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Abstract: The dominating set of a graph G is a set of vertices D such that for every v ∈ V(G) either
v ∈ D or v is adjacent to a vertex in D. The domination number, denoted γ(G), is the minimum
number of vertices in a dominating set. In 1998, Haynes and Slater [1] introduced paired-domination.
Building on paired-domination, we introduce 3-path domination. We define a 3-path dominating set
of G to be D = {Q1,Q2, . . . ,Qk | Qi is a 3-path} such that the vertex set V(D) = V(Q1) ∪ V(Q2) ∪
· · · ∪ V(Qk) is a dominating set. We define the 3-path domination number, denoted by γP3(G), to be
the minimum number of 3-paths needed to dominate G. We show that the 3-path domination problem
is NP-complete. We also prove bounds on γP3(G) and improve those bounds for particular families
of graphs such as Harary graphs, Hamiltonian graphs, and subclasses of trees. In general, we prove
γP3(G) ≤ n

3 .
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1. Introduction

In this paper, assume any graph G = (V, E) is finite and simple with vertex set V and edge set E. A
dominating set D ⊆ V of G is a set such that every vertex v ∈ V is either in D or adjacent to a vertex in
D. The domination number of G, denoted γ(G), is defined as the minimum cardinality of a dominating
set of G. An application of domination theory considers the task of assigning guards to rooms in a
museum. In this application vertices represent the exhibit rooms and edges represent hallways joining
them. Thus a dominating set of the representative graph is a set of vertices whose corresponding
rooms could hold guards with the result that the entire museum would be under surveillance with
guards monitoring adjacent rooms via the hallways.

Many variations on domination have been studied. See Haynes et al. [2] for an introduction to
many of these areas. In 1998, Haynes and Slater introduced paired-domination [1] in which the
induced subgraph on a dominating set of vertices contains a perfect matching. In this version of the
application, we say that every guard has another guard watching their back. The paired-domination
number, denoted γpr(G), is the minimum cardinality of a paired-dominating set of G. We introduce
a natural extension of paired-domination, namely 3-path domination. We say Qi is a 3-path if it is
isomorphic to P3. We define a 3-path dominating set of G to be a set D = {Q1,Q2, . . . ,Qk} of 3-paths
such that the vertex set V(D) = V(Q1) ∪ V(Q2) ∪ · · · ∪ V(Qk) is a dominating set of G. Here we
continue our application analogy by allowing stationed guards to walk between 3 rooms and look
down hallways extending from those 3 rooms. Note that while in paired domination every vertex
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of the perfect matching represents the position of a guard, in 3-path domination, not every vertex
in V(D) necessarily will represent a position of a guard; only one guard is placed per 3-path. The
3-path domination number, denoted γP3(G), is the minimum cardinality of a 3-path dominating set.
We will use the abbreviation γP3-set for a minimum 3-path dominating set. The study of the guard
analogy and its variations was introduce in 1997 as the Watchman’s Walk Problem by Hartnell, Rall
and Whitehead, see [3]. In 2003, Davies et al. [4] studied the Watchman’s Walk Problem on trees. The
Watchman’s Walk Problem asks how many watchman are required such that each vertex is visited or
observed by a watchman on a walk in a given time interval. The walks need not be uniform in length.

In this paper we prove that determining γP3 is NP-complete and then establish bounds on γP3 for
all graphs, specifically

γP3(G) ≤
n
3
.

Tighter bounds and formulas for γP3 for specific families of graphs such as caterpillars, Harary graphs,
banana trees, paths, and cycles are also shown.

2. The 3-path Domination Problem is NP-complete

In 1998, Haynes and Slater proved that the paired domination problem was NP-complete [1]. We
generalize this result to show the 3-path domination problem is also NP-complete.

Theorem 1. Deciding for a given graph H and positive integer k such that 3k ≤ ||V(H), ”Is γP3(H) ≤
k?” is NP-complete.

