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Abstract: A node in the n-dimensional hypercube Qn is called an odd node (resp. an even node) if
the sum of all digits of the node is odd (resp. even). Let F ⊂ E(Qn) and let L be a linear forest in
Qn − F such that |E(L)| + |F| ≤ n − 2 for n ≥ 2. Let x be an odd node and y an even node in Qn such
that none of the paths in L has x or y as internal node or both of them as end nodes. In this note, we
prove that there is a Hamiltonian path between x and y passing through L in Qn−F. The upper bound
n − 2 on |E(L)| + |F| is sharp.
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1. Introduction

We mostly follow [1] for graph-theoretical terminology and notation, and follow [2] for some
similar graph-theoretical operations not defined here. Denote by Nn the set {0, 1, · · · , n − 1} for a
positive integer n.

Given a bipartite graph G, a linear forest in G is a subgraph each component of which is a path.
Let F be an subset of E(G) and let L be a linear forest in G − F such that |E(L)| + |F| ≤ k for some
non-negative integer k. For any two nodes x, y in different partite sets of G, {x, y} and L are said to be
compatible if none of the paths in L has x or y as internal node or both of them as end nodes. Denote
by π[x, y] a path between x and y. The graph G is said to be k-fault-tolerant-prescribed hamiltonian
laceable if G−F admits a hamiltonian path π[x, y] passing through L under the condition that {x, y} and
L are compatible [3]. Particularly, G is said to be k-fault-tolerant-hamiltonian laceable if E(L) = ∅
[4], and k-prescribed-hamiltonian laceable if F = ∅, and hamiltonian laceable if E(L) = F = ∅ [5].

The n-dimensional hypercube is one of the most attractive interconnection networks for multipro-
cessor systems and it is bipartite, hamiltonian, n-regular, node-transitive, edge-transitive and recur-
sive [6,7]. Many real multiprocessors have taken hypercubes as underlying interconnection networks.
The problem of embedding hamiltonian paths and cycles with faulty edges and/or prescribed edges
in hypercubes has drawn considerable attentions (see, for example, [4, 8–18] and references therein).

In [4], Tsai et al. investigated fault-tolerant hamiltonian laceability of hypercubes. One of their
important results can be restated as follows:

Theorem 1 (See Lemma 3 in Tsai et al. [4]). Given n ≥ 2, Qn is (n − 2)-fault-tolerant hamiltonian
laceable but not (n − 1)-fault-tolerant hamiltonian laceable.
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In [18], Wang and Chen studied the problem of embedding fault-free hamiltonian cycles passing
through a linear forest in hypercubes with or without faulty edges and they obtained the following
generalized result.

Theorem 2 (See Theorem A in Wang and Chen [18]). Given n ≥ 3, let F ⊂ E(Qn) and let L be a
linear forest in Qn−F such that |E(L)| ≥ 1 and |F|+ |E(L)| ≤ n−1. Then Qn−F admits a hamiltonian
cycle passing through L.

In [14], Dvořák and Gregor investigated the problem of embedding hamiltonian paths passing
through prescribed linear forests in hypercubes. One of their main results can be restated as follows:

Theorem 3 (See Theorem 10 in Dvořák and Gregor [14]). The hypercube Qn is (2n − 4)-prescribed
hamiltonian laceable if n = 2 or n ≥ 5, and (2n − 5)-prescribed hamiltonian laceable if n ∈ {3, 4}.

In this note, we will generalize Theorems 1 and 2, and prove that Qn with n ≥ 2 is (n − 2)-fault-
tolerant-prescribed hamiltonian laceable but not (n−1)-fault-tolerant-prescribed hamiltonian laceable.

