
Journal of Combinatorial Mathematics and Combinatorial Computing, 120: 75–90
DOI:10.61091/jcmcc120-007
http://www.combinatorialpress.com/jcmcc
Received 10 September 2019, Accepted 20 December 2020, Published 30 June 2024

Article

On Vertex-Disjoint Chorded Cycles and Degree Sum Conditions

Ronald J. Gould1, Kazuhide Hirohata2, and Ariel Keller Rorabaugh3,*

1 Department of Mathematics, Emory University, Atlanta, GA 30322 USA
2 Department of Industrial Engineering, Computer Science, National Institute of Technology,

Ibaraki College, Hitachinaka, Ibaraki 312-8508 Japan
3 Department of Electrical Engineering and Computer Science, University of Tennessee,

Knoxville, TN 37996 USA

* Correspondence: ariel.keller@gmail.com

Abstract: In this paper, we consider a degree sum condition sufficient to imply the existence of k
vertex-disjoint chorded cycles in a graph G. Let σ4(G) be the minimum degree sum of four indepen-
dent vertices of G. We prove that if G is a graph of order at least 11k + 7 and σ4(G) ≥ 12k − 3 with
k ≥ 1, then G contains k vertex-disjoint chorded cycles. We also show that the degree sum condition
on σ4(G) is sharp.
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1. Introduction

The study of cycles in graphs is a rich and an important area. One question of particular interest
is to find conditions that guarantee the existence of k vertex-disjoint cycles. Corrádi and Hajnal [1]
first considered a minimum degree condition to imply a graph must contain k vertex-disjoint cycles,
proving that if |G| ≥ 3k and the minimum degree δ(G) ≥ 2k, then G contains k vertex-disjoint cycles.
For an integer t ≥ 1, let

σt(G) = min

∑
v∈X

dG(v) : X is an independent vertex setof G with |X| = t.

 ,
and σt(G) = ∞ when the independence number α(G) < t. Enomoto [2] and Wang [3] independently
extended the Corrádi and Hajnal result, requiring a weaker condition on the minimum degree sum of
any two non-adjacent vertices. They proved that if |G| ≥ 3k and σ2(G) ≥ 4k − 1, then G contains k
vertex-disjoint cycles. In 2006, Fujita et al. [4] proved that if |G| ≥ 3k + 2 and σ3(G) ≥ 6k − 2, then
G contains k vertex-disjoint cycles, and in [5], this result was extended to σ4(G) ≥ 8k − 3.

An extension of the study of vertex-disjoint cycles is that of vertex-disjoint chorded cycles. A
chord of a cycle is an edge between two non-adjacent vertices of the cycle. We say a cycle is chorded
if it contains at least one chord. In 2008, Finkel proved the following result on the existence of k
vertex-disjoint chorded cycles.

Theorem 1. (Finkel [6]) Let k ≥ 1 be an integer. If G is a graph of order at least 4k and δ(G) ≥ 3k,
then G contains k vertex-disjoint chorded cycles.
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In 2010, Chiba et al. proved Theorem 2. Since σ2(G) ≥ 2δ(G), Theorem 2 is stronger than
Theorem 1.

Theorem 2 (Chiba, Fujita, Gao, Li [7]). Let k ≥ 1 be an integer. If G is a graph of order at least 4k
and σ2(G) ≥ 6k − 1, then G contains k vertex-disjoint chorded cycles.

Recently, Theorem 2 was extended as follows. Since σ3(G) ≥ 3σ2(G)/2, when the order of G is
sufficiently large, Theorem 3 is stronger than Theorem 2.

Theorem 3 (Gould, Hirohata, Rorabaugh [8]). Let k ≥ 1 be an integer. If G is a graph of order at
least 8k + 5 and σ3(G) ≥ 9k − 2, then G contains k vertex-disjoint chorded cycles.

Remark 1. We note if k = 1 in Theorem 3, then Theorem 3 holds under the condition that |G| ≥ 7.
In this paper, we consider a similar extension for chorded cycles, as, in [5], the existence of k

vertex-disjoint cycles was proved under the condition σ4(G). In particular, we first show the follow-
ing.

Theorem 4. If G is a graph of order at least 15 and σ4(G) ≥ 9, then G contains a chorded cycle.

Remark 2. We consider the following graph G of order 14. (See Fig. 1.) Then G satisfies the σ4(G)
condition in Theorem 4. However, G does not contain a chorded cycle. Thus |G| ≥ 15 is necessary.

u1 u2 u3 u4 u5

u6

u7 u8 u9 u10 u11

v1 v2

v3

Figure 1. The Graph G of Order 14. The White Vertex (◦) Shows Degree 2,
and the Black Vertex (•) Shows Degree 3

Theorem 5. Let k ≥ 1 be an integer. If G is a graph of order n ≥ 11k + 7 and σ4(G) ≥ 12k − 3, then
G contains k vertex-disjoint chorded cycles.

Remark 3. Theorem 5 is sharp with respect to the degree sum condition. Consider the complete
bipartite graph G = K3k−1,n−3k+1, where large n = |G|. Then σ4(G) = 4(3k − 1) = 12k − 4. However,
G does not contain k vertex-disjoint chorded cycles, since any chorded cycle must contain at least
three vertices from each partite set, in particular, from the 3k − 1 partite set. Thus σ4(G) ≥ 12k − 3 is
necessary.

For other related results on vertex-disjoint chorded cycles in graphs and bipartite graphs, we refer
the reader to see [9–12].

Let G be a graph, H a subgraph of G and X ⊆ V(G). For u ∈ V(G), the set of neighbors of u in G is
denoted by NG(u), and we denote dG(u) = |NG(u)|. For u ∈ V(G), we denote NH(u) = NG(u)∩V(H) and
dH(u) = |NH(u)|. Also we denote dH(X) =

