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Abstract: Nanoparticles have potential applications in a wide range of fields, including electron-
ics, medicine and material research, because of their remarkable and exceptional attributes. Carbon
nanocones are planar carbon networks with mostly hexagonal faces and a few non-hexagonal faces
(mostly pentagons) in the core. Two types of nanocone configurations are possible: symmetric and
asymmetric, depending on where the pentagons are positioned within the structure. In addition to be-
ing a good substitute for carbon nanotubes, carbon nanocones have made an identity for themselves
in a number of fields, including biosensing, electrochemical sensing, biofuel cells, supercapacitors,
gas storage devices, and biomedical applications. Their astonishing chemical and physical attributes
have made them well-known and widely accepted in the fields of condensed matter physics, chem-
istry, material science, and nanotechnology. Mathematical and chemical breakthroughs were made
possible by the concept of modeling a chemical structure as a chemical graph and quantitatively
analyzing the related graph using molecular descriptors. Molecular descriptors are useful in many
areas of chemistry, biology, computer science, and other sciences because they allow for the analysis
of chemical structures without the need for experiments. In this work, the quotient graph approach
is used to establish the distance based descriptors of symmetrically configured two-pentagonal and
three-pentagonal carbon nanocones.

Keywords: Nanoparticles, Carbon nanocone network, Quotient graph approach, Distance based
descriptors

1. Introduction

Conical-shaped carbon nanostructures known as carbon nanocones were initially studied by Har-
ris et al. [1]. Iijima et al. only identified them as such in 1999, despite the fact that Harris et al.
had made the initial observation [2]. Single-walled and multi-walled carbon nanocones are the two
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different kinds of nanocones. In 1997, heavy oil was pyrolyzed in a carbon electric arc to create multi-
walled carbon nanocones. In 1999, graphite was laser-ablated to create clustered nanocones [2]. Arc
discharge and laser ablation are the two primary methods for synthesising carbon nanocones; how-
ever, a third method, such as Joule heating, has also been effectively used [3, 4]. Because of its high
yield, lack of purifying requirements, and low cost of production, large-scale commercial synthesis
of nanocones is a suitable application [4].

Nanocones are planar graphs with a majority of hexagonal faces, along with some non-hexagonal
faces in core part. The non-hexagonal faces are typically pentagons, though they can also be triangles,
squares, and other shapes. Different varieties of nanocones are produced based on the presence of
different non-hexagonal faces in the core part of the nanocone structure. One of the major type is
called as single k-gonal nanocone, whose structure is obtained by placing a cycle Ck with, k ≥ 3
vertices in the core and surrounding it with concentric layers of hexagons. Another type is obtained
by differently positioning two or more pentagons in the core part and fencing it with concentric layers
of hexagons. Nanocones with up to five pentagons in the core are defined and eight types of nanocone
cores acknowledged in [5] are given in Figure 1.

Figure 1. The Core of Eight Classes of Nanocone

In comparison to other carbon nanostructures, these one-dimensional carbon nanostructures have
better porosity, outstanding conductivity, high yield, high chemical stability, high purity, low toxi-
cities, and remarkable catalytic capabilities. These remarkable qualities make nanocones a viable
substitute for carbon nanostructures. Thus, in a variety of applications, they offer a practical and
beneficial substitute for carbon nanotubes and potentially graphene. Because of all these character-
istics, it broadened its applicability to a number of domains, including biofuel cells, supercapacitors,
gas storage devices, biochemical sensing, and electrochemical sensing [6–9]. A distinct collection
of structural, mechanical, chemical, and electrical properties are defined by the nanocone’s geome-
try. Determining these qualities requires a substantial amount of work. This work, which models a
compound’s structure as a chemical graph and then conducts quantitative analysis using molecular
descriptors, has become quite efficient with the advent of chemical graph theory. With the aid of their
corresponding molecular graph, this establishes a relationship between the physicochemical qualities
and the structure of the chemical substances through some helpful graph invariants.