2. Preliminaries

The n-dimensional hypercube Qn is a simple graph consists of 2n nodes, each of which is an n-bit
binary string with the form δ0δ1 . . . δn−1. Two nodes are adjacent if and only if they differ in exactly
one bit. An edge (u, v) ∈ E(Qn) is called an edge in dimension i if u and v differ in the ith bit, where
i ∈ Nn. A node in Qn is called an odd node (resp. even node) if the sum of all digits of the node is
odd (resp. even). Let X and Y be the set of all odd nodes and all even nodes in Qn, respectively. Then
(X,Y) is a bipartition of Qn. Fix n ≥ 2. Let F ⊂ E(Qn) and let L be a linear forest in Qn − F. There
are n different ways to decompose Qn into two disjoint copies, Q[0] and Q[1], of Qn−1 by deleting all
the edges in dimension i of Qn for an arbitrary i ∈ Nn, where each node of Q[i] has j in the ith bit for
j ∈ N2. For any j ∈ N2, abbreviated V(Q[ j]) as V j, and denote by L j and F j the restrictions of L and
F in Q[ j], respectively. For an arbitrary node u ∈ V j, there is exactly one neighbour of u in Q[1 − j],
and we denote it by u1− j.

The following two lemmas will be used in the proof of our main result in Section 3.

Lemma 1. Given j ∈ N2, let P be a hamiltonian path passing through L j in Q[ j]. If E(L j)∪E(L1− j) =
E(L), E(L j−1) , ∅ and 2n−1 − |E(L)| − |E(L j−1)| > 0, then there exists an edge (u, v) ∈ E(P) \ E(L j)
such that {u1− j, v1− j} and L1− j are compatible.

Proof of Lemma 1. There are |E(P) \ E(L j)| = 2n−1 − 1 − |E(L j)| edge candidates in total. Note that
each component of a linear forest is a path. Let (u, v) ∈ E(P) \ E(L j). Then it fails the lemma only if
(i). u1− j or v1− j is an internal node of L1− j, or
(ii). u1− j and v1− j are the two end nodes of some component of L1− j.

Let y be an internal node of L1− j, if any. Then it makes at most one candidate in E(P) \ E(L j) fail
if y j is an end node of P, and at most two candidates fail otherwise (see, for example, in Figure 1,
an internal node y of the path ⟨x, y, z⟩, a component of L1− j, makes (s, y j) and (t, y j) fail if (x j, z j) ∈
E(P) \ E(L j)). Note that each component of L1− j is a path. Let π[x, z] be a component of L1− j of
length at least 1. Then such a pair {x, z} makes no candidate in E(P) \ E(L j) fail if x j is not adjacent
to z j in P, and makes at most one candidate (x j, z j) fail otherwise (see, for example, in Figure 1, the
pair {x, z} of the end nodes of a component of L1− j makes (x j, z j) fail if (x j, z j) ∈ E(P) \ E(L j)).

Note that E(L j−1) , ∅. Let m be the number of components of length at least 1 in L j−1, and let
P1, P2, . . . , Pm be the m components. Then m ≥ 1 and the number of internal nodes of L1− j is∑m

i=1(|E(Pi)| − 1) = |E(L1− j)| − m. Thus, the total number of edge candidates that fail the lemma
does not exceed m + 2(|E(L1− j)| − m) = 2|E(L1− j)| − m. Since |E(P) \ E(L j)| − (2|E(L1− j)| − m) =
2n−1 − 1 − |E(L j)| − 2|E(L1− j)| +m = 2n−1 − 1 − |E(L)| − |E(L1− j)| +m ≥ 2n−1 − |E(L)| − |E(L j−1)| > 0,
the lemma follows. □
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Figure 1. Illustration of an Example in the Proof of Lemma 1

Lemma 2. Given j ∈ N2, let x ∈ V j ∩ X, y ∈ V1− j ∩ Y be two nodes such that they are incident with at
most one edge of L j and L1− j, respectively. If 2n−2 − (|E(L j)| + |E(L1− j)|) > 0, then there exists a node
u ∈ V j ∩ Y such that {x, u} and L j are compatible, and {y, u1− j} and L1− j are compatible.