∑
u∈X dH(u). If H = G, then dG(X) = dH(X). Furthermore,

NG(X) = ∪u∈XNG(u) and NH(X) = NG(X) ∩ V(H). Let A, B be two vertex-disjoint subgraphs of G.
Then NG(A) = NG(V(A)) and NB(A) = NG(A) ∩ V(B). The subgraph of G induced by X is denoted
by ⟨X⟩. Let G − X = ⟨V(G) − X⟩ and G − H = ⟨V(G) − V(H)⟩. If X = {x}, then we write G − x for
G − X. If there is no fear of confusion, then we use the same symbol for a graph and its vertex set.
For two disjoint graphs G1 and G2, G1 ∪ G2 denotes the union of G1 and G2. Let Q be a path or a
cycle with a given orientation and x ∈ V(Q). Then x+ denotes the first successor of x on Q and x−

denotes the first predecessor of x on Q. If x, y ∈ V(Q), then Q[x, y] denotes the path of Q from x to
y (including x and y) in the given direction. The reverse sequence of Q[x, y] is denoted by Q−[y, x].
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We also write Q(x, y] = Q[x+, y], Q[x, y) = Q[x, y−] and Q(x, y) = Q[x+, y−]. If Q is a path (or a
cycle), say Q = x1, x2, . . . , xt(, x1), then we assume an orientation of Q is given from x1 to xt (if Q is
a cycle, then the orientation is clockwise). If P is a path connecting x and y of V(G), then we denote
the path P as P[x, y]. If G is one vertex, that is, V(G) = {x}, then we simply write x instead of G. For
an integer r ≥ 1 and two vertex-disjoint subgraphs A, B of G, we denote by (d1, d2, . . . , dr) a degree
sequence from A to B such that dB(vi) ≥ di and vi ∈ V(A) for each 1 ≤ i ≤ r. In this paper, since it is
sufficient to consider the case of equality in the above inequality, when we write (d1, d2, . . . , dr), we
assume dB(vi) = di for each 1 ≤ i ≤ r. For two disjoint X,Y ⊆ V(G), E(X,Y) denotes the set of edges
of G connecting a vertex in X and a vertex in Y . For a graph G, comp(G) is the number of components
of G. A cycle of length ℓ is called a ℓ-cycle. For terminology and notation not defined here, see [13].

2. Preliminaries

Definition 1. Suppose C1, . . . ,Cr are r vertex-disjoint chorded cycles in a graph G. We say
{C1, . . . ,Cr} is minimal if G does not contain r vertex-disjoint chorded cycles C′1, . . . ,C

′
r such that

| ∪r
i=1 V(C′i )| < | ∪

r
i=1 V(Ci)|.

Definition 2. Let C = v1, . . . , vt, v1 be a cycle with chord viv j, i < j. We say a chord vv′ , viv j

is parallel to viv j if either v, v′ ∈ C[vi, v j] or v, v′ ∈ C[v j, vi]. Note if two distinct chords share an
endpoint, then they are parallel. We say two distinct chords are crossing if they are not parallel.

Definition 3. Let uiv j and uℓvm be two distinct edges between two vertex-disjoint paths P1 = u1, . . . , us

and P2 = v1, . . . , vt. We say uiv j and uℓvm are parallel if either i ≤ ℓ and j ≤ m, or ℓ ≤ i and m ≤ j.
Note if two distinct edges between P1 and P2 share an endpoint, then they are parallel. We say two
distinct edges between two vertex-disjoint paths are crossing if they are not parallel.

Definition 4. Let viv j and vℓvm be two distinct edges between vertices of a path P = v1, . . . , vt, with
j ≥ i + 2 and m ≥ ℓ + 2. We say viv j and vℓvm are nested if either i ≤ ℓ < m ≤ j or ℓ ≤ i < j ≤ m.

Definition 5. Let P = v1, . . . , vt be a path. We say a vertex vi on P has a left edge if there exists an
edge viv j for some j < i − 1, that is not an edge of the path. We also say vi has a right edge if there
exists an edge viv j for some j > i + 1, that is not an edge of the path.

3. Lemmas

The following lemmas will be needed.

Lemma 1 ( [8]). Let r ≥ 1 be an integer, and let C = {C1, . . . ,Cr} be a minimal set of r vertex-
disjoint chorded cycles in a graph G. If |Ci| ≥ 7 for some 1 ≤ i ≤ r, then Ci has at most two chords.
Furthermore, if the Ci has two chords, then these chords must be crossing.

Lemma 2 ( [8]). Let r ≥ 1 be an integer, and let C = {C1, . . . ,Cr} be a minimal set of r vertex-disjoint
chorded cycles in a graph G. Then dCi(x) ≤ 4 for any 1 ≤ i ≤ r and any x ∈ V(G) − ∪r

i=1V(Ci).
Furthermore, for some C ∈ C and some x ∈ V(G) − ∪r

i=1V(Ci), if dC(x) = 4, then |C| = 4, and if
dC(x) = 3, then |C| ≤ 6.

Lemma 3 ( [8]). Suppose there exist at least three mutually parallel edges or at least three mutually
crossing edges connecting two vertex-disjoint paths P1 and P2. Then there exists a chorded cycle in
⟨P1 ∪ P2⟩.

Lemma 4 ( [8]). Suppose there exist at least five edges connecting two vertex-disjoint paths P1 and
P2 with |P1∪P2| ≥ 7. Then there exists a chorded cycle in ⟨P1 ∪ P2⟩ not containing at least one vertex
of ⟨P1 ∪ P2⟩.
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Lemma 5 ( [8]). Let P1, P2 be two vertex-disjoint paths, and let u1, u2 (u1 , u2) be in that order on
P1. Suppose dP2(ui) ≥ 2 for each i ∈ {1, 2}. Then there exists a chorded cycle in ⟨P1[u1, u2] ∪ P2⟩.

Lemma 6 ( [8]). Let H be a graph containing a path P = v1, . . . , vt (t ≥ 3), and not containing a
chorded cycle. If v1vi ∈ E(H) for some i ≥ 3, then dP(v j) ≤ 3 for any j ≤ i − 1 and in particular,
dP(vi−1) = 2. And if vtvi ∈ E(H) for some i ≤ t − 2, then dP(v j) ≤ 3 for any j ≥ i + 1 and in particular,
dP(vi+1) = 2.

Lemma 7 ( [8]). Let H be a graph containing a path P = v1, . . . , vt (t ≥ 6), and not containing a
chorded cycle. If dP(v1) = 1, then dP(vi) = 2 for some 3 ≤ i ≤ 5, and if v1v3 ∈ E(H), then dP(vi) = 2
for some 4 ≤ i ≤ 6.

Lemma 8 ( [8]). Let H be a graph containing a path P = v1, . . . , vt (t ≥ 6), and not containing a
chorded cycle. If dP(vt) = 1, then dP(vi) = 2 for some t − 4 ≤ i ≤ t − 2, and if vtvt−2 ∈ E(H), then
dP(vi) = 2 for some t − 5 ≤ i ≤ t − 3.

Lemma 9. Let H be a connected graph of order at least 6. Suppose H contains neither a chorded
cycle nor a Hamiltonian path. Let H = ⟨P1 ∪ P2⟩, where P1 = u1, . . . , us (s ≥ 5) is a longest path in
H and P2 = v1, . . . , vt (t ≥ 1) is a longest path in H − P1. If ui ∈ V(P1) for some 2 ≤ i ≤ s − 3 is
adjacent to an endpoint v of P2 and u j ∈ V(P1) for some i + 2 ≤ j ≤ s − 1 is adjacent to an endpoint
v′ of P2 (possibly, v = v′), then dH(uℓ) = 2 for some ℓ ∈ {i + 1, j − 1}.