The idea of topological descriptors was first introduced by Wiener in 1947 [10]. Eventually many
other topological descriptors were introduced following the pioneering works of Wiener [10] and
Randić [11]. These include distance based descriptors, degree based descriptors, connectivity based
descriptors, etc. Also the degree and distance was combined by Schultz [12] and Gutman [13] and
they came up with degree-distance based descriptors. Each descriptor is related with distinct proper-
ties of a chemical structure and hence, these descriptors can be used to investigate the relationships
between structure, properties and activity of chemical compounds. Pharmaceutical and chemical
techniques are rapidly developing in the current technological development era, resulting in the rapid
emergence of new medicines, nanomaterials, crystalline compounds, and so on. To investigate and
analyse the physical, chemical or biological properties of these arising structures requires different
chemical experiments and huge effort. Pharmaceutical and chemical researchers need to put in a great
effort inorder to cover these vast area of research. The chemical structure’s molecular descriptor is a
non-empirical numerical quantity that quantifies the structure and its diverging arrangement and these

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 120, 301–313



Molecular Descriptors Of Certain Class Of Carbon Nanocone Networks 303

indices can be considered as a total function which draws the molecular structure to an actual number.
The applications of certain distance based molecular descriptors are given in [10, 11, 14–17]. It has
found its application in quantitative structure-property relationships and quantitative structure-activity
relationships. An important application of QSPR/QSAR models is that the properties, activities, be-
havior, etc. of a newly developed or untested chemical compound can be inferred from the molecular
structure of similar compounds whose properties, activities, characteristics, etc have already been
evaluated.

This paper considers carbon nanocones with two and three pentagons in their core. The pentagons
are positioned in such a way that, the nanocone has symmetric configuration. Hence the nanocones
are represented as CN s

x(n) : x ∈ {2, 3} and n ≥ 1, where ′s′ represents the symmetric configuration
of the structure [18]. The nanocone with two pentagonal core fenced with two layers of hexagons,
which is represented as CN s

2(2) is presented in Figure 2 and the nanocone with three pentagonal core
fenced with two layers of hexagons, which is denoted as CN s

3(2) is given in Figure 3. The shaded
portions in the figures (Figure 2 and Figure 3) evidently describes the symmetric configuration of the
nanocone structures. The distance based descriptors for these symmetrically configured nanocone
structures are determined in this study applying the technique of quotient graph approach. The quo-
tient graph approach is initiated since regular cut method is not applicable as the molecular graph
of the nanocone structures are not partial cubes. Various topological descriptors for single k-gonal
nanocone were previously studied by researchers [19–22]. The saturation number of few nanocones
were studied recently [18]. Also eccentricity based topological descriptors of carbon nanocones with
two pentagons and three pentagons in the core of the nanocone were studied [23].

Figure 2. The Symmetrically Configured Two-Pentagonal Carbon Nanocone, CN s
2(2)

Figure 3. The Symmetrically Configured Three-Pentagonal Carbon Nanocone, CN s
3(2)
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2. Mathematical Concepts

Consider a simple, finite, connected graph ζ with vertex set, V(ζ) and edge set, E(ζ). The number
of edges incident to a vertex µ is the degree of that vertex and is denoted as dµ. The shortest distance
between any two vertices µ, ν ∈ V(ζ) is denoted as dζ(µ, ν). The concepts of isometric subgraph,
partial cubes, convex subgraph and Djoković-Winkler(Θ) relation are to be recollected while working
on topological indices [24]. The Djoković-Winkler relation is a major concept applied in computing
topological indices. For two edges ε = µη and ϱ = κν of ζ, if dζ(η, ν) + dζ(µ, κ) , dζ(µ, ν) + dζ(η, κ),
then we say ε is related to ϱ. The relation Θ is reflexive, symmetric and transitive in case of partial
cubes. Its transitive closureΘ∗ forms an equivalence relation in general and partitions the edge set into
convex components. Let F = {F1,F2, ...Fx} be theΘ∗ equivalence class. A partition E = {ξ1, ξ2, ..., ξy}
of E(G) is said to be coarser than partition F if each set ξi is the union of one or more Θ∗-classes of
G.

