Journal of Combinatorial Mathematics and Combinatorial Computing, 120: 393–398 [DOI:10.61091](http://dx.doi.org/10.61091/jcmcc120-036)/jcmcc120-036 http://[www.combinatorialpress.com](http://www.combinatorialpress.com/jcmcc)/jcmcc Received 2 August 2019, Accepted 30 December 2020, Published 30 June 2024

Article

Hamiltonian Laceability of Hypercubes with Prescribed Linear Forest and/or Faulty Edges

Yuxing Yang $^{1,\ast},$ Ningning Song $^{1},$ and Ziyue Zhao 1

- ¹ School of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan 453007, PR China
- * Correspondence: yxyangcn@163.com

Abstract: A node in the *n*-dimensional hypercube Q_n is called an odd node (resp. an even node) if the sum of all digits of the node is odd (resp. even). Let $F \subset E(Q_n)$ and let *L* be a linear forest in *Q*^{*n*} − *F* such that $|E(L)| + |F| \le n - 2$ for $n \ge 2$. Let *x* be an odd node and *y* an even node in *Q_n* such that none of the paths in *L* has *x* or *y* as internal node or both of them as end nodes. In this note, we prove that there is a Hamiltonian path between *x* and *y* passing through *L* in *Qⁿ* − *F*. The upper bound $n-2$ on $|E(L)| + |F|$ is sharp.

Keywords: Hypercube, Bounds, Hamiltonian path

1. Introduction

We mostly follow [\[1\]](#page-4-0) for graph-theoretical terminology and notation, and follow [\[2\]](#page-4-1) for some similar graph-theoretical operations not defined here. Denote by N_n the set $\{0, 1, \dots, n-1\}$ for a positive integer *n*.

Given a bipartite graph *G*, a *linear forest* in *G* is a subgraph each component of which is a path. Let *F* be an subset of *E*(*G*) and let *L* be a linear forest in *G* − *F* such that $|E(L)| + |F| \leq k$ for some non-negative integer *^k*. For any two nodes *^x*, *^y* in different partite sets of *^G*, {*x*, *^y*} and *^L* are said to be *compatible* if none of the paths in *L* has *x* or *y* as internal node or both of them as end nodes. Denote by π[*x*, *^y*] a path between *^x* and *^y*. The graph *^G* is said to be *k-fault-tolerant-prescribed hamiltonian laceable* if *^G*−*^F* admits a hamiltonian path π[*x*, *^y*] passing through *^L* under the condition that {*x*, *^y*} and *L* are compatible [\[3\]](#page-4-2). Particularly, *G* is said to be *k-fault-tolerant-hamiltonian laceable* if $E(L) = \emptyset$ [\[4\]](#page-4-3), and *k-prescribed-hamiltonian laceable* if $F = \emptyset$, and *hamiltonian laceable* if $E(L) = F = \emptyset$ [\[5\]](#page-4-4).

The *n*-dimensional hypercube is one of the most attractive interconnection networks for multiprocessor systems and it is bipartite, hamiltonian, *n*-regular, node-transitive, edge-transitive and recursive [\[6,](#page-4-5)[7\]](#page-5-0). Many real multiprocessors have taken hypercubes as underlying interconnection networks. The problem of embedding hamiltonian paths and cycles with faulty edges and/or prescribed edges in hypercubes has drawn considerable attentions (see, for example, [\[4,](#page-4-3) [8–](#page-5-1)[18\]](#page-5-2) and references therein).

In [\[4\]](#page-4-3), Tsai et al. investigated fault-tolerant hamiltonian laceability of hypercubes. One of their important results can be restated as follows:

Theorem 1 (See Lemma 3 in Tsai et al. [\[4\]](#page-4-3)). *Given n* ≥ 2*, Qⁿ is* (*n* − 2)*-fault-tolerant hamiltonian laceable but not* (*n* − 1)*-fault-tolerant hamiltonian laceable.*

In [\[18\]](#page-5-2), Wang and Chen studied the problem of embedding fault-free hamiltonian cycles passing through a linear forest in hypercubes with or without faulty edges and they obtained the following generalized result.