Proof. Let v, v′ be as in the lemma, and we may assume v = v1 and v′ = vt (possibly, v = v′). Suppose
dH(uℓ) ≥ 3 for each ℓ ∈ {i + 1, j − 1}. If ui+1 has a left edge, say ui+1uh with h < i, then

P1[uh, ui], v1, P2[v1, vt], u j, P−1 [u j, ui+1], uh

is a cycle with chord uiui+1, a contradiction. By symmetry, u j−1 does not have a right edge. Since
uiv1, u jvt ∈ E(H), NP2(uℓ) = ∅ for each ℓ ∈ {i + 1, j − 1}, otherwise, since consecutive vertices on P1

each have adjacencies on P2, there exists a longer path than P1 in H, a contradiction. Note that even
if v = v′, NP2(uℓ) = ∅ for each ℓ ∈ {i + 1, j − 1}. Since dH(uℓ) ≥ 3 for each ℓ ∈ {i + 1, j − 1}, ui+1 has a
right edge and u j−1 has a left edge. No vertex in P1[ui, u j] can have an edge that does not lie on P1 to
some other vertex in P1[ui, u j], otherwise, this edge is a chord of the cycle P1[ui, u j], vt, P−2 [vt, v1], ui.
Thus we have edges ui+1uh with h > j, and u j−1uh′ with h′ < i. Then

P1[uh′ , ui], v1, P2[v1, vt], u j, P1[u j, uh], ui+1, P1[ui+1, u j−1], uh′

is a cycle with chord uiui+1 (and u j−1u j), a contradiction. Thus the lemma holds. □

Lemma 10 ( [8]). Let H be a graph of order at least 13. Suppose H does not contain a chorded cycle.
If H contains a Hamiltonian path, then there exists an independent set X of four vertices in H such
that dH(X) ≤ 8.

Lemma 11 ( [8]). Let H be a connected graph of order at least 4. Suppose H contains neither a
chorded cycle nor a Hamiltonian path. Let P1 = u1, . . . , us (s ≥ 3) be a longest path in H, and let
P2 = v1, . . . , vt (t ≥ 1) be a longest path in H − P1. Then the following statements hold.
(i) NH−P1(ui) = ∅ for each i ∈ {1, s}.
(ii) dH(ui) = dP1(ui) ≤ 2 for each i ∈ {1, s}.
(iii) NH−(P1∪P2)(v j) = ∅ for each j ∈ {1, t}.
(iv) dP2(v j) ≤ 2 for each j ∈ {1, t}.
(v) dPi(z) ≤ 2 for each z ∈ V(H) − V(Pi) and each i ∈ {1, 2}.
(vi) dP1({v1, vt}) ≤ 3 for each t ≥ 2.

Proofs of (v) and (vi). Note parts (i) to (iv) are from [8], hence we only prove parts (v) and (vi). Since
H does not contain a chorded cycle, (v) holds. Suppose dP1({v1, vt}) ≥ 4. By (v), dP1(v j) = 2 for each
j ∈ {1, t}. Then, by Lemma 5, H has a chorded cycle, a contradiction. Thus (vi) holds. □
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Lemma 12. Let H be a connected graph of order at least 15. Suppose H contains neither a chorded
cycle nor a Hamiltonian path. Let P1 = u1, . . . , us (s ≥ 3) be a longest path in H, and let P2 =

v1, . . . , vt (t ≥ 1) be a longest path in H − P1 such that dP1(v1) ≤ dP1(vt). Then there exists an
independent set X of four vertices in H such that {u1, us, v1} ⊆ X and dH(X) ≤ 8.

Remark 4. Let H be a graph of order 14 shown in Fig. 1 (Remark 2, Theorem 4), P1 = u1, . . . , u11,
and P2 = v1, v2, v3. Then H satisfies all the conditions except for the order in Lemma 12. However,
the conclusion does not hold. Thus |H| ≥ 15 is necessary.

Proof. Suppose u1us ∈ E(H). Since H is connected and V(H − P1) , ∅, there exists a longer path
than P1, a contradiction. Thus u1us < E(H). Let R = H − (P1 ∪ P2). If t = 1, that is, v1 = vt, then
dP1(v1) ≤ 2 by Lemma 11 (v). If t ≥ 2, then dP1({v1, vt}) ≤ 3 by Lemma 11 (vi). Then dP1(v1) ≤ 1 by
the assumption (dP1(v1) ≤ dP1(vt)), and dP1(vt) ≤ 2 by Lemma 11 (v).

Claim 6. If |P2| ≤ 3, then H = ⟨P1 ∪ P2⟩.

Proof. Suppose H , ⟨P1 ∪ P2⟩. Now we prove the following two subclaims.

Subclaim 7. For any v ∈ V(P2), NR(v) = ∅.

Proof. By Lemma 11 (iii), NR(v j) = ∅ for each j ∈ {1, t}. If |P2| ≤ 2, then the subclaim holds. Thus
we may assume |P2| = 3. Suppose NR(v′) , ∅ for some v′ ∈ V(P2). Then v′ = v2. Let w1 ∈ NR(v2).
If v1v3 ∈ E(H), then the subclaim holds, otherwise, there exists a longer path than P2 in H − P1,
a contradiction. Thus v1v3 < E(H). Since dP1(v1) ≤ 1 and dP1(v3) ≤ 2, we have dH(v1) ≤ 2 and
dH(v3) ≤ 3. Suppose a vertex on P2 has a neighbor w1 in R. Then v2w1 ∈ E(H). Recall u1us < E(H),
and note uiv j < E(H) for any i ∈ {1, s} and any j ∈ {1, 3} by Lemma 11 (i). We also note dH(ui) ≤ 2 for
any i ∈ {1, s} by Lemma 11 (ii). If dH({v1, v3}) ≤ 4, then X = {u1, us, v1, v3} is an independent set in H
and dH(X) ≤ 8, and X is the desired set. Thus we may assume dH({v1, v3}) = 5, that is, dH(v1) = 2 and
dH(v3) = 3. Then dP1(v1) = 1 and dP1(v3) = 2. Recall w1 ∈ NR(v2). Clearly, NR(w1) = ∅, otherwise,
there exists a longer path than P2 in H − P1, a contradiction. If dH(w1) ≤ 2, then X = {u1, us, v1,w1}

is the desired set. Thus dH(w1) ≥ 3, that is, dP1(w1) ≥ 2. Note w1 and v3 lie on a path P = w1, v2, v3,
and w1, v3 send at least two edges each to P1. By Lemma 5, there exists a chorded cycle in ⟨P1 ∪ P⟩,
a contradiction. □

Subclaim 8. For any u ∈ V(P1), NR(u) = ∅.