Proof. We will use the known NP-complete domination problem,“For a given graph G and a positive
integer k, is γ(G) ≤ k?” [5]. Let V(G) = {v1, v2, ..., vn}. Construct graph H by letting V(Gi) =
{vi

1, v
i
2, ..., v

i
n} for 1 ≤ i ≤ 6 and letting vi

hvi
j ∈ E(Gi) if and only if vhv j ∈ E(G). Let H be the graph

created by these six disjoint copies of G and by adding the following edges. Let v1
hv2

j , v3
hv4

j , and v5
hv6

j

be in E(H) if and only if either h = j or vhv j ∈ E(G). Add the edges v1
hv3

h and v3
hv5

h for 1 ≤ h ≤ n to H.
Thus the graph H has 6n vertices and can be constructed from G in polynomial time.

We claim that γ(G) ≤ k if and only if γP3(H) ≤ k.
Assume D ⊂ V(G) is a dominating set of G with ||D ≤ k. Let R be a set of 3-paths with R =

{{v1
h, v

3
h, v

5
h} | vh ∈ D}. Thus R is a 3-path dominating set of H with ||R ≤ k, so γP3(H) ≤ k.

Now, assume R is a 3-path dominating set of G with ||R ≤ k. Let T =
⋃

Qi∈R V(Qi). Since 3-paths
are not necessarily disjoint and have 3 vertices each, ||T ≤ 3k. Thus since G1∪G2 � G3∪G4 � G5∪G6,
we can assume that ||T1,2 = ||T ∩ (V(G1) ∪ V(G2)) ≤ k. Let T ∗ = {v2

h | v
1
h ∈ T1,2} ∪ (T ∩ V(G2)). Then

||T ∗ ≤ ||T1,2 ≤ k and T ∗ dominates V(G2). Hence, γ(G) ≤ k. □

Having shown that the 3-path domination problem is NP-complete, we find general bounds on γP3

and formulas and improved bounds for the 3-path domination number of specific families of graphs.

3. Bounds On the 3-path Domination Number

In this section, we prove bounds based on parameters of a graph G, namely γ(G), γpr(G), and
∆(G). Note that 3-path domination requires any component of a graph to have at least three vertices.

Theorem 2. For a graph G on n ≥ 3 vertices, γP3(G) ≥ γ(G)
3 .

Proof. Let D be a γP3-set of G and V(D) be the set of vertices in D. Then |V(D)| ≤ 3|D| = 3γP3(G)
since some 3-paths may share vertices. Furthermore, |V(D)| ≥ γ(G) as V(D) forms a dominating set
of G. So we have

3γP3(G) ≥ |V(D)| ≥ γ(G),

and solving yields γP3(G) ≥ γ(G)
3 . □
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For the next lower bound, we generalize an argument from Haynes and Slater involving ∆(G) [1].

Theorem 3. For a connected graph G on n ≥ 3 vertices, γP3(G) ≥ n
3∆(G) .

Proof. Let D be a γP3-set of a graph G on n vertices, and let T be the set of edges in G having one
vertex in V(D) and the other in V(G) \ V(D). Since ∆(G) ≥ deg(v) for all v ∈ V(D) and each vertex in
V(D) has at least one neighbor in V(D),

|T | = t ≤ (∆(G) − 1)|V(D)| ≤ (∆(G) − 1)3γP3(G).

In addition, t ≥ |V(G) \ V(D)| since there is at least one edge of T incident to every vertex in G that is
not in V(D). So,

t ≥ |V(G) \ V(D)| = n − |V(D)| ≥ n − 3γP3(G).

So we have n − 3γP3(G) ≤ t ≤ (∆(G) − 1)3γP3(G), and solving yields γP3(G) ≥ n
3∆(G) . □

Having established some lower bounds on γP3 , we explore some upper bounds.

Theorem 4. For a connected graph G on n ≥ 3 vertices, γP3(G) ≤ γpr(G)
2 .