The concept of strength weighted graph is presented in [24]. A strength weighted graph is denoted
as ζsw = (ζ, [wv, sv], se), whose vertex weight, vertex strength and edge strength are denoted as wv, sv

and se respectively. For convenience, let us consider strength-weighted graph ζsw as ζ. For an edge
ε = µη, the sets Nµ(ε|ζ) = {λ ∈ V(ζ) : dζ(µ, λ) < dζ(η, λ)} and Mµ(ε|ζ) = {χ ∈ E(ζ) : dζ(µ, χ) <
dζ(η, χ)}. The cardinality of sets Nµ(ε|ζ) and Mµ(ε|ζ) are described as follows:

nµ(ε|ζ) =
∑

λ∈Nµ(ε|ζ)

wv(λ)

and
mµ(ε|ζ) =

∑
λ∈Nµ(ε|ζ)

sv(λ) +
∑

χ∈Mµ(ε|ζ)

se(χ)

respectively.
The values of nη(ε|ζ) and mη(ε|ζ) are analogous. For more basic terminologies and definitions refer

to [24, 25].
The distance based molecular descriptors and their corresponding mathematical expression for

strength-weighted graph ζ [24] are given in Table 1.

Wiener W(ζ) =
∑

{µ,η}⊆V(ζ)

wv(µ)wv(η)dζ(µ, η)

Szeged S zv(ζ) =
∑

ε=µη∈E(ζ)

se(ε)nµ(ε|ζ)nη(ε|ζ)

Edge-Szeged S ze(ζ) =
∑

ε=µη∈E(ζ)

se(ε)mµ(ε|ζ)mη(ε|ζ)

Mostar Mo(G) =
∑

ε=µη∈E(ζ)

se(ε)|nµ(ε|ζ) − nη(ε|ζ)|

Edge-Mostar Moe(G) =
∑

ε=µη∈E(ζ)

se(ε)|mµ(ε|ζ) − mη(ε|ζ)|

Padmakar-Ivan PI(ζ) =
∑

ε=µη∈E(ζ)

se(ε)[mµ(ε|ζ) + mη}(ε|ζ)]

Table 1. Distance Based Molecular Descriptors of Strength-Weighted Graph ζ

3. Distance Based Molecular Descriptors

This section comprises of theorems based on the distance based molecular descriptors of sym-
metrically configured two pentagonal nanocone, CN s

2(n), n ≥ 1 and symmetrically configured three
pentagonal nanocone, CN s

3(n), n ≥ 1. For the computation, the quotient graph approach is used, since
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usual cut method is not applicable as the corresponding molecular graphs are not partial cubes. In this
approach, the original graphs are converted into quotient graphs with the help of Θ∗- classes. Further,
the descriptors of each quotient graphs are determined and are added up correspondingly inorder to
obtain the descriptors of original graph. This transformation shrinks the original graphs into smaller
graphs, which makes the computation easier and faster.

3.1. Symmetrically Configured Two Pentagonal Carbon Nanocone, CN s
2(n)

The symmetrically configured two pentagonal nanocone, CN s
2(n), n ≥ 1has 4n2+16n+14 vertices

and 6n2 + 22n + 17 edges. Applying the Djoković-Winkler relation, the Θ∗- classes of CN s
2(n) are

determined and based on the same, CN s
2(n) can have 4n + 2 quotient graphs, namely CN s

2/ξ1, CN s
2/ξ2

and CN s
2/ξi, 3 ≤ i ≤ 4n+ 2, where ξ j, 1 ≤ j ≤ 4n+ 2 are the Θ∗- classes. The Θ∗- classes of CN s

2(2) is
presented in Figure 4. In general, there are three types of quotient graphs for CN s

2, CN s
2/ξ1, CN s

2/ξ2
and CN s

2/ξi, 3 ≤ i ≤ n + 2, which are illustrated in Figure 5, Figure 6 and Figure 7 respectively. Also
there are four copies of the third type of quotient graph CN s

2/ξi.