Proof. We first prove dH(v1) ≤ 2. Suppose not, that is, dH(v1) ≥ 3. Recall dP1(v1) ≤ 1. By Sub-
claim 7 and Lemma 11 (iv), dP1(v1) = 1 and dP2(v1) = 2. Thus |P2| = 3 and v1v3 ∈ E(H). Since
dP1(v1) ≤ dP1(v3) by the assumption, dP1(v3) ≥ 1. Then ⟨P1 ∪ P2⟩ contains a cycle with chord v1v3,
a contradiction. Thus dH(v1) ≤ 2. Suppose there exists a vertex in P1 with a neighbor w1 in R. If
dH(w1) ≤ 2, then X = {u1, us, v1,w1} is the desired set. Thus dH(w1) ≥ 3.

First suppose dP1(w1) ≥ 2. Then dP1(w1) = 2 by Lemma 11 (v), and dR(w1) ≥ 1 by Subclaim
7. Let w2 ∈ NR(w1). If dH(w2) ≤ 2, then X = {u1, us, v1,w2} is the desired set. Thus dH(w2) ≥ 3. If
dP1(w2) ≥ 2, then we have two vertices on a path P = w1,w2, each sending at least two edges to another
path P1, and by Lemma 5, a chorded cycle exists in ⟨P1 ∪ P⟩, a contradiction. Thus dP1(w2) ≤ 1, and
by Subclaim 7, dR(w2) ≥ 2. Let w3 ∈ NR−w1(w2). If dH(w3) ≤ 2, then X = {u1, us, v1,w3} is the
desired set. Thus dH(w3) ≥ 3. Suppose dP1(w3) ≥ 2. Then consider the path P = w1,w2,w3. Since w1

and w3 send at least two edges to another path P1, a chorded cycle exists in ⟨P1 ∪ P⟩ by Lemma 5, a
contradiction. Thus dP1(w3) ≤ 1. Also, NR−{w1,w2}(w3) = ∅, otherwise, there exists a longer path than
P2 in H − P1, a contradiction. By Subclaim 7, NP2(w3) = ∅. Thus dP1(w3) = 1 and w1,w2 ∈ NH(w3).
Then ⟨P1 ∪ P⟩ contains a cycle with chord w1w3, a contradiction.

Next suppose dP1(w1) = 1. Then dR(w1) ≥ 2 by Subclaim 7. Let w2,w3 ∈ NR(w1). If dH(wi) ≤ 2
for some i ∈ {2, 3}, then X = {u1, us, v1,wi} is the desired set. Thus dH(wi) ≥ 3 for each i ∈ {2, 3}.
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Suppose dR(wi) ≥ 3 for some i ∈ {2, 3}. Without loss of generality, we may assume i = 2. Then w2

has a neighbor w4 in R distinct from w1 and w3, and hence w3,w1,w2,w4 is a longer path than P2 in
H − P1, a contradiction. Thus for each i ∈ {2, 3}, dR(wi) ≤ 2, and then dP1(wi) ≥ 1 by Subclaim 7.
Note wi for each i ∈ {2, 3} does not have a neighbor in R distinct from w1,w2,w3, otherwise, there
exists a longer path than P2 in H − P1, a contradiction. Now suppose dR(wi) = 2 for some i ∈ {2, 3}.
Then w2w3 ∈ E(H). Let P = w2,w1,w3. Since dP1(wi) ≥ 1 for each i ∈ {2, 3}, there exists a cycle with
chord w2w3 in ⟨P1 ∪ P⟩, a contradiction. Thus dR(wi) ≤ 1 for each i ∈ {2, 3}, and then dP1(wi) ≥ 2 by
Subclaim 7. By Lemma 5, a chorded cycle exists in ⟨P1 ∪ P⟩, a contradiction. □

Since H is connected, we get a contradiction by Subclaims 7 and 8. Thus Claim 6 holds. □

Claim 9. We have dP1(vt) ≥ 1.

Proof. Suppose dP1(vt) = 0. By the assumption (dP1(v1) ≤ dP1(vt)), we have dP1(v1) = 0. Then we
may assume |P2| = t ≥ 3, otherwise, we get a contradiction by Claim 6 and the connectedness of H.
Recall u1us < E(H). By Lemmas 11 (iii) and (iv), dH(v j) ≤ 2 for each j ∈ {1, t}. If v1vt < E(H), then
X = {u1, us, v1, vt} is the desired set. Thus v1vt ∈ E(H).

First suppose |P2| = t = 3. By Claim 6, H = ⟨P1 ∪ P2⟩. Since v1v3 ∈ E(H), consider P′2 = v2, v1, v3.
Then v2 can be regarded as an endpoint of P′2. Since dP1(v1) = 0, we may assume dP1(v2) = 0 by
considering v2 instead of v1. Since NP1(P2) = ∅, this contradicts the connectedness of H.

Next suppose |P2| = t ≥ 4. Recall u1us < E(H) and v1vt ∈ E(H). Consider P′2 = P−2 [vt−1, v1], vt.
Then vt−1 can be regarded as an endpoint of P′2. Thus NR(vt−1) = ∅ by Lemma 11 (iii), and dP2(vt−1) ≤ 2
by Lemma 11 (iv). Since dP1(v1) = 0, we may assume dP1(vt−1) = 0 by considering vt−1 instead of v1.
Thus dH(vt−1) = 2. Hence X = {u1, us, v1, vt−1} is the desired set, and Claim 9 holds. □

Now we consider the following three cases based on |P2|.
Case 1. Suppose |P2| = t = 1.

Then P2 = v1. By Claim 6, H = ⟨P1 ∪ P2⟩. Since |H| ≥ 15, |P1| ≥ 14. Recall dP1(v1) ≤ 2 when
t = 1. By Claim 9, dP1(v1) ∈ {1, 2}. Note dH(v1) = dP1(v1).

First suppose dP1(v1) = 2. Let ui, u j ∈ NP1(v1) with i < j. Note i ≥ 2 and j ≤ s − 1 by
Lemma 11 (i). If j = i + 1, then H contains a Hamiltonian path, a contradiction. Thus j ≥ i + 2. By
Lemma 9, dH(uℓ) = 2 for some ℓ ∈ {i + 1, j − 1}. Note uℓu1, uℓus < E(H). Then X = {u1, uℓ, us, v1} is
the desired set.

Next suppose dP1(v1) = 1. Note dP1(u1) ≤ 2. Assume u1ui ∈ E(H) for some 4 ≤ i ≤ s − 1. By
Lemma 6, dP1(ui−1) = 2. If v1ui−1 ∈ E(H), then v1, ui−1, P−1 [ui−1, u1], ui, P1[ui, us] is a Hamiltonian
path, a contradiction. Thus v1ui−1 < E(H) and dH(ui−1) = 2. Then X = {u1, ui−1, us, v1} is the desired
set. Thus if dP1(u1) = 2, then u1u3 ∈ E(H). Then dP1(ui) = 2 for some 3 ≤ i ≤ 6 by Lemma 7.
Similarly, either dP1(us) = 1 or usus−2 ∈ E(H) by symmetry. Then dP1(u j) = 2 for some s−5 ≤ j ≤ s−2
by Lemma 8. Note |P1| = s ≥ 14. Since dP1(v1) = 1 by our assumption, v1uℓ < E(H) for some
ℓ ∈ {i, j}, and dH(uℓ) = 2. Thus X = {u1, uℓ, us, v1} is the desired set.
Case 2. Suppose |P2| = t ∈ {2, 3}.