Theorem 2 (See Theorem A in Wang and Chen [\[18\]](#page-5-2)). *Given n* \geq 3*, let* $F \subset E(Q_n)$ *and let* L be a *linear forest in* Q_n − *F* such that $|E(L)| \ge 1$ *and* $|F| + |E(L)| \le n - 1$. Then Q_n − *F* admits a hamiltonian *cycle passing through L.*

In $[14]$, Dvořák and Gregor investigated the problem of embedding hamiltonian paths passing through prescribed linear forests in hypercubes. One of their main results can be restated as follows:

Theorem 3 (See Theorem 10 in Dvořák and Gregor [[14\]](#page-5-3)). *The hypercube Q_n is* (2*n* − 4)*-prescribed hamiltonian laceable if n* = 2 *or n* \geq 5*, and* (2*n* − 5)*-prescribed hamiltonian laceable if n* \in {3*,* 4}*.*

In this note, we will generalize Theorems [1](#page-0-0) and [2,](#page-1-0) and prove that Q_n with $n \ge 2$ is $(n-2)$ -faulttolerant-prescribed hamiltonian laceable but not (*n*−1)-fault-tolerant-prescribed hamiltonian laceable.

2. Preliminaries

The *n-dimensional hypercube* Q_n is a simple graph consists of 2^n nodes, each of which is an *n*-bit binary string with the form $\delta_0\delta_1 \dots \delta_{n-1}$. Two nodes are adjacent if and only if they differ in exactly one bit. An edge $(u, v) \in E(Q_n)$ is called *an edge in dimension i* if *u* and *v* differ in the *i*th bit, where *i* ∈ *N* a node in *Q* is called an edd node (resp. even node) if the sum of all digits of the node is $i \in N_n$. A node in Q_n is called an *odd node* (resp. *even node*) if the sum of all digits of the node is odd (resp. even). Let *X* and *Y* be the set of all odd nodes and all even nodes in Q_n , respectively. Then (X, Y) is a bipartition of Q_n . Fix $n \geq 2$. Let $F \subset E(Q_n)$ and let *L* be a linear forest in $Q_n - F$. There are *n* different ways to decompose Q_n into two disjoint copies, $Q[0]$ and $Q[1]$, of Q_{n-1} by deleting all the edges in dimension *i* of Q_n for an arbitrary $i \in N_n$, where each node of $Q[i]$ has *j* in the *i*th bit for *j* ∈ *N*₂. For any *j* ∈ *N*₂, abbreviated *V*(*Q*[*j*]) as *V_j*, and denote by *L_j* and *F_j* the restrictions of *L* and *F* in *Q*[*j*], respectively. For an arbitrary node $u \in V_j$, there is exactly one neighbour of *u* in *Q*[1 – *j*], and we denote it by u^{1-j} .

The following two lemmas will be used in the proof of our main result in Section [3.](#page-2-0)

Lemma 1. *Given j* ∈ *N*₂*, let P be a hamiltonian path passing through L_j in Q*[*j*]. *If E*(*L_j*)∪*E*(*L*_{1−*j*}) = $E(L)$, $E(L_{j-1}) \neq \emptyset$ and $2^{n-1} - |E(L)| - |E(L_{j-1})| > 0$, then there exists an edge $(u, v) \in E(P) \setminus E(L_j)$
such that $\{u^{1-j}, v^{1-j}\}$ and $L_{i,j}$ are compatible *such that* $\{u^{1-j}, v^{1-j}\}$ *and* L_{1-j} *are compatible.*

Proof of Lemma 1. There are $|E(P) \setminus E(L_j)| = 2^{n-1} - 1 - |E(L_j)|$ edge candidates in total. Note that each component of a linear forest is a path. Let $(u, v) \in E(P) \setminus E(L_i)$. Then it fails the lemma only if (*i*). u^{1-j} or v^{1-j} is an internal node of L_{1-j} , or

(*ii*). u^{1-j} and v^{1-j} are the two end nodes of some component of L_{1-j} .