Proof of Lemma 2. There are |V0∩Y | node candidates in total. Let u ∈ V0∩Y . Then it fails the lemma
only if
(i). u is an internal node of L j, or
(ii). u1− j is an internal node of L1− j, or
(iii). x and u are the two end nodes of some component of L j, or
(iv). y and u1− j are the two end nodes of some component of L1− j.

If E(L j) = ∅, then there is no u ∈ V0 ∩ Y such that (i) or (iii) hold. If E(L j) , ∅, then the number
of internal nodes of L j does not exceed |E(L j)| − 1 and the number of such u that (iii) holds does
not exceed 1. Therefore, the total number of such a node u that (i) or (iii) hold does not exceed
|E(L j)|. Similarly, the total number of such a node u that (ii) or (iv) hold does not exceed |E(L1− j)|.
Therefore, the number of such a node u that fails the lemma does not exceed |E(L j)|+ |E(L1− j)|. Since
|V0 ∩ Y | − (|E(L j)| + |E(L1− j)|) = 2n−2 − (|E(L j)| + |E(L1− j)|) > 0, the lemma follows. □

3. Main Result

Theorem 4. Let n ≥ 2. The hypercube Qn is (n − 2)-fault-tolerant-prescribed hamiltonian laceable
but not (n − 1)-fault-tolerant-prescribed hamiltonian laceable.

Proof of Theorem 4. By Theorem 1, Qn with n ≥ 2 is not (n − 1)-fault-tolerant hamiltonian laceable,
and so it is not (n − 1)-fault-tolerant-prescribed hamiltonian laceable. It remains to prove that Qn is
(n − 2)-fault-tolerant hamiltonian laceable for n ≥ 2. Let F ⊂ E(Qn) and let L be a linear forest in
Qn − F such that |E(L)| + |F| ≤ n − 2. Let x ∈ X and y ∈ Y such that {x, y} and L are compatible. In
the following, it is enough to prove that Qn − F admits a hamiltonian path π[x, y] passing through L,
and it suffices to consider the case that |E(L)| + |F| = n − 2.

We will prove the above statement by induction on n. It is trivial for the base case n = 2. For
n = 3, |E(L)| + |F| ≤ 1, Theorems 1 and 3 imply that the statement holds. In the remainder, assume
that the statement holds for Qn−1 and prove that it also holds for Qn, where n ≥ 4. By Theorems 1 and
3, the statement holds for E(L) = ∅ or F = ∅, respectively. It remains to show that it also holds for
E(L) , ∅ and F , ∅. Since |E(L)| + |F| = n − 2 < n, there is a dimension, say dimension 0, such that
there is no edge of E(L) ∪ F in this dimension. Let Q[0], Q[1] be a decomposition of Qn by deleting
all the edges in dimension 0. Without loss of generality, assume that |E(L0)| + |F0| ≥ |E(L1)| + |F1|.
There are three cases to be considered.

Case 1. x ∈ V0 and y ∈ V0.
Suppose first that |E(L0)| + |F0| = n − 2. Then L0 = L, F0 = F and E(L1) = F1 = ∅. Let f ∈ F0.

Then |E(L0) ∪ F0 \ { f }| = n − 3. By the induction hypothesis, Q[0] − F0 \ { f } has a hamiltonian path
π[x, y] passing through L0. Let (u, v) = f if f lies on π[x, y], and let (u, v) be an arbitrary edge in
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Figure 2. Illustrations of Cases 1-2 of the Proof of Theorem 4

E(π[x, y]) \ E(L0) otherwise. Clearly, u1 and v1 lie in different partite sets of Q[1], and so Q[1] has a
hamiltonian path π[u1, v1].