Proof. Let G be a graph with |V(G)| ≥ 3 and D be a γpr-set of G. Since there are γpr(G)
2 pairs of vertices

in D and n ≥ 3, for each pair we can create a 3-path using the pair and a neighbor. This forms a 3-path
dominating set with cardinality γpr(G)

2 . □

Notice that since the induced subgraph on a γpr-set is a perfect matching, the edges in the induced
subgraph are vertex disjoint. This is not always the case for 3-path domination, as shown in Figure 1.

v2

v1

v5

v3

v4

Figure 1. An Example of a Graph G with γP3(G) = 2, where the Shaded Vertices Represent
the Vertices of the Paths in a γP3-set. Notice that Independent of the Set of 3-Paths Chosen,
Both 3-Paths must Share the Vertex v2. Two Examples of γP3-sets are {v1v2v3, v4v2v5} and
{v1v2v5, v4v2v3}

For the following theorem, we note that a private neighbor of a 3-path Q is a vertex that is domi-
nated by Q and no other 3-path of the 3-path dominating set. It is possible for the private neighbor to
be a vertex of Q.

Theorem 5. For a graph G with n ≥ 3, there exists a minimal 3-path dominating set that is edge-
disjoint.

Proof. Let G be a graph and D be a minimal 3-path dominating set on G. Suppose there are two
3-paths in D that share an edge, Q1 = {v1, v2, v3} and Q2 = {v2, v3, v4}. Consider the following two
possibilities:
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v1

v2

v3 v4

v1 v2 v3 v4

Figure 2. The Possible Configurations for Two 3-Paths, Q1 = {v1, v2, v3} and Q2 =

{v2, v3, v4}, that Share an Edge

Referring to Figure 2, Q1 and Q2 each have at least one private neighbor. If Q1 or Q2 do not have
any private neighbors, then D is not minimal as G would still be dominated if we remove one path
without private neighbors. Let p1 be a private neighbor of Q1 and p2 be a private neighbor of Q2.
Note, p1 must be adjacent to v1, and p2 must be adjacent to v4, otherwise they would be dominated by
both Q1 and Q2. Without loss of generality, we set Q′1 = {v2, v1, p1}, making Q′1 and Q2 edge-disjoint.
Let C = D − Q1 + Q′1. Now C is not guaranteed to be minimal. If C is not minimal, it must be the
case that Q′1 dominates what were the private neighbors of some other 3-path in D. Remove 3-paths
from C that do not have any private neighbors in G with respect to C to obtain a new minimal 3-path
dominating set D′. Repeat this process until D′ is edge-disjoint and minimal. □

Corollary 1. For a connected graph G on n ≥ 3 vertices, γP3(G) ≤ ⌊ |E(G)|
2 ⌋.

Proof. Let G be a graph with |V(G)| ≥ 3. By Theorem 5, there exists a minimal, edge-disjoint 3-path
dominating set of G, call it D. Since no two 3-paths share an edge, and each 3-path contains two
edges, |D| ≤ ⌊ |E(G)|

2 ⌋. □

Having an upper bound in terms of the number of edges of G is useful when dealing with classes of
graphs whose number of edges directly relate to the number of vertices. For example, if we consider
a tree T on n vertices, |E(T )| = n − 1, and so γP3(T ) ≤ ⌊ n−1

2 ⌋. We can improve this upper bound for
trees. Recall a leaf of a tree is a vertex of degree 1, and the diameter of a graph G is the length of a
longest path between a pair of vertices in G, denoted diam(G). We will call a vertex adjacent to a leaf
a support vertex. Note that if diam(T ) = 2, then T is a star with n − 1 leaves, and n − (n − 1) − 1 = 0
while clearly γP3(T ) ≥ 1 for all trees on at least three vertices. Thus for the following corollary we
must assume that the diameter of the tree is at least three, so that n− L− 1 ≥ 1, where L is the number
of leaves of T .

Corollary 2. For a tree T on n vertices with diam(T ) ≥ 3, γP3(T ) ≤ ⌈n−L−1
2 ⌉ where L is the number

leaves of T .

Proof. Let T be a tree with diam(T ) ≥ 3. Obtain a new graph T ′ by deleting all the leaves of T . Now
T ′ has n − L vertices. Using Corollary 1, we have γP3(T

′) ≤ ⌊n−L−1
2 ⌋. Let D′ be a 3-path dominating

set of size ⌊ n−L−1
2 ⌋. Note that if T ′ has an even number of edges, this would be as if all the edges of T ′

were paired into disjoint 3-paths in D′. Hence, if we added the L vertices of T back, all the support
vertices of T would be in one of the 3-paths of D′ so D′ would form a 3-path dominating set in T as
well. However, if T ′ has an odd number of edges, |E(D′)| = n−L−2, that is, there would be an edge of
T ′, call it e, not included in the edge set of D′. In T , it is possible that e is incident to a support vertex.
Hence we may need one more 3-path in T than we needed in T ′. Therefore γP3(T ) ≤ ⌈n−L−1

2 ⌉. □

Increasing adjacencies in a graph, can only decrease the 3-path domination number. Thus we have
the following observation.