By Claim 6, H = ⟨P1 ∪ P2⟩. Recall dP1({v1, vt}) ≤ 3, dP1(v1) ≤ 1, and dP1(vt) ≤ 2. We also note
dP1({v1, vt}) ≥ 1 by Claim 9. Since |H| ≥ 15, |P1| = s ≥ 12.

First suppose |NP1({v1, vt})| ∈ {2, 3}. Let ui, u j ∈ NP1({v1, vt}) with i < j. Assume j = i + 1.
Then H contains a longer path than P1, a contradiction. Thus j ≥ i + 2. Note i ≥ 2 and j ≤ s − 1 by
Lemma 11 (i). By Lemma 9, dH(uℓ) = 2 for some ℓ ∈ {i+1, j−1}. Note uℓu1 < E(H) and uℓus < E(H).
If dH(v1) ≤ 2, then X = {u1, uℓ, us, v1} is the desired set. Thus we may assume that dH(v1) ≥ 3. Since
dP1(v1) ≤ 1 and dP2(v1) ≤ 2, we have dP1(v1) = 1 and dP2(v1) = 2. Then t = 3 and v1v3 ∈ E(H). Since
dP1(v1) ≤ dP1(vt) = dP1(v3) by the assumption, we have dP1(v3) ≥ 1. Thus ⟨P1 ∪ P2⟩ contains a cycle
with chord v1v3, a contradiction.
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Next suppose |NP1({v1, vt})| = 1. Assume u1ui ∈ E(H) for some 4 ≤ i ≤ s − 1. By Lemma 6,
dP1(ui−1) = 2. Let P′1 = P−1 [ui−1, u1], ui, P1[ui, us]. Then |P′1| = |P1| and ui−1 can be regarded as an
endpoint of P′1. By Lemma 11 (i), dP2(ui−1) = 0. Then dH(ui−1) = dP1(ui−1) = 2. If dH(v1) ≤ 2, then
X = {u1, ui−1, us, v1} is the desired set. Thus we may assume that dH(v1) ≥ 3. Then dP1(v1) = 1, and
dP2(v1) = 2, that is, t = 3 and v1v3 ∈ E(H). Also, dP1(v3) ≥ 1. Thus ⟨P1 ∪ P2⟩ contains a cycle
with chord v1v3, a contradiction. Hence, either dP1(u1) = 1 or u1u3 ∈ E(H). Then dP1(ui) = 2 for
some 3 ≤ i ≤ 6 by Lemma 7. Similarly, either dP1(us) = 1 or usus−2 ∈ E(H) by symmetry. Then
dP1(u j) = 2 for some s − 5 ≤ j ≤ s − 2 by Lemma 8. Since |NP1({v1, vt})| = 1 by our assumption,
uℓ < NP1({v1, vt}) for some ℓ ∈ {i, j}. Suppose t = 2. Then dH(v1) ≤ 2 and dH(uℓ) = dP1(uℓ) = 2. Thus
X = {u1, uℓ, us, v1} is the desired set. Hence t = 3. If v1v3 < E(H), then dH(v1) ≤ 2 and dH(v3) ≤ 2.
Thus X = {u1, us, v1, v3} is the desired set. Hence we may assume that v1v3 ∈ E(H). Note dP1(v1) ≤ 1.
Suppose dP1(v1) = 1. Since dP1(v3) ≥ 1, ⟨P1 ∪ P2⟩ contains a cycle with chord v1v3, a contradiction.
Suppose dP1(v1) = 0. Then dH(v1) = 2. If dH(uℓ) = 2, then X = {u1, uℓ, us, v1} is the desired set. Thus
we may assume that dH(uℓ) ≥ 3. Then uℓv2 ∈ E(H). Since dP1(v3) ≥ 1, ⟨P1 ∪ P2⟩ contains a cycle
with chord v2v3, a contradiction.
Case 3. Suppose |P2| = t ≥ 4.

Recall dP1(v1) ≤ 1 and dP1(vt) ≤ 2. We consider two subcases as follows.
Subcase 1. Suppose dP1(v1) = 1.

By Claim 9, dP1(vt) ≥ 1. Then dP2(v1) = dP2(vt) = 1, otherwise, there exists a cycle in ⟨P1 ∪ P2⟩

with chord adjacent to v1 or vt, a contradiction. Thus dH(v1) = 2 by Lemma 11 (iii). If dP1(vt) = 1,
then dH(vt) = 2 by Lemma 11 (iii). Then X = {u1, us, v1, vt} is the desired set. Thus dP1(vt) = 2. Let
ui, u j ∈ NP1(vt) with i < j. Consider the vertex vt−1. If dH(vt−1) = 2, then X = {u1, us, v1, vt−1} is the
desired set. Thus dH(vt−1) ≥ 3. If dP2(vt−1) ≥ 3, then there exists a cycle in ⟨P1 ∪ P2⟩ with chord
adjacent to vt−1, a contradiction. Thus dP2(vt−1) = 2, and then NP1(vt−1) , ∅ or NR(vt−1) , ∅.

First suppose NP1(vt−1) , ∅. If v1 or vt−1 has a neighbor in P1[u1, ui] ∪ P1[u j, us], then there exist
three parallel edges between P1 and P2, and by Lemma 3, a chorded cycle exists in ⟨P1 ∪ P2⟩, a
contradiction. Thus NP1(ui,u j)(vℓ) , ∅ for each ℓ ∈ {1, t − 1}. Then we again have three parallel edges
or three crossing edges, and by Lemma 3, a chorded cycle exists in ⟨P1 ∪ P2⟩, a contradiction.

Next suppose NR(vt−1) , ∅. Let w ∈ NR(vt−1). If dH(w) ≤ 2, then X = {u1, us, v1,w} is the desired
set. Thus dH(w) ≥ 3. Then dP1(w) ≤ 1, otherwise, since dP1(vt) = 2, there exists a chorded cycle
in ⟨P1 ∪ P2⟩ by Lemma 5, a contradiction. Since P2 is a longest path in H − P1, NR(w) = ∅. Thus
dP1(w) = 1 and dP2(w) = 2. Let up ∈ NP1(v1) and uq ∈ NP1(w). Without loss of generality, we may
assume p ≤ q. By Lemma 11 (iii), wv1,wvt < E(H). Thus wvℓ ∈ E(H) for some 2 ≤ ℓ ≤ t − 2. Then
w, vt−1, P−2 [vt−1, v1], up, P1[up, uq],w is a cycle with chord wvℓ, a contradiction.
Subcase 2. Suppose dP1(v1) = 0.