Suppose now that |E(L0)|+ |F0| ≤ n− 3. By the induction hypothesis, Q[0]− F0 has a hamiltonian
path π[x, y] passing through L0. Note that |F| ≥ 1 and |E(L1)| ≤ |E(L)| < |E(L)| + |F| = n − 2. Then
2n−1 − |E(L)| − |E(L1)| > 2n−1 − 2(n− 2) > 0, and so Lemma 1 implies that there exists an edge (u, v) ∈
E(π[x, y]) \E(L0) such that {u1, v1} and L1 are compatible. Since |E(L1)|+ |F1| ≤ |E(L0)|+ |F0| ≤ n−3,
by the induction hypothesis, Q[1] − F1 has a hamiltonian path π[u1, v1] passing through L1.

For all the possible scenarios above, π[x, y] ∪ π[u1, v1] + {(u, u1), (v, v1)} − (u, v) is a hamiltonian
path of Qn − F between x and y passing through L as illustrated in Figure 2 (a).

Case 2. x ∈ V1 and y ∈ V1.
Case 2.1. |E(L0)| + |F0| = n − 2.
In this case, |F0| = |F| ≥ 1, 1 ≤ |E(L0)| = |E(L)| ≤ n − 3, and E(L1) = F1 = ∅. Theorem

2 implies that Q[0] − F0 has a hamiltonian cycle C0 passing through L0. Since |E(C0) \ E(L0)| =
|E(C0)| − |E(L0)| ≥ 2n−1 − (n − 3) > 1, there exists an edge (u, v) ∈ E(C) \ E(L0) such that {u1, v1} ,

{x, y}. Thus, {x, y} and the path ⟨u1, v1⟩ are compatible. Combing this with |{(u1, v1)}| = 1 ≤ n − 3
(n ≥ 4), by Theorem 3, Q[1] − F1 has a hamiltonian path π[x, y] passing through ⟨u1, v1⟩. Thus,
C0∪π[x, y]+ {(u, u1), (v, v1)}−{(u, v), (u1, v1)} is a hamiltonian path of Qn−F between x and y passing
through L as illustrated in Figure 2 (b).

Case 2.2. |E(L0)| + |F0| ≤ n − 3.
Note that |E(L1)| + |F1| ≤ |E(L0)| + |F0| ≤ n − 3. By the induction hypothesis, Q[1] − F1 has a

hamiltonian path π[x, y] passing through L1. Since 2n−1−|E(L)|−|E(L0)| > 2n−1−2(n−2) > 0, Lemma
1 implies that there exists an edge (u, v) ∈ E(π[x, y]) \ E(L1) such that {u0, v0} and L0 are compatible.
Since |E(L0)| + |F0| ≤ n − 3, by the induction hypothesis, Q[0] − F0 has a hamiltonian path π[u0, v0]
passing through L0. Thus, π[u0, v0] ∪ π[x, y] + {(u0, u), (v0, v)} − (u, v) is a hamiltonian path of Qn − F
between x and y passing through L as illustrated in Figure 2 (c).

Case 3. x ∈ V0 and y ∈ V1, or y ∈ V0 and x ∈ V1.
Without loss of generality, assume that x ∈ V0 and y ∈ V1.
Case 3.1. |E(L0)| + |F0| = n − 2.
In this case, E(L1) = F1 = ∅. Theorem 2 implies that Q[0] − F0 has a hamiltonian cycle C0

passing through L0. Since {x, y} and L are compatible, x is not an internal node in L, and so there is a
neighbour u of x on C0 such that (x, u) < E(L0). Recall that x is an odd node and y is an even node.
Then u is an even node and u1 is an odd node. Thus, u1 and y are in different partite sets of Q[1], and
so there is a hamiltonian path π[u1, y] in Q[1]. Therefore, C0∪π[u1, y]+(u, u1)−(x, u) is a hamiltonian
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Figure 3. Illustrations of Case 3 of the Proof of Theorem 4

path of Qn − F between x and y passing through L as illustrated in Figure 3 (a).
Case 3.2. |E(L0)| + |F0| ≤ n − 3.
Since 2n−2 − (|E(L0)| + |E(L1)|) = 2n−2 − |E(L)| ≥ 2n−2 − (n − 3) > 0, Lemma 2 implies that there

exists a node u ∈ V0 ∩ Y such that {x, u} and L0 are compatible and {y, u1} and L1 are compatible.
Since |E(L1)|+ |F1| ≤ |E(L0)|+ |F0| ≤ n− 3, by the induction hypothesis, Q[0]− F0 has a hamiltonian
path π[x, u] passing through L0, and Q[1] − F1 has a hamiltonian path π[y, u1] passing through L1.
Thus, π[x, u]∪ π[y, u1]+ (u, u1) is a hamiltonian path of Qn − F between x and y passing through L as
illustrated in Figure 3 (b). □