Figure 4. Θ∗-classes of CN s
2(2)

Figure 5. The Type I Quotient Graph for CN s
2(n), CN s

2/ξ1

Theorem 1. For n ≥ 1,

W(CN s
2(n)) =

56
5

n5 + 118n4 + 448n3 + 820n2 +
3594

5
n + 243.

Proof. The nanocone structure CN s
2(n) has three types of quotient graphs CN s

2/ξ1, CN s
2/ξ2 and

CN s
2/ξi, 3 ≤ i ≤ n + 2, as shown in Figure 5, Figure 6 and Figure 7 respectively.
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Figure 6. The Type Ii Quotient Graph for CN s
2(n), CN s

2/ξ2

Figure 7. The Type III Quotient Graph for CN s
2(n), CN s

2/ξi, 3 ≤ i ≤ n + 2

For the quotient graph CN s
2/ξ1 (Figure 5), the transmission index method [26] can be applied to

compute the wiener index. Therefore,

W(CN s
2/ξ1) =

T (µ)
2
,where µ ∈ V(CN s

2/ξ1) and T (µ) is the transmission index of µ.

=4(wv(α))2 + 18(wv(β))2 + 20(wv(γ))2 + 24wv(α) + 52wv(β)
+ 68wv(γ) + 20wv(α)wv(β) + 40wv(β)wv(γ) + 20wv(α)wv(γ) + 20,

where wv(α) = 4n + 2,wv(β) = 2n + 1,wv(γ) = n2. Hence, W(CN s
2/ξ1) = 20n4 + 160n3 + 444n2 +

496n + 194.
Considering the second type of quotient graph CN s

2/ξ2 (Figure 6), the wiener index can be com-
puted as follows:

W(CN s
2/ξ2) = wv(δ) × wv(∆),where, wv(δ) = wv(∆) = 2n2 + 8n + 7

= (2n2 + 8n + 7)2.

For the quotient graph CN s
2/ξi, 3 ≤ i ≤ n + 2 (Figure 7), considering the four copies of the quotient

graph, the wiener index can be computed as follows.

W(CN s
2/ξi) = 4 × wv(λ) × wv(κ),

= 4(i2 + 2ni − 4n − 4)(4n2 − i2 − 2ni + 20n + 18),

where, wv(λ) = i2 + 2ni − 4n − 4, wv(κ) = 4n2 − i2 − 2ni + 20n + 18. Hence,
n+2∑
i=3

W(CN s
2/ξi) =

2n
5

(28n4 + 235n3 + 640n2 + 710n + 277).
By using ( [24]-Theorem 1), the wiener index of CN s

2(n) can be determined as follows:

W(CN s
2(n)) = W(CN s

2/ξ1) +W(CN s
2/ξ2) +

n+2∑
i=3

W(CN s
2/ξi)
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=
56
5

n5 + 118n4 + 448n3 + 820n2 +
3594

5
n + 243.

□

Theorem 2. For n ≥ 1,

S zv(CN s
2(n)) = 18n6 + 220n5 + 983n4 + 2256n3 + 2871n2 + 1934n + 539.

S ze(CN s
2(n)) =

81
2

n6 +
4349

10
n5 +

5050
3

n4 +
20623

6
n3 +

23899
6

n2 +
37199

15
n + 645.

Proof. As mentioned, CN s
2(n) has three types of quotient graphs CN s

2, CN s
2/ξ1, CN s

2/ξ2 and
CN s

2/ξi, 3 ≤ i ≤ n + 2, as given in Figure 5, Figure 6 and Figure 7 respectively. From Table 1,

S zv(ζ) =
∑

ε=µη∈E(ζ)

se(ε)nµ(ε|ζ)nη(ε|ζ).