Suppose v1vt ∈ E(H). Then note dH(v1) = 2. Now we consider the path P′2 = P−2 [vt−1, v1], vt.
Then vt−1 can be regarded as an endpoint of P′2. Since dP1(v1) = 0 by the assumption, we may assume
dP1(vt−1) = 0 by considering vt−1 instead of v1. Thus dH(vt−1) = 2. Recall u1us < E(H). Then
X = {u1, us, v1, vt−1} is the desired set. Thus v1vt < E(H). If dH(vt) ≤ 2, then X = {u1, us, v1, vt} is the
desired set. Thus dH(vt) ≥ 3. By Lemma 11 (iii), (iv), and (v), we have dH(vt) ≤ 4 and dP1(vt) ∈ {1, 2}.

First suppose dP1(vt) = 2. Let ui, u j ∈ NP1(vt) with i < j. Note i ≥ 2 and j ≤ s−1 by Lemma 11 (i),
and |P1| ≥ |P2| ≥ 4. If j = i+1, then there exists a longer path than P1, a contradiction. Thus j ≥ i+2.
Therefore, |P1| ≥ 5. If dH(uℓ) = 2 for some ℓ ∈ {i + 1, j − 1}, then X = {u1, uℓ, us, v1} is the desired set.
Thus dH(uℓ) ≥ 3 for each ℓ ∈ {i + 1, j − 1}. By Lemma 9, we may assume H , ⟨P1 ∪ P2⟩. Now we
claim NR(uℓ) , ∅ for some ℓ ∈ {i + 1, j − 1}. Assume not. Note NP2(uℓ) = ∅ since P1 is a longest path
in H. Since H does not contain a chorded cycle, there exist edges ui+1uh with h > j and u j−1uh′ with
h′ < i. Then

P1[uh′ , ui], vt, u j, P1[u j, uh], ui+1, P1[ui+1, u j−1], uh′

is a cycle with chord uiui+1 (and u j−1u j), a contradiction. Thus the claim holds. If j ≥ i + 3, then we
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may assume ℓ = j− 1, that is, NR(u j−1) , ∅, otherwise, consider P−[us, u1]. Let w1 ∈ NR(u j−1), and let
P3 = w1, . . . ,wp (p ≥ 1) be a longest path starting from w1 in R. If dH(wp) ≤ 2, then X = {u1, us, v1,wp}

is the desired set. Thus dH(wp) ≥ 3. If NP2(w) , ∅ for some w ∈ V(P3), that is, vℓ ∈ NP2(w) for some
1 ≤ ℓ ≤ t, then

P1[u1, u j−1],w1, P3[w1,w], vℓ, P2[vℓ, vt], u j, P1[u j, us]

is a longer path than P1, a contradiction. Thus NP2(w) = ∅ for any w ∈ V(P3). Since P3 is a longest
path starting from w1 in R, NR−P3(wp) = ∅. Suppose |P3| = p = 1. Since NR(w1) = ∅ and dH(wp) ≥ 3,
dP1(w1) ≥ 3. This contradicts Lemma 11 (v). Suppose |P3| = p = 2. Then dH(w2) ≥ 3, and by
Lemma 11 (v), dP1(w2) = 2. If uℓ ∈ NP1(w2) for some j ≤ ℓ ≤ s, then

P1[ui, u j−1],w1, P3[w1,w2], uℓ, P−1 [uℓ, u j], vt, ui

is a cycle with chord u j−1u j, a contradiction. Thus uℓ, uℓ′ ∈ NP1(w2) for some 1 ≤ ℓ < ℓ′ ≤ j− 1. Then
P1[uℓ, u j−1],w1, P3[w1,w2], uℓ is a cycle with chord w2uℓ′ , a contradiction. Suppose |P3| = p ≥ 3.
Then dP3(wp) ≤ 2. Assume dP3(wp) = 2. Since dP1(wp) ≥ 1, there exists a cycle in ⟨P1 ∪ P3⟩ with
chord adjacent to wp, a contradiction. Thus dP3(wp) = 1, and dP1(wp) = 2. Then we have a chorded
cycle in ⟨P1 ∪ P3⟩ as in the case where |P3| = 2 by considering wp instead of w2, a contradiction.

Next suppose dP1(vt) = 1. Let ui ∈ NP1(vt) with 1 ≤ i ≤ s. Note i < {1, s} by Lemma 11 (i).
Since dH(vt) ≥ 3, dP2(vt) = 2 by Lemmas 11 (iii) and (iv). Let vℓ ∈ NP2(vt) with ℓ ≤ t − 2. Now
we consider the path P′2 = P2[v1, vℓ], vt, P−2 [vt, vℓ+1]. Then vℓ+1 can be regarded as an endpoint of P′2.
Since dP1(vt) = 1, we may assume dP1(vℓ+1) = 1. Let u j ∈ NP1(vℓ+1) with 1 ≤ j ≤ s. Note j < {1, s}
by Lemma 11 (i). Then we may assume j ≤ i, otherwise, consider P−[us, u1]. Suppose ℓ = t − 2, that
is, vtvt−2 ∈ E(H). Then P1[u j, ui], vt, vt−2, vt−1, u j is a cycle with chord vt−1vt, a contradiction. Thus
ℓ ≤ t − 3. If j = i − 1, then there exists a longer path than P1, a contradiction.

Suppose j = i. Recall vtvℓ ∈ E(H) with ℓ ≤ t − 3. If dH(vt−1) = 2, then X = {u1, us, v1, vt−1} is
the desired set. Thus dH(vt−1) ≥ 3. Assume u j ∈ NP1(vt−1) for some 1 ≤ j ≤ s. We may assume
j ≤ i, otherwise, consider P−[us, u1]. Then P1[u j, ui], vt, P2[vℓ, vt−1], u j is a cycle with chord vt−1vt,
a contradiction. Assume vℓ′ ∈ NP2(vt−1) for some ℓ′ ≤ t − 3. Since vtvℓ ∈ E(H), we may assume
ℓ′ < ℓ. Then P2[vℓ′ , vℓ], vt, ui, P2[vℓ+1, vt−1], vℓ′ is a cycle with chord vℓvℓ+1 (and vt−1vt), a contradiction.
Assume NR(vt−1) , ∅. Let w ∈ NR(vt−1). Now we consider the path P′2 = P2[v1, vt−1],w. Then w can
be regarded as an endpoint of P′2. Since dP1(vt) = 1, we may assume dP1(w) = 1. Let u j ∈ NP1(w)
for some 1 ≤ j ≤ s. We may assume j ≤ i. Then P2[vℓ, vt−1],w, P1[u j, ui], vt, vℓ is a cycle with chord
vt−1vt, a contradiction.