Observation 6. If an edge is added to a graph G to form a new graph G∗, then γP3(G
∗) ≤ γP3(G).

Thus the 3-path domination number of any spanning subgraph of G is an upper bound on the 3-
path domination number of G. Refer to Figure 3 for an example. A spanning tree T of a graph G is
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a tree such that V(T ) = V(G) and E(T ) ⊆ E(G). We now use Observation 6 and spanning trees to
establish a bound for general graphs.

v1 v2 v3 v4 v5 v6

v1 v2 v3 v4 v5 v6

Figure 3. The First Graph, H, is a Spanning Subgraph of the Second, G. Note that γP3(H) =
2, and we can choose paths {v1v2v3} and {v4v5v6} to form a γP3(G)-set. However, We only
Need One 3-Path to Dominate G, namely {v2v3v4}

Theorem 7. For any connected graph G on n ≥ 3 vertices, γP3(G) ≤ ⌈n−3
2 ⌉.

Proof. Let G be a graph on n vertices and let TG be a spanning tree of G. Notice, since V(TG) = V(G)
and E(TG) ⊆ E(G), we can construct G from TG by adding the edges in E(G)\E(TG). By Observation
6, γP3(G) ≤ γP3(TG). Since TG is a tree on n vertices, γP3(TG) ≤ ⌈n−L−1

2 ⌉ by Corollary 2. Since L ≥ 2
for all trees with n ≥ 3, γP3(G) ≤ ⌈n−3

2 ⌉. □

The next observation will be useful in this section and the following.

Observation 8. If a vertex u is a support vertex in V(G), then u must be part of a dominating 3-path.

Haynes and Slater [1] proved the following upper bound for paired-domination number.

Theorem 9. [1] If a connected graph G has n ≥ 6 and δ(G) ≥ 2, then

γpr(G) ≤
2n
3
.

The following result follows readily from Theorem 4 and Theorem 9.

Corollary 3. If a connected graph G has n ≥ 6 and δ(G) ≥ 2, then

γP3(G) ≤
n
3
.

We show that this bound actually holds for all graphs. While this may seem obvious since each
3-path uses three vertices, the paths in 3-path dominating sets are not necessarily vertex disjoint. Note
that this bound is sharp. Consider P6 (graph H in Figure 3). This requires two 3-paths to dominate.
We can generalize P6 with an infinite family of graphs, F, where each graph Gk in F is formed from
k disjoint copies of P6 with vertices of each Pi

6 labeled in order: vi,1, vi,2, . . . , vi,6, and the additional
edges v1,3v2,3, v2,3v3,3, . . . , vk−1,3vk,3. See Figure 4 for an example of Gk. Each Gk has 6k vertices, and
by Observation 8, we must have 2k 3-paths in the dominating set. Therefore γP3(Gk) = n

3 .

v1,1 v1,2 v1,3 v1,4 v1,5 v1,6

v2,1 v2,2 v2,3 v2,4 v2,5 v2,6

v3,1 v3,2 v3,3 v3,4 v3,5 v3,6

v4,1 v4,2 v4,3 v4,4 v4,5 v4,6

v5,1 v5,2 v5,3 v5,4 v5,5 v5,6

P 1
6

P 2
6

P 3
6

P 4
6

P 5
6

Figure 4. A Visualization of the Graph Gk with k = 5 Showing Equality for the Upper
Bound n/3

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 121, 97–106



Rayan Ibrahim, Rebecca Jackson and Erika L.C. King 102

Theorem 10. For any tree T on n ≥ 3 vertices, γP3(T ) ≤ n
3 .