Let *y* be an internal node of L_{1-j} , if any. Then it makes at most one candidate in $E(P) \setminus E(L_j)$ fail if y^j is an end node of *P*, and at most two candidates fail otherwise (see, for example, in Figure 1, an internal node y of the path $\langle x, y, z \rangle$, a component of L_{1-j} , makes (s, y^j) and (t, y^j) fail if $(x^j, z^j) \in$
 $E(D) \setminus E(I)$). Note that each component of I_{∞} is a path. Let $\pi[x, z]$ be a component of I_{∞} of *E*(*P*) \ *E*(*L_j*)). Note that each component of *L*_{1−*j*} is a path. Let $\pi[x, z]$ be a component of *L*_{1−*j*} of length at least 1. Then such a pair $\{x, z\}$ makes no condidate in $F(P) \setminus F(I)$ foil if x^j is not length at least 1. Then such a pair $\{x, z\}$ makes no candidate in $E(P) \setminus E(L_j)$ fail if x^j is not adjacent
to z^j in *P*, and makes at most one candidate (x^j, z^j) fail otherwise (see, for example, in Figure 1, the to z^j in *P*, and makes at most one candidate (x^j, z^j) fail otherwise (see, for example, in Figure 1, the pair (x, z) of the end nodes of a component of I_{max} makes (x^j, z^j) fail if $(x^j, z^j) \in F(P) \setminus F(I_{\text{max}})$ pair $\{x, z\}$ of the end nodes of a component of L_{1-j} makes (x^j, z^j) fail if $(x^j, z^j) \in E(P) \setminus E(L_j)$.
Note that $E(L_{j+1}) \neq \emptyset$. Let m be the number of components of length at least 1 in *L*₁₁, 1

Note that $E(L_{i-1}) \neq \emptyset$. Let *m* be the number of components of length at least 1 in L_{i-1} , and let *P*₁, *P*₂, ..., *P_m* be the *m* components. Then $m \geq 1$ and the number of internal nodes of L_{1-j} is $\sum_{i=1}^{m}(|E(P_i)| - 1) = |E(L_{1-j})| - m$. Thus, the total number of edge candidates that fail the lemma does not exceed $m + 2(|E(L_{1-j})| - m) = 2|E(L_{1-j})| - m$. Since $|E(P) \setminus E(L_j)| - (2|E(L_{1-j})| - m) =$ $2^{n-1} - 1 - |E(L_j)| - 2|E(L_{1-j})| + m = 2^{n-1} - 1 - |E(L)| - |E(L_{1-j})| + m \ge 2^{n-1} - |E(L)| - |E(L_{j-1})| > 0,$
the lemma follows the lemma follows. □

Figure 1. Illustration of an Example in the Proof of Lemma [1](#page-1-1)

Lemma 2. *Given j* ∈ N_2 *, let* $x \in V_j \cap X$ *,* $y \in V_{1-j} \cap Y$ *be two nodes such that they are incident with at most one edge of L_j* and L_{1−*j*}, respectively. If $2^{n-2} - (|E(L_j)| + |E(L_{1-j})|) > 0$, then there exists a node
u ∈ V, \odot V such that \downarrow *y* and L, are compatible, and \downarrow y^{1−*j*)</sub> and L, are compatible.} *u* ∈ V_j ∩ Y such that { x, u } *and* L_j *are compatible, and* { y, u^{1-j} } *and* L_{1-j} *are compatible.*

Proof of Lemma [2.](#page-2-1) There are $|V_0 \cap Y|$ node candidates in total. Let $u \in V_0 \cap Y$. Then it fails the lemma only if

(*i*). *u* is an internal node of L_j , or

(*ii*). u^{1-j} is an internal node of L_{1-j} , or

(*iii*). *x* and *u* are the two end nodes of some component of L_j , or

(*iv*). *y* and u^{1-j} are the two end nodes of some component of L_{1-j} .