Suppose j ≤ i − 2. If dH(uh) = 2 for some h ∈ { j + 1, i − 1}, then X = {u1, uh, us, v1} is the desired
set. Thus dH(uh) ≥ 3 for each h ∈ { j + 1, i − 1}. Now we claim NR(uh) , ∅ for some h ∈ { j + 1, i − 1}.
Assume not. Note NP2(uh) = ∅, since P1 is a longest path in H. Since H does not contain a chorded
cycle, there exist edges u j+1um with m > i and ui−1um′ with m′ < j. Then

P1[um′ , u j], vℓ+1, P2[vℓ+1, vt], ui, P1[ui, um], u j+1, P1[u j+1, ui−1], um′

is a cycle with chord u ju j+1 (and ui−1ui), a contradiction. Thus the claim holds. We also note that if
j ≤ i − 3, then we may assume NR(ui−1) , ∅, otherwise, consider P−[us, u1]. Let w1 ∈ NR(ui−1), and
let P3 = w1, . . . ,wp (p ≥ 1) be a longest path in R. Then, as in the above case where dP1(vt) = 2, there
exists a chorded cycle in H, a contradiction. □

Lemma 13 ( [8]). Let k ≥ 2 be an integer, and let G be a graph. Suppose G does not contain k vertex-
disjoint chorded cycles. Let C = {C1, . . . ,Ck−1} be a minimal set of k − 1 vertex-disjoint chorded
cycles in G, and let H = G −C and X ⊆ V(H) with |X| = 4. Suppose H contains a Hamiltonian path.
Then dCi(X) ≤ 12 for each 1 ≤ i ≤ k − 1.
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4. Proof of Theorem 4

Suppose G does not contain a chorded cycle.

Claim 10. G is connected.

Proof. Suppose not, then comp(G) ≥ 2. Let G1,G2, . . . ,Gcomp(G) be the components of G.
First suppose comp(G) ≥ 4. By Theorem 1, there exists xi ∈ V(Gi) for each 1 ≤ i ≤ 4 such that

dGi(xi) ≤ 2. Let X = {x1, x2, x3, x4}. Then X is an independent set with dG(X) ≤ 8. This contradicts
the σ4(G) condition.

Next suppose comp(G) = 3. Let |G1| ≥ |G2| ≥ |G3|. Since |G| ≥ 15 by the assumption, we
have |G1| ≥ 5. If G1 is complete, then G1 contains a chorded cycle. Thus we may assume G1 is not
complete. By Theorem 2, there exist non-adjacent x0, x1 ∈ V(G1) such that dG1({x0, x1}) ≤ 4. Also, by
Theorem 1, there exists xi ∈ V(Gi) for each i ∈ {2, 3} such that dGi(xi) ≤ 2. Then X = {x0, x1, x2, x3} is
an independent set with dG(X) ≤ 8, a contradiction.

Finally, suppose comp(G) = 2. Let |G1| ≥ |G2|. Since |G| ≥ 15, |G1| ≥ 8. By Theorem 3 (Remark
1), G1 contains an independent set X0 of three vertices with dG1(X0) ≤ 6. Also, by Theorem 1, there
exists x ∈ V(G2) such that dG2(x) ≤ 2. Then X = X0 ∪ {x} is an independent set with dG(X) ≤ 8, a
contradiction. □

Let P1 = u1, . . . , us be a longest path in G. Note s ≥ 3, since |G| ≥ 15 and G is connected by Claim
10.

Claim 11. G contains a Hamiltonian path.

Proof. Suppose not, then P1 is not a Hamiltonian path in G, and V(G − P1) , ∅. Let P2 = v1, . . . , vt

(t ≥ 1) be a longest path in G − P1 such that dP1(v1) ≤ dP1(vt). By Lemma 12, there exists an
independent set X of four vertices in G such that dG(X) ≤ 8. This contradicts the σ4(G) condition. □

Since |G| ≥ 15, by Claim 11 and Lemma 10, there exists an independent set X of four vertices in
G such that dG(X) ≤ 8, a contradiction. This completes the proof of Theorem 4. □

5. Proof of Theorem 5

By Theorem 4, we may assume k ≥ 2. Suppose Theorem 5 does not hold. Let G be an edge-
maximal counter-example. If G is complete, then G contains k vertex-disjoint chorded cycles. Thus
we may assume G is not complete. Let xy < E(G) for some x, y ∈ V(G), and define G′ = G + xy,
the graph obtained from G by adding the edge xy. By the edge-maximality of G, G′ is not a counter-
example. Thus G′ contains k vertex-disjoint chorded cycles C1, . . . ,Ck. Without loss of generality,
we may assume xy < ∪k−1

i=1 E(Ci), that is, G contains k − 1 vertex-disjoint chorded cycles. Over all sets
of k − 1 vertex-disjoint chorded cycles, choose C1, . . . ,Ck−1 with C = ∪k−1

i=1 Ci, H = G − C , and with
P1 a longest path in H, such that:

(A1) |C | is as small as possible,
(A2) subject to (A1), comp(H) is as small as possible, and
(A3) subject to (A1) and (A2), |P1| is as large as possible.
We may also assume H does not contain a chorded cycle, otherwise, G contains k vertex-disjoint

chorded cycles, a contradiction.

Claim 12. H has an order at least 18.

Proof. Suppose to the contrary that |H| ≤ 17. Next suppose |Ci| ≤ 11 for each 1 ≤ i ≤ k − 1. Since
|G| ≥ 11k + 7 by assumption, it follows that |H| ≥ (11k + 7) − 11(k − 1) = 18, a contradiction. Thus
|Ci| ≥ 12 for some 1 ≤ i ≤ k − 1. Without loss of generality, we may assume C1 is a longest cycle
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in C . Then |C1| ≥ 12. By Lemma 1, C1 contains at most two chords, and if C1 has two chords, then
these chords must be crossing. For integers t and r, let |C1| = 4t + r, where t ≥ 3 and 0 ≤ r ≤ 3.

Subclaim 13. Let t ≥ 3 be an integer. The cycle C1 contains t vertex-disjoint sets X1, . . . , Xt of four
independent vertices each in G such that dC1(∪

t
i=1Xi) ≤ 8t + 4.

