letters, 87(2), pp.107-110.

17. Tsai, C.H. and Jiang, S.Y., 2007. Path bipancyclicity of hypercubes. Information Processing Let-
ters, 101(3), pp.93-97.

18. Wang, W.Q. and Chen, X.B., 2008. A fault-free Hamiltonian cycle passing through prescribed
edges in a hypercube with faulty edges. Information Processing Letters, 107(6), pp.205-210.

®

BY

©2024 the Author(s), licensee Combinatorial Press.
This is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 120, 393-398


http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main Result
	Conclusion