If $E(L_i) = \emptyset$, then there is no $u \in V_0 \cap Y$ such that (*i*) or (*iii*) hold. If $E(L_i) \neq \emptyset$, then the number of internal nodes of L_j does not exceed $|E(L_j)| - 1$ and the number of such *u* that (*iii*) holds does not exceed 1. Therefore, the total number of such a node *u* that (*i*) or (*iii*) hold does not exceed | $E(L_i)$ |. Similarly, the total number of such a node *u* that (*ii*) or (*iv*) hold does not exceed | $E(L_{1-i})$ |. Therefore, the number of such a node *u* that fails the lemma does not exceed $|E(L_j)| + |E(L_{1-j})|$. Since $|V_0 \cap Y| - (|E(L_j)| + |E(L_{1-j})|) = 2^{n-2} - (|E(L_j)| + |E(L_{1-j})|) > 0$, the lemma follows. □

3. Main Result

Theorem 4. *Let n* ≥ 2*. The hypercube* Q_n *is* $(n-2)$ *-fault-tolerant-prescribed hamiltonian laceable but not* (*n* − 1)*-fault-tolerant-prescribed hamiltonian laceable.*

Proof of Theorem [4.](#page-2-2) By Theorem [1,](#page-0-0) Q_n with $n \geq 2$ is not $(n - 1)$ -fault-tolerant hamiltonian laceable, and so it is not $(n - 1)$ -fault-tolerant-prescribed hamiltonian laceable. It remains to prove that Q_n is (*n* − 2)-fault-tolerant hamiltonian laceable for *n* ≥ 2. Let $F \subset E(Q_n)$ and let *L* be a linear forest in *Q*_{*n*} − *F* such that $|E(L)| + |F| \le n - 2$. Let $x \in X$ and $y \in Y$ such that $\{x, y\}$ and *L* are compatible. In the following, it is enough to prove that $Q_n - F$ admits a hamiltonian path $\pi[x, y]$ passing through *L*, and it suffices to consider the case that $|E(L)| + |F| = n - 2$.

We will prove the above statement by induction on *n*. It is trivial for the base case $n = 2$. For $n = 3$ $n = 3$, $|E(L)| + |F| \le 1$ $|E(L)| + |F| \le 1$, Theorems 1 and 3 imply that the statement holds. In the remainder, assume that the statement holds for Q_{n-1} Q_{n-1} Q_{n-1} and prove that it also holds for Q_n , where $n \geq 4$. By Theorems 1 and [3,](#page-1-2) the statement holds for $E(L) = \emptyset$ or $F = \emptyset$, respectively. It remains to show that it also holds for $E(L) \neq \emptyset$ and $F \neq \emptyset$. Since $|E(L)| + |F| = n - 2 < n$, there is a dimension, say dimension 0, such that there is no edge of $E(L) \cup F$ in this dimension. Let $Q[0], Q[1]$ be a decomposition of Q_n by deleting all the edges in dimension 0. Without loss of generality, assume that $|E(L_0)| + |F_0| \ge |E(L_1)| + |F_1|$. There are three cases to be considered.

Case 1. $x \in V_0$ and $y \in V_0$.

Suppose first that $|E(L_0)| + |F_0| = n - 2$. Then $L_0 = L$, $F_0 = F$ and $E(L_1) = F_1 = \emptyset$. Let $f \in F_0$. Then $|E(L_0) \cup F_0 \setminus \{f\}| = n - 3$. By the induction hypothesis, $Q[0] - F_0 \setminus \{f\}$ has a hamiltonian path $\pi[x, y]$ passing through L_0 . Let $(u, v) = f$ if f lies on $\pi[x, y]$, and let (u, v) be an arbitrary edge in

Figure 2. Illustrations of Cases 1-2 of the Proof of Theorem [4](#page-2-2)

 $E(\pi[x, y]) \setminus E(L_0)$ otherwise. Clearly, u^1 and v^1 lie in different partite sets of *Q*[1], and so *Q*[1] has a hamiltonian path $\pi[u^1, v^1]$ hamiltonian path $\pi[u^1, v^1]$.
Suppose now that $|E(I)|$