Proof. Let T be a tree of order n ≥ 3. We will proceed by induction on n. For n = 3 we have T = P3,
and γP3(P3) = 1 = 3

3 .
Let n > 3. Either there exists a longest path P in T such that one of the vertices on P adjacent to its

endvertices has degree greater than two, or the vertices adjacent the endvertices of every longest path
have degree two. Note the endvertices of a longest path are leaves, and therefore the vertices adjacent
to the endvertices on the path are support vertices. Refer to Figure 5 for an illustration of an example
of a support vertex, v, of degree greater than two for Case 1, and of support vertices, labeled mi, all of
degree two for Case 2.

T ′ v

`1

`2

. . .

e T ′ v

m1

m2

`1

`2

. . .

e

Figure 5. Case 1 (left) and Case 2 (right).

In Case 1, let P be a longest path with a support vertex, v, adjacent to k ≥ 2 leaves in T . Let e
be the edge of P incident to v, but not to an endvertex of P. Then T − e is a forest with components
T ′ on n − (k + 1) vertices and K1,k. If n − (k + 1) ≤ 2, then T is a star or a double star and we only
need one P3 to dominate T , which is less than n

3 . If n − (k + 1) ≥ 3, the induction hypothesis gives
γP3(T

′) ≤ n−(k+1)
3 . Let D′ be a 3-path dominating set of T ′ with |D′| ≤ n−(k+1)

3 . Note that we only
require one 3-path, say Q, to dominate K1,k. Thus D = D′ ∪ Q is a 3-path dominating set of T with
|D| ≤ γP3(T

′) + 1 = n−(k+1)+3
3 ≤ n

3 , since k + 1 ≥ 3.
In Case 2, all the support vertices of the endvertices of the longest paths have degree two. Let P

be a longest path and let v be a vertex on P that is not a leaf and is adjacent to the support vertex
of an endvertex of P, that is, a vertex that is distance 2 away from an endvertex of P. Consider the
neighbors of v including neighbors not on P and the support vertex of the endvertex of P. Label
these i neighbors mi. Note that each mi is either degree two or degree one otherwise we contradict the
assumption of Case 2. For any mi that has degree two, label its leaf neighbor ℓi. Let e be the edge of
P incident to v, but not to an endvertex of P. Then T − e is a forest with components H (containing v
and all the mi and ℓi) and T ′.

If |V(T ′)| ≤ 2, then T is either P4, P5, or a spider with center vertex v and legs of length one or
two. Note that if T is one of the two paths, we need only one P3 to dominate it, which is less than n

3 .
Suppose T is a spider with k legs of length two, and j legs of length one. If k is even, then we create
3-paths between pairs of support vertices of the legs of length two to obtain a γP3-set of size k

2 . If k
is odd, we create pairs of support vertices using k − 1 of the legs of length two, and add one 3-path
from v to the leaf of the unpaired leg of length two to obtain a γP3-set of size k+1

2 . (We use this method
again when we look at banana trees in Theorem 4.5.) Note that in both cases, n = 2k + j + 1, and k

2
and k+1

2 are both less than n
3 .

Suppose |V(T ′)| ≥ 3. Then H is a spider. Let k be the number of paths of the form {v,mi, ℓi},
i.e. legs of length two. If k is even, then we dominate H using k

2 many 3-paths and by the induction
hypothesis γP3(T

′) ≤ n−(2k+1)
3 = n

3 −
2k+1

3 (H contains v, 2k vertices for each leg of length two, and
possibly more vertices if v has leaves as neighbors.) So

γP3(T ) ≤ γP3(T
′) + γP3(H) ≤

n
3
−

2k + 1
3
+

k
2
=

n
3
−

k + 2
6
≤

n
3
.
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If k is odd, then k ≥ 1 and we need k+1
2 many 3-paths to dominate H, so similarly

γP3(T ) ≤ γP3(T
′) + γP3(H) ≤

n
3
−

2k + 1
3
+

k + 1
2
=

n
3
−

k − 1
6
≤

n
3
.

By induction, we have shown that γP3(T ) ≤ n
3 . □

The following result follows readily from Theorem 10 by considering a spanning tree of G.

Corollary 4. For any connected graph G on n ≥ 3 vertices, γP3(G) ≤ n
3 .