4. Conclusion

In this note, we investigated the fault-tolerant prescribed hamiltonian laceability of hypercubes
and proved that the hypercube Qn with n ≥ 2 is (n − 2)-fault-tolerant-prescribed hamiltonian laceable
but not (n − 1)-fault-tolerant-prescribed hamiltonian laceable. That is to say, given an arbitrary set
F ⊂ E(Qn) and a linear forest L in Qn with n ≥ 2 such that |F| + |E(L)| ≤ n − 2, for two nodes x and
y of different partite sets in Qn, Qn − F has a hamiltonian path between x and y passing through L if
{u, v} and L are compatible. Since Qn is n-regular, the upper bound n − 2 on |E(L)| + |F| cannot be
improved. The main result in this note generalized some known results.

Acknowledgments

We would thank the anonymous reviewers for their useful suggestions and comments that im-
proved the quality of this paper.

References

1. Bondy, J.A. and Murty, U.S.R., 2008. Graph theory, volume 244 of Grad. Texts in Math. Springer,
New York, 7, pp.79-80.

2. Yang, Y., Li, J. and Wang, S., 2019. Embedding fault-free hamiltonian paths with prescribed linear
forests into faulty ternary n-cubes. Theoretical Computer Science, 767, pp.1-15.

3. Yang, Y. and Zhang, L., 2019. Fault-tolerant-prescribed hamiltonian laceability of balanced hy-
percubes. Information Processing Letters, 145, pp.11-15.

4. Tsai, C.H., Tan, J.J., Liang, T. and Hsu, L.H., 2002. Fault-tolerant hamiltonian laceability of
hypercubes. Information Processing Letters, 83(6), pp.301-306.

5. Simmons, G. J., 1978. Almost all n-dimensional rectangular lattices are Hamilton laceable, Con-
gressus Numerantium 21, pp.103-108.

6. Guo, L., Qin, C. and Xu, L., 2020. Subgraph fault tolerance of distance optimally edge connected
hypercubes and folded hypercubes. Journal of Parallel and Distributed Computing, 138, pp.190-
198.

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 120, 393–398



Yuxing Yang, Ningning Song and Ziyue Zhao 398

7. Saad, Y. and Schultz, M.H., 1988. Topological properties of hypercubes. IEEE Transactions on
Computers, 37(7), pp.867-872.

8. Caha, R. and Koubek, V., 2006. Hamiltonian cycles and paths with a prescribed set of edges in
hypercubes and dense sets. Journal of Graph Theory, 51(2), pp.137-169.

9. Chan, M.Y. and Lee, S.J., 1991. On the existence of Hamiltonian circuits in faulty hypercubes.
SIAM Journal on Discrete Mathematics, 4(4), pp.511-527.

10. Chen, X.B., 2007. Cycles passing through prescribed edges in a hypercube with some faulty
edges. Information Processing Letters, 104(6), pp.211-215.

11. Chen, X.B., 2009. On path bipancyclicity of hypercubes. Information Processing Letters, 109(12),
pp.594-598.

12. Chen, X.B., 2009. Hamiltonian paths and cycles passing through a prescribed path in hypercubes.
Information Processing Letters, 110(2), pp.77-82.

13. Dvorák, T., 2005. Hamiltonian cycles with prescribed edges in hypercubes. SIAM Journal on
Discrete Mathematics, 19(1), pp.135-144.
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