• For quotient graph CN s
2/ξ1 (Figure 5),

S zv(CN s
2/ξ1) =

∑
ε=µη∈E(CN s

2/ξ1)

se(ε)nµ(ε|(CN s
2/ξ1))nη(ε|(CN s

2/ξ1))

= 32n5 + 264n4 + 904n3 + 1520n2 + 1240n + 392.

• For quotient graph CN s
2/ξ2 (Figure 6),

S zv(CN s
2/ξ2) =

∑
ε=µη∈E(CN s

2/ξ2)

se(ε)nµ(ε|(CN s
2/ξ2))nη(ε|(CN s

2/ξ2))

= (2n + 3){wv(δ) × wv(∆)},where, wv(δ) = wv(∆) = 2n2 + 8n + 7
= (2n + 3){(2n2 + 8n + 7)2}.

• For quotient graph CN s
2/ξi, 3 ≤ i ≤ n + 2 (Figure 7), considering four copies of the quotient

graph,

S zv(CN s
2/ξi) =

∑
ε=µη∈E(CN s

2/ξi)

se(ε)nµ(ε|(CN s
2/ξi))nη(ε|(CN s

2/ξi))

= 4(n + i){wv(λ) × wv(κ)},
= 4(n + i){(i2 + 2ni − 4n − 4)(4n2 − i2 − 2ni + 20n + 18)}.

where, wv(λ) = i2 + 2ni − 4n − 4,wv(κ) = 4n2 − i2 − 2ni + 20n + 18. Hence,
n+2∑
i=3

S zv(CN s
2/ξi) =

n(18n5 + 180n4 + 643n3 + 1072n2 + 851n + 260)

By using ( [24]-Theorem 1), the szeged index of CN s
2(n) is,

S Zv(CN s
2(n)) = S zv(CN s

2/ξ1) + S zv(CN s
2/ξ2) +

n+2∑
i=3

S zv(CN s
2/ξi)

= 18n6 + 220n5 + 983n4 + 2256n3 + 2871n2 + 1934n + 539.

Similarly using the expression for computing the edge-szeged index from Table 1, the following
can be determined:

S ze(CN s
2/ξ1) =

∑
ε=µη∈E(CN s

2/ξ1)

se(ε)mµ(ε|(CN s
2/ξ1))mη(ε|(CN s

2/ξ1))
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= 72n5 + 534n4 + 1716n3 + 2638n2 + 1886n + 498.

S ze(CN s
2/ξ2) =

∑
ε=µη∈E(CN s

2/ξ2)

se(ε)mµ(ε|(CN s
2/ξ2))mη(ε|(CN s

2/ξ2))

= (2n + 3){sv(δ) × sv(∆)},
= (2n + 3){(3n2 + 10n + 7)2},

where, sv(δ) = sv(∆) = 3n2 + 10n + 7.

S ze(CN s
2/ξi) =

∑
ε=µη∈E(CN s

2/ξi)

se(ε)mµ(ε|(CN s
2/ξi))mη(ε|(CN s

2/ξi))

= 4(n + i){sv(λ) × sv(κ)},

= 4(n + i)
{(3i2

2
−

3i
2
+ 3ni − 7n − 5

)(
6n2 −

3i2

2
− 3ni + 28n +

i
2
+ 22
)}
,

n+2∑
i=3

(S ze(CN s
2/ξi)) =

n
30

(1215n5 + 10347n4 + 30070n3 + 37715n2 + 19175n + 2278),

where, sv(λ) = 3i2
2 −

3i
2 + 3ni− 7n− 5, sv(κ) = 6n2 − 3i2

2 − 3ni+ 28n+ i
2 + 22. By using ( [24]-Theorem

1),

S ze(CN s
2(n)) = S ze(CN s

2/ξ1) + S ze(CN s
2/ξ2) +

n+2∑
i=3

S ze(CN s
2/ξi)

=
81
2

n6 +
4349

10
n5 +

5050
3

n4 +
20623

6
n3 +

23899
6

n2 +
37199

15
n + 645.