4. Classes of Graphs and Their 3-path Domination Number

While bounds for general graphs are desirable, it is useful to restrict ourselves to families of graphs
to obtain formulas or tighter upper bounds for those families. We begin by looking at path and cycle
graphs.

Theorem 11. For n ≥ 3, γP3(Pn) = γP3(Cn) = ⌈ n
5⌉.

Proof. Consider Pn for n ≥ 3. Suppose n = 5q + k for nonnegative integers q and k, where k < 5. We
can partition Pn into q vertex-disjoint segments S i, where |V(S i)| = 5, and one segment S q+1 with k
vertices. (Refer to Figure 6.) We can dominate at most five vertices with a 3-path in Pn, specifically
the three in the 3-path and potentially two others adjacent to the ends. Thus we need one 3-path for
each S i. Hence if k = 0 we need q 3-paths and if k > 0 we need q + 1 3-paths. Hence γP3(Pn)⌈ n

5⌉.
The same argument holds for Cn, from which we can obtain Pn by deleting one edge. □

. . .

S1 S2

Figure 6. Path Graph where Black Vertices are in a 3-Path of a Minimum 3-Path Dominat-
ing Set

Corollary 5. If G is a connected graph on n ≥ 3 vertices that has a Hamiltonian path, then γP3(G) ≤
⌈ n

5⌉.

Proof. Suppose P is a Hamiltonian path of G. Then P � Pn and since γP3(Pn) = ⌈ n
5⌉ and G is obtained

from P by adding edges, by Observation 6, we find that γP3(G) ≤ ⌈n
5⌉. □

Introducing even the slightest complexity to a graph can hinder our ability to find a formula for
γP3(G). One such example is the caterpillar tree. A caterpillar is a tree in which every leaf is adjacent
to a central path, or stalk. See Figure 7 for an example.

Figure 7. An Example of a Caterpillar with Central Stalk a Path on 11 Vertices (black)

We will use the following observation in the proof of the next theorem.

Observation 12. If a new vertex is connected by a single edge to a graph G to form a new graph G∗,
then γP3(G) ≤ γP3(G

∗).

Theorem 13. Let A be a caterpillar with stalk S and m = ||V(S ). Then ⌈m+2
5 ⌉ ≤ γP3(A) ≤ ⌈m

3 ⌉.
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Proof. Let A be a caterpillar with stalk S and m = |V(S )|. Then there exists a longest path, P, in A of
length m+ 2, such that V(S ) ⊆ V(P). Any vertex in V(A \P) must be a leaf that is adjacent to a vertex
of P that is not a leaf. Thus γP3(A) ≥ γP3(P) by Observation 12. By Theorem 11, γP3(P) ≥ ⌈m+2

5 ⌉.
By Observation 12, a caterpillar in which every vertex of the stalk is a support vertex has a 3-path

domination number at least as large as any caterpillar with in which at least one stalk vertex is not a
support vertex. Thus we consider the case where every vi ∈ V(S ) is a support vertex Then, each of
the vi must be part of a 3-path by Observation 8. Furthermore, V(S ) is a dominating set of A. Thus
a minimum 3-path dominating set would require that the 3-paths be as vertex disjoint as possible. At
most two of the 3-paths would need to share vertices. Thus at most ⌈m

3 ⌉ 3-paths are needed. □

Figure 8. A Caterpillar in Which Every Vertex That Is Not a Leaf Is Adjacent to a Leaf.
Black Vertices Are Those That Must Be Included in a 3-Path, and So We Partition the
Vertices in Groups of 3 (With the Possible Exception of Two 3-Paths) to Use the Least
Number of 3-Paths as Possible

A banana tree, denoted Bn,k for n, k ≥ 1, is a tree composed of n copies of a K1,k−1 graph in which
one leaf from each copy is joined by an edge to a vertex called the root vertex (See Figures 9 and 10
for examples).

Theorem 14. For n + k ≥ 3, the following formulas hold for γP3(Bn,k) :

1. γP3(Bn,1) = 1.
2. γP3(Bn,2) = ⌈ n

2⌉.
3. For k ≥ 3, γP3(Bn,k) = n.