Suppose now that $|E(L_0)| + |F_0| \le n - 3$. By the induction hypothesis, $Q[0] - F_0$ has a hamiltonian path $\pi[x, y]$ passing through L_0 . Note that $|F| \geq 1$ and $|E(L_1)| \leq |E(L)| < |E(L)| + |F| = n - 2$. Then $2^{n-1} - |E(L)| - |E(L_1)| > 2^{n-1} - 2(n-2) > 0$ $2^{n-1} - |E(L)| - |E(L_1)| > 2^{n-1} - 2(n-2) > 0$ $2^{n-1} - |E(L)| - |E(L_1)| > 2^{n-1} - 2(n-2) > 0$, and so Lemma 1 implies that there exists an edge $(u, v) \in$
 $E(\pi[x, y]) \setminus E(L_2)$ such that $\{u^1, v^1\}$ and L_1 are compatible. Since $|E(L_1)| + |E_1| < |E(L_1)| + |E_2| < n-3$ $E(\pi[x, y]) \setminus E(L_0)$ such that $\{u^1, v^1\}$ and L_1 are compatible. Since $|E(L_1)| + |F_1| \leq |E(L_0)| + |F_0| \leq n-3$,
by the induction by pothesis, $Q[1] = F_1$ has a hamiltonian path $\pi[u^1, v^1]$ passing through L_1 . by the induction hypothesis, $Q[1] - F_1$ has a hamiltonian path $\pi[u^1, v^1]$ passing through L_1 .
For all the possible scoperios above $\pi[x, y] + [\pi[u^1, y^1] + [(u, y^1), (y, y^1)]$ (*w* w) is a ha

For all the possible scenarios above, $\pi[x, y] \cup \pi[u^1, v^1] + \{(u, u^1), (v, v^1)\} - (u, v)$ is a hamiltonian
h of $O = F$ between x and y passing through *L* as illustrated in Figure 2.(a) path of $Q_n - F$ between *x* and *y* passing through *L* as illustrated in Figure 2 (a).

Case 2. $x \in V_1$ and $y \in V_1$.

 $Case 2.1.$ $|E(L_0)| + |F_0| = n - 2.$

In this case, $|F_0| = |F| \ge 1$, 1 ≤ $|E(L_0)| = |E(L)| \le n - 3$, and $E(L_1) = F_1 = ∅$. Theorem [2](#page-1-0) implies that $Q[0] - F_0$ has a hamiltonian cycle C_0 passing through L_0 . Since $|E(C_0) \setminus E(L_0)| =$ $|E(C_0)| - |E(L_0)| \ge 2^{n-1} - (n-3) > 1$, there exists an edge $(u, v) \in E(C) \setminus E(L_0)$ such that $\{u^1, v^1\} \ne$
*Ix v*¹. Thus *Ix y*¹ and the path $/u^1$ *y*¹) are compatible. Combing this with $|U(u^1, v^1)| = 1 \le u \le 3$ {*x*, *y*}. Thus, {*x*, *y*} and the path $\langle u^1, v^1 \rangle$ are compatible. Combing this with $|\{(u^1, v^1)\}| = 1 \le n - 3$
(*n* > 4) by Theorem 3, $Q[1] = E$, has a hamiltonian path $\pi[x, y]$ passing through $\langle u^1, v^1 \rangle$. Thus $(n \geq 4)$, by Theorem [3,](#page-1-2) $Q[1] - F_1$ has a hamiltonian path $\pi[x, y]$ passing through $\langle u^1, v^1 \rangle$. Thus,
 $C_1 + \pi[x, y] + \{(u, u^1), (y, y^1)\} = \{(u, y), (u^1, y^1)\}$ is a hamiltonian path of $Q_1 - F$ between x and y passing $C_0 \cup \pi[x, y] + \{(u, u^1), (v, v^1)\} - \{(u, v), (u^1, v^1)\}\$ is a hamiltonian path of $Q_n - F$ between *x* and *y* passing through *L* as illustrated in Figure 2 (b) through *L* as illustrated in Figure 2 (b).