□

Theorem 3. For n ≥ 1,

Mo(CN s
2(n)) =4|7 + 4n − n2| + (4n + 8)|5 + 2n − n2| + 16n2 + 28n

+

n+2∑
i=3

(
4(n + i)|4n2 − 2i2 − 4ni + 24n + 22|

)
.

Moe(CN s
2(n)) =(4n + 8)|2n −

3
2

n(n − 1) + 7| + 4|5n −
3
2

n(n − 1) + 10| + 20n2 + 40n

+

n+2∑
i=3

(
4(n + i)|6n2 − 3i2 − 6ni + 2i + 35n + 27|

)
.

PI(CN s
2(n)) =36n4 +

746
3

n3 + 586n2 +
1870

3
n + 238.

Proof. CN s
2(n) has three types of quotient graphs CN s

2, CN s
2/ξ1, CN s

2/ξ2 and CN s
2/ξi, 3 ≤ i ≤ n + 2, as

given in Figure 5, Figure 6 and Figure 7 respectively. From Table 1,

Mo(ζ) =
∑

ε=µη∈E(ζ)

se(ε)|nµ(ε|ζ) − nη(ε|ζ)|.

• For quotient graph CN s
2/ξ1 (Figure 5),

Mo(CN s
2/ξ1) =

∑
ε=µη∈E(CN s

2/ξ1)

se(ε)
∣∣∣nµ(ε|(CN s

2/ξ1)) − nη(ε|(CN s
2/ξ1))

∣∣∣
= 4 |7 + 4n − n2| + (4n + 8) |5 + 2n − n2| + 16n2 + 28n.
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• For quotient graph CN s
2/ξ2 (Figure 6),

Mo(CN s
2/ξ2) =

∑
ε=µη∈E(CN s

2/ξ2)

se(ε)
∣∣∣nµ(ε|(CN s

2/ξ2)) − nη(ε|(CN s
2/ξ2))

∣∣∣
= (2n + 3) × |wv(δ) − wv(∆)|
= (2n + 3)(0) = 0,

where, wv(δ) = wv(∆) = 2n2 + 8n + 7.
• For quotient graph CN s

2/ξi, 3 ≤ i ≤ n + 2 (Figure 7), considering four copies of the quotient
graph,

Mo(CN s
2/ξi) =

∑
ε=µη∈E(CN s

2/ξi)

se(ε)
∣∣∣nµ(ε|(CN s

2/ξi)) − nη(ε|(CN s
2/ξi))

∣∣∣
= 4(n + i) × |wv(λ) − wv(κ)|,

= 4(n + i)
∣∣∣4n2 − 2i2 − 4ni + 24n + 22

∣∣∣,
where, wv(λ) = i2 + 2ni − 4n − 4,wv(κ) = 4n2 − i2 − 2ni + 20n + 18. Hence,

n+2∑
i=3

Mo(CN s
2/ξi) =

n+2∑
i=3

(
4(n + i)

∣∣∣4n2 − 2i2 − 4ni + 24n + 22
∣∣∣).

By using ( [24]-Theorem 1), the mostar index of CN s
2(n) is,

Mo(CN s
2(n)) =Mo(CN s

2/ξ1) + Mo(CN s
2/ξ2) +

n+2∑
i=3

Mo(CN s
2/ξi)

=4
∣∣∣7 + 4n − n2

∣∣∣ + (4n + 8)
∣∣∣5 + 2n − n2

∣∣∣ + 16n2 + 28n

+

n+2∑
i=3

(
4(n + i)

∣∣∣4n2 − 2i2 − 4ni + 24n + 22
∣∣∣).

Similarly using the expression for computing the edge-mostar index from Table 1, the following can
be determined.

Moe(CN s
2/ξ1) =

∑
ε=µη∈E(CN s

2/ξ1)

se(ε)
∣∣∣mµ(ε|(CN s

2/ξ1)) − mη(ε|(CN s
2/ξ1))

∣∣∣
= (4n + 8)

∣∣∣2n −
3
2

n(n − 1) + 7
∣∣∣ + 4
∣∣∣5n −

3
2

n(n − 1) + 10
∣∣∣ + 20n2 + 40n.