Proof. 1. Note that Bn,1 is a star, K1,n. Any 3-path in a star will contain the center vertex and thus
dominate all vertices. Hence, γP3(Bn,1) = 1.

2. For k = 2, we pick our 3-paths with the following process. In Bn,2, the support vertices are the
vertices adjacent to the root vertex. We make unique pairs of support vertices, and choose the
unique 3-path between each pair to be in our dominating set. If n is odd, then one support vertex
is not in a pair and the last 3-path will include the leaf adjacent to the lone support vertex. See
Figure 9. By Observation 8, every support vertex must be in a 3-path, so this is best possible.

r

s1 s2 s3 s4 s5

r

s1 s2 s3 s4 s5 s6

Figure 9. The Banana Trees B5,2 and B6,2. We Pair the Support Vertices si and Join Each
Pair by a 3-Path With Middle Vertex r. In the n Odd Case, We Use the Leaf Adjacent to the
Unpaired Vertex to Create the Last 3-Path

3. For k ≥ 3, by Observation 8, the center vertex of every copy of K1,k−1 must be part of a 3-path. It
is impossible to include any two centers in the same 3-path. So we must have a 3-path for each
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copy of K1,k−1. We can insure that at least one of these 3-paths contains or is adjacent to the root
vertex. Then one 3-path for each K1,k−1 is best possible. Since we have n copies, γP3(Bn,k) = n.
See Figure 10.

□

Figure 10. The Banana Tree B5,10, Where Vertices in the 3-Paths are Black, and 3-Paths are
Indicated by Bold Edges

A Harary graph, denoted Hk,n, is a k-regular graph of order n with k ≤ n−1, V(G) = {v1, v2, . . . , vn}

and adjacencies as follows. If k is even, then k = 2 j for some integer j and we join vi to
{vi− j, vi− j+1, . . . , vi−1, vi+1, . . . , vi−1+ j, vi+ j}. If k is odd, then k = 2 j + 1 for some j and n = 2ℓ for some
ℓ, and we join vi to {vi− j, vi− j+1, . . . vi−1, vi+1, . . . , vi−1+ j, vi+ j} and vi+ℓ. See Figure 11 for an example.

Theorem 15. For k even, we have γP3(Hk,n) = ⌈ n
2k+1⌉.

Proof. Suppose we have G = Hk,n where k = 2 j for some integer j. Note that a Hamiltonian cycle
exists in each Harary graph and we can assume the vertices around this cycle are labeled v1, . . . , vn. To
construct a 3-path dominating set of G, we create 3-paths as follows. Define a 3-path, Q, by choosing
any vertex vm to be the middle vertex and then choose neighbors vm− j and vm+ j to be the end vertices
such that there is a path of length k

2 from vm to vm− j and vm+ j. Notice, vm dominates k + 1 vertices,
and each of vm− j and vm+ j has an additional k

2 private neighbors with respect to Q so long as n is
sufficiently large. So, Q dominates k + 1 + k

2 +
k
2 = 2k + 1 vertices. Note, Q dominates the largest

number of vertices possible by a 3-path in G. In addition, all the dominated vertices lie on a single
path (Figure 11). Suppose n = (2k + 1)q + r where 0 ≤ r ≤ 2k. Then we can partition the labeled
Hamiltonian cycle of G into q segments of 2k+1 vertices and one segment with r vertices. We choose
a 3-path Q for each of those segments, and thus we can dominate G with ⌈ n

2k+1⌉ 3-paths and this is
best possible. □

k + 1

k
2

k
2

Figure 11. The Harary Graph H6,20 Where the Black Vertices Are in a 3-Path and the Gray
Vertices Are Vertices That Are Not in This 3-Path but Dominated by This 3-path

The case when k is odd is more complicated because the neighbors of a vertex are not confined
to a sequential path along a Hamiltonian cycle. Ignoring the neighbors not along a sequential path,
we can use the proof of Theorem 15 to obtain the following upper bound on the 3-path domination
number of Harary graphs of odd degree.
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Corollary 6. For k odd, we have γP3(Hk,n) ≤ ⌈ n
2k−1⌉.
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