 $Case 2.2.$ $|E(L_0)| + |F_0| \le n - 3.$

Note that $|E(L_1)| + |F_1| \leq |E(L_0)| + |F_0| \leq n-3$. By the induction hypothesis, $Q[1] - F_1$ has a hamiltonian path $\pi[x, y]$ passing through *L*₁. Since $2^{n-1} - |E(L)| - |E(L_0)| > 2^{n-1} - 2(n-2) > 0$, Lemma 1 implies that there exists an edge $(\mu, y) \in E(\pi[x, y]) \setminus E(L_1)$ such that μ^{0} , y^{0}) and *L*, are compatible [1](#page-1-1) implies that there exists an edge $(u, v) \in E(\pi[x, y]) \setminus E(L_1)$ such that $\{u^0, v^0\}$ and L_0 are compatible.
Since $|E(L_1)| + |E_2| \le n - 3$ by the induction hypothesis. $O[0] - E_2$ has a hamiltonian path $\pi[u^0, v^0]$ Since $|E(L_0)| + |F_0| \le n - 3$, by the induction hypothesis, $Q[0] - F_0$ has a hamiltonian path $\pi[u^0, v^0]$
passing through L_0 . Thus, $\pi[u^0, v^0] + \pi[x, y] + f(u^0, u)(y^0, y)] - (u, y)$ is a hamiltonian path of $Q = F$ passing through *L*₀. Thus, $\pi[u^0, v^0] \cup \pi[x, y] + \{(u^0, u), (v^0, v)\} - (u, v)$ is a hamiltonian path of $Q_n - F$
between x and y passing through *L* as illustrated in Figure 2 (c) between *x* and *y* passing through *L* as illustrated in Figure 2 (c).

Case 3. $x \in V_0$ and $y \in V_1$, or $y \in V_0$ and $x \in V_1$.

Without loss of generality, assume that $x \in V_0$ and $y \in V_1$.

Case 3.1. $|E(L_0)| + |F_0| = n - 2$.

In this case, $E(L_1) = F_1 = \emptyset$. Theorem [2](#page-1-0) implies that $Q[0] - F_0$ has a hamiltonian cycle C_0 passing through L_0 . Since $\{x, y\}$ and L are compatible, x is not an internal node in L , and so there is a neighbour *u* of *x* on C_0 such that $(x, u) \notin E(L_0)$. Recall that *x* is an odd node and *y* is an even node. Then *u* is an even node and u^1 is an odd node. Thus, u^1 and *y* are in different partite sets of $Q[1]$, and so there is a hamiltonian path $\pi[u^1, y]$ in *Q*[1]. Therefore, $C_0 \cup \pi[u^1, y] + (u, u^1) - (x, u)$ is a hamiltonian

Figure 3. Illustrations of Case 3 of the Proof of Theorem [4](#page-2-2)

path of $Q_n - F$ between *x* and *y* passing through *L* as illustrated in Figure 3 (a).

Case 3.2. $|E(L_0)| + |F_0|$ ≤ *n* − 3.

Since $2^{n-2} - (|E(L_0)| + |E(L_1)|) = 2^{n-2} - |E(L)| \ge 2^{n-2} - (n-3) > 0$ $2^{n-2} - (|E(L_0)| + |E(L_1)|) = 2^{n-2} - |E(L)| \ge 2^{n-2} - (n-3) > 0$, Lemma 2 implies that there exists a node $u \in V_0 \cap Y$ such that $\{x, u\}$ and L_0 are compatible and $\{y, u^1\}$ and L_1 are compatible.
Since $\{F(L_1) | + |F_L| < |F(L_2)| + |F_L| < n-3\}$ by the induction by pothesis. $Q[0] - F_2$ has a hamiltonian Since $|E(L_1)| + |F_1| \leq |E(L_0)| + |F_0| \leq n-3$, by the induction hypothesis, $Q[0] - F_0$ has a hamiltonian path $\pi[x, u]$ passing through L_0 , and $Q[1] - F_1$ has a hamiltonian path $\pi[y, u^1]$ passing through L_1 .
Thus $\pi[x, u] + [\pi[y, u^1] + (u, u^1)]$ is a hamiltonian path of $O - F$ between x and y passing through *L* as Thus, $\pi[x, u] \cup \pi[y, u^1] + (u, u^1)$ is a hamiltonian path of $Q_n - F$ between *x* and *y* passing through *L* as illustrated in Figure 3 (b) illustrated in Figure 3 (b). \Box