Moe(CN s
2/ξ2) =

∑
ε=µη∈E(CN s

2/ξ2)

se(ε)
∣∣∣mµ(ε|(CN s

2/ξ2)) − mη(ε|(CN s
2/ξ2))

∣∣∣
= (2n + 3) ×

∣∣∣sv(δ) − sv(∆)
∣∣∣,

= (2n + 3)(0) = 0.

where, sv(δ) = sv(∆) = 3n2 + 10n + 7.

Moe(CN s
2/ξi) =

∑
ε=µη∈E(CN s

2/ξi)

se(ε)
∣∣∣mµ(ε|(CN s

2/ξi)) − mη(ε|(CN s
2/ξi))

∣∣∣
= 4(n + i) ×

∣∣∣sv(λ) − sv(κ)
∣∣∣,

= 4(n + i)
∣∣∣6n2 − 3i2 − 6ni + 2i + 35n + 27

∣∣∣
n+2∑
i=3

(Moe(CN s
2/ξi)) =

n+2∑
i=3

(
4(n + i)

∣∣∣6n2 − 3i2 − 6ni + 2i + 35n + 27
∣∣∣).

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 120, 301–313



Ragoub, et al. 310

where, sv(λ) = 3i2
2 −

3i
2 +3ni−7n−5, sv(κ) = 6n2− 3i2

2 −3ni+28n+ i
2+22.Hence by using ( [24]-Theorem

1),

Moe(CN s
2(n)) =Moe(CN s

2/ξ1) + Moe(CN s
2/ξ2) +

n+2∑
i=3

Moe(CN s
2/ξi)

=(4n + 8)
∣∣∣2n −

3
2

n(n − 1) + 7
∣∣∣ + 4
∣∣∣5n −

3
2

n(n − 1) + 10
∣∣∣ + 20n2 + 40n

+

n+2∑
i=3

(
4(n + i)

∣∣∣6n2 − 3i2 − 6ni + 2i + 35n + 27
∣∣∣).

In the similar pattern, using the expression PI(ζ) =
∑

ε=µη∈E(ζ)

se(ε)[mµ(ε|ζ) + mη(ε|ζ)],

PI(CN s
2/ξ1) = 54n3 + 236n2 + 390n + 196,

PI(CN s
2/ξ2) = (2n + 3)(6n2 + 20n + 14),

PI(CN s
2/ξi) = 4(n + i)(6n2 + 21n − i + 17),

n+2∑
i=3

(PI(CN s
2/ξi)) =

4n
3

(27n3 + 137n2 + 219n + 109).

Hence,

PI(CN s
2(n)) = PI(CN s

2/ξ1) + PI(CN s
2/ξ2) +

n+2∑
i=3

PI(CN s
2/ξi)

= 36n4 +
746
3

n3 + 586n2 +
1870

3
n + 238.

□

3.2. Symmetrically Configured Three Pentagonal Carbon Nanocone, CN s
3(n)

The symmetrically configured three pentagonal nanocone, CN s
3(n), n ≥ 1 has 3n2+12n+10 vertices

and
9
2

n2 +
33
2

n + 12 edges. Based on the Θ∗- classes of CN s
3(n), the original graph can have 3n + 1

quotient graphs, namely CN s
3/ξ1 and CN s

3/ξi, 2 ≤ i ≤ 3n + 1, where ξ j, 1 ≤ j ≤ 3n + 1 are the Θ∗-
classes of the original graph. The Θ∗- classes of CN s

3(2) is presented in Figure 8. For each i, there are
three copies of the quotient graph CN s

3/ξi. Therefore, in general, CN s
3(n) have two types of quotient

graphs, CN s
3/ξ1, CN s

3/ξi, 2 ≤ i ≤ n + 1, which are illustrated in Figure 9 and Figure 10 respectively.