4. Conclusion

In this note, we investigated the fault-tolerant prescribed hamiltonian laceability of hypercubes and proved that the hypercube Q_n with $n \ge 2$ is $(n-2)$ -fault-tolerant-prescribed hamiltonian laceable but not (*n* − 1)-fault-tolerant-prescribed hamiltonian laceable. That is to say, given an arbitrary set *F* ⊂ *E*(Q_n) and a linear forest *L* in Q_n with $n \geq 2$ such that $|F| + |E(L)| \leq n - 2$, for two nodes *x* and *y* of different partite sets in Q_n , $Q_n - F$ has a hamiltonian path between *x* and *y* passing through *L* if {*u*, *v*} and *L* are compatible. Since Q_n is *n*-regular, the upper bound *n* − 2 on $|E(L)| + |F|$ cannot be improved. The main result in this note generalized some known results.

Acknowledgments

We would thank the anonymous reviewers for their useful suggestions and comments that improved the quality of this paper.

References

- 1. Bondy, J.A. and Murty, U.S.R., 2008. Graph theory, volume 244 of Grad. *Texts in Math.* Springer, New York, 7, pp.79-80.
- 2. Yang, Y., Li, J. and Wang, S., 2019. Embedding fault-free hamiltonian paths with prescribed linear forests into faulty ternary n-cubes. *Theoretical Computer Science, 767,* pp.1-15.
- 3. Yang, Y. and Zhang, L., 2019. Fault-tolerant-prescribed hamiltonian laceability of balanced hypercubes. *Information Processing Letters, 145,* pp.11-15.
- 4. Tsai, C.H., Tan, J.J., Liang, T. and Hsu, L.H., 2002. Fault-tolerant hamiltonian laceability of hypercubes. *Information Processing Letters, 83*(6), pp.301-306.
- 5. Simmons, G. J., 1978. Almost all *n*-dimensional rectangular lattices are Hamilton laceable, *Congressus Numerantium 21*, pp.103-108.
- 6. Guo, L., Qin, C. and Xu, L., 2020. Subgraph fault tolerance of distance optimally edge connected hypercubes and folded hypercubes. *Journal of Parallel and Distributed Computing, 138*, pp.190- 198.
- 8. Caha, R. and Koubek, V., 2006. Hamiltonian cycles and paths with a prescribed set of edges in hypercubes and dense sets. *Journal of Graph Theory, 51*(2), pp.137-169.
- 9. Chan, M.Y. and Lee, S.J., 1991. On the existence of Hamiltonian circuits in faulty hypercubes. *SIAM Journal on Discrete Mathematics, 4*(4), pp.511-527.
- 10. Chen, X.B., 2007. Cycles passing through prescribed edges in a hypercube with some faulty edges. *Information Processing Letters, 104*(6), pp.211-215.
- 11. Chen, X.B., 2009. On path bipancyclicity of hypercubes. *Information Processing Letters, 109*(12), pp.594-598.
- 12. Chen, X.B., 2009. Hamiltonian paths and cycles passing through a prescribed path in hypercubes. *Information Processing Letters, 110*(2), pp.77-82.
- 13. Dvorák, T., 2005. Hamiltonian cycles with prescribed edges in hypercubes. *SIAM Journal on Discrete Mathematics, 19*(1), pp.135-144.
- 14. Dvořák, T. and Gregor, P., 2007. Hamiltonian paths with prescribed edges in hypercubes. *Discrete Mathematics, 307*(16), pp.1982-1998.
- 15. Lai, C.J., 2009. A note on path bipancyclicity of hypercubes. *Information Processing Letters, 109*(19), pp.1129-1130.
- 16. Li, T.K., Tsai, C.H., Tan, J.J. and Hsu, L.H., 2003. Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes. *Information Processing Letters, 87*(2), pp.107-110.
- 17. Tsai, C.H. and Jiang, S.Y., 2007. Path bipancyclicity of hypercubes. *Information Processing Letters, 101*(3), pp.93-97.
- 18. Wang, W.Q. and Chen, X.B., 2008. A fault-free Hamiltonian cycle passing through prescribed edges in a hypercube with faulty edges. *Information Processing Letters, 107*(6), pp.205-210.

© 2024 the Author(s), licensee Combinatorial Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://[creativecommons.org](http://creativecommons.org/licenses/by/4.0)/licenses/by/4.0)