Theorem 4. For n ≥ 1,

W(CN s
3(n)) =

22
5

n5 + 53n4 +
423
2

n3 + 376n2 +
3091
10

n + 96

Proof. The proof follows the similar pattern as in Theorem 1. □

Theorem 5. For n ≥ 1,

S zv(CN s
3(n)) =

27
4

n6 + 96n5 + 459n4 + 1044n3 +
4881

4
n2 + 711n + 165.

S ze(CN s
3(n)) =

243
16

n6 +
15069

80
n5 +

12655
16

n4 +
25367

16
n3 +

13327
8

n2 +
4571

5
n + 216.

Proof. The nanocone CN s
3(n) have two types of quotient graphs, CN s

3/ξ1, CN s
3/ξi, 2 ≤ i ≤ n + 1

(Figure 9 and Figure 10 respectively) and there are three copies of the later type. The remaining proof
is as in Theorem 2. □
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Figure 8. Θ∗-classes of CN s
2(2)

Figure 9. The Type I Quotient Graph for CN s
3(n), CN s

2/ξ1

Figure 10. The Type II Quotient Graph for CN s
3(n), CN s

2/ξi, 2 ≤ i ≤ n + 1

Theorem 6. For n ≥ 1,

Mo(CN s
3(n)) =(6n + 6)

∣∣∣4 + 2n − n2
∣∣∣ + 3
∣∣∣n2 − 2

∣∣∣
+

n+1∑
i=2

(
3(n + i + 1)

∣∣∣2i2 + 4ni + 4i − 3n2 − 16n − 16
∣∣∣).

Moe(CN s
3(n)) =3

∣∣∣n + 3
2

n(n − 1) − 3
∣∣∣ + 6
∣∣∣n − 3

2
n(n − 1) + 5

∣∣∣ + 6n
∣∣∣2n −

3
2

n(n − 1) + 6
∣∣∣

+

n+1∑
i=2

(
3(n + i + 1)

∣∣∣4i −
47n

2
+ 6ni + 3i2 −

9n2

2
− 21
∣∣∣).
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PI(CN s
3(n)) =

81
4

n4 + 137n3 +
1311

4
n2 + 322n + 111.

Proof. The quotient graphs of CN s
3(n) are CN s

3/ξ1 (Figure 9) and CN s
3/ξi, 2 ≤ i ≤ n + 1 (Figure 10)

and there are three copies of the later type. The remaining proof is similar to proof of Theorem 3. □

4. Conclusions

Investigation a chemical structure experimentally is time consuming as well as cost consuming.
Determining molecular descriptors of the chemical structure eases the procedure and is found to be
an effective way to analyse the structure. In this work, the distance based molecular descriptors for
symmetrically configured two pentagonal nanocone, CN s

2(n), n ≥ 1 and symmetrically configured
three pentagonal nanocone, CN s

3(n), n ≥ 1 are determined using a convincing technique, known as
the quotient graph approach. When compared to other nanoparticles like nanotubes, graphene, etc.,
nanocones have unique features that make them a viable substitute for those nanostructures. This
research contributes to the understanding of several nanocone structural features that are useful in a
variety of industries. Additionally, the graphical depiction could support a comparison analysis of the
structure’s different attributes.
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11. Randić, M., 1975. Characterization of molecular branching. Journal of the American Chemical
Society, 97(23), pp.6609-6615.

12. Schultz, H. P., 1989. Topological organic chemistry. 1. Graph theory and topological indices of
alkanes. Journal of Chemical Information and Computer Sciences, 29(3), pp.227-228.

13. Gutman, I., 1994. Selected properties of the Schultz molecular topological index. Journal of
Chemical Information and Computer Sciences, 34(5), pp.1087-1089.

14. Balaban, A. T., 1976. Chemical Applications of Graph Theory. Academic Press.

15. Gutman, I. and Trinajstić, N., 1972. Graph theory and molecular orbitals. Total ϕ-electron energy
of alternant hydrocarbons. Chemical Physics Letters, 17(4), pp.535-538.
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