Proof. For any 4t vertices of C1, their degree sum in C1 is at most 4t × 2 + 4 = 8t + 4, since C1

has at most two chords. Thus it only remains to show that C1 contains t vertex-disjoint sets of four
independent vertices each. Recall |C1| = 4t + r ≥ 4t. Start anywhere on C1 and label the first 4t
vertices of C1 with labels 1 through t in order, starting over again with 1 after using label t. If r ≥ 1,
then label the remaining r vertices of C1 with the labels t + 1, . . . , t + r. (See Fig. 2.) The labeling
above yields t vertex-disjoint sets of four vertices each, where all the vertices labeled with 1 are one
set, all the vertices labeled with 2 are another set, and so on. Given this labeling, since t ≥ 3, any
vertex in C1 has a different label than the vertex that precedes it on C1 and the vertex that succeeds it
on C1. Let C0 be the cycle obtained from C1 by removing all chords. Then the vertices in each of the
sets are independent in C0. Thus the only way vertices in the same set are not independent in C1 is if
the endpoints of a chord of C1 were given the same label. Note any vertex labeled i is distance at least
3 in C0 from any other vertex labeled i. Thus even if we exchange the label of x in C0 for the one of
x− (or x+), the vertices in each of the resulting t sets are still independent in C0.

2

1
2

3

1

2

3

13

1

2

3

4

5

Figure 2. An Example When t = 3, r = 2

Case 1. No chord of C1 has endpoints with the same label.
Then there exist t vertex-disjoint sets of four independent vertices each in C1.

Case 2. Exactly one chord of C1 has endpoints with the same label.
Recall C1 contains at most two chords, and if C1 contains two chords, then these chords must be

crossing. Since |C1| ≥ 12, even if C1 has two chords, each chord has an endpoint x such that there
exists a vertex x′ ∈ {x−, x+} which is not an endpoint of the other chord. Choose such an endpoint x
of the chord whose endpoints were assigned the same label, and exchange the label of x for the one
of x′. The vertices in each of the resulting t sets are independent in C1, and now no chord of C1 has
endpoints with the same label. Thus there exist t vertex-disjoint sets of four independent vertices each
in C1.
Case 3. Two chords of C1 each have endpoints with the same label.

Then the two chords are crossing. Since endpoints of a chord have the same label in this case,
recall these endpoints have distance at least 3. First suppose there exists an endpoint x of one chord
of C1 which is adjacent to an endpoint y (= x+) of the other chord on C1. (See Fig. 3 (a).) Now we
exchange the label of x for the one of y. Then no chord of C1 has endpoints with the same label, and
the vertices in each of the resulting t sets are independent in C1. Thus there exist t vertex-disjoint sets
of four independent vertices each in C1.

Next suppose no endpoint of one chord of C1 is adjacent to an endpoint of the other chord on C1.
(See Fig. 3 (b).) Let x1x2, y1y2 be the two distinct chords of C1. Since the two chords are crossing,
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without loss of generality, we may assume x1, y1, x2, y2 are in that order on C1. Now we exchange
the labels of x1 and x+1 , and next the ones of y2 and y−2 . Then no chord of C1 has endpoints with the
same label, and the vertices in each of the resulting t sets are independent in C1. Thus there exist t
vertex-disjoint sets of four independent vertices each in C1. □

x
y (x+)

x1

x2y2

y1

2[3]

2
3

2[3]

2

1

1[3]

x+1

3[2]

y−2

3[2]

3[1]
(a) (b)

Figure 3. Examples: (a) The Labels of x and y are 2 and 3; (b) The Labels of x1 and y2

are 2 and 1. ([i] Means i is a New Label for a Vertex after the Exchange)

Since |C1| ≥ 12, dC1(v) ≤ 2 for any v ∈ V(H) by Lemma 2 and (A1). Thus since |H| ≤ 17 by our
assumption, it follows that |E(H,C1)| ≤ 34. Let X = ∪t

i=1Xi be as in Subclaim 13. By the σ4(G)
condition, dG(X ) ≥ t(12k−3). Suppose k = 2. Then C has only one cycle C1. Since k = 2 and t ≥ 3,
|E(C1,H)| ≥ dH(X ) ≥ t(12k − 3) − (8t + 4) = 13t − 4 ≥ 35, a contradiction. Thus k ≥ 3. Then we
have

|E(X ,C −C1)| = dG(X ) − dC1(X ) − dH(X )
≥ t(12k − 3) − (8t + 4) − 34
= 12kt − 11t − 38,

and since t ≥ 3,

12kt − 11t − 38 = 12t(k − 1) + t − 38 ≥ 12t(k − 1) − 35
> 12t(k − 1) − 12t

= 12t(k − 2).

Thus |E(X ,C′)| > 12t for some C′ in C − C1, since C − C1 contains k − 2 vertex-disjoint chorded
cycles. Let h = max{dC′(v)|v ∈X }. Let v∗ be a vertex of X such that dC′(v∗) = h. Since |E(X ,C′)| >
12t, if h ≤ 3, then |E(X ,C′)| ≤ 3 × 4t = 12t, a contradiction. Thus we may assume h ≥ 4. By the
maximality of C1, |C′| ≤ |C1| = 4t + r. It follows that h = dC′(v∗) ≤ |C′| ≤ 4t + r. Recall t ≥ 3 and
0 ≤ r ≤ 3. Then

|E(X − {v∗},C′)| ≥ (12t + 1) − dC′(v∗) ≥ (12t + 1) − (4t + r)
= 8t − r + 1 ≥ 22. (1)

Since h = dC′(v∗) ≥ 4, let v1, v2, v3, v4 be neighbors of v∗ in that order on C′. Note v1, v2, v3, v4 partition
C′ into four intervals C′[vi, vi+1) for each 1 ≤ i ≤ 4, where v5 = v1. By (1), there exist at least 22 edges
from C1 − v∗ to C′. Thus some interval C′[vi, vi+1) contains at least six of these edges. Without loss of
generality, we may assume this interval is C′[v4, v1). Then by Lemma 4, ⟨(C1−v∗)∪C′[v4, v1)⟩ contains
a chorded cycle not containing at least one vertex of ⟨(C1 − v∗) ∪C′[v4, v1)⟩. Also, v∗,C′[v1, v3], v∗ is a
cycle with chord v∗v2, and it uses no vertices from C′[v4, v1). Thus we have two shorter vertex-disjoint
chorded cycles in ⟨C1 ∪C′⟩, contradicting (A1). Hence Claim 12 holds. □

Claim 14. H is connected.
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Proof. Suppose not, then comp(H) ≥ 2. Let H1,H2, . . . ,Hcomp(H) be the components of H. First we
prove the following subclaim.

Subclaim 15. Suppose X is an independent set of four vertices in H such that dH(X) ≤ 8. Then
there exists some C in C such that the degree sequences from four vertices of X to C are (4, 4, 4, 1),
(4, 4, 3, 2) or (4, 3, 3, 3). Furthermore, then |C| = 4.

Proof. By the σ4(G) condition, dC (X) ≥ (12k − 3) − 8 = 12k − 11 > 12(k − 1). Thus there exists
some C in C such that dC(X) ≥ 13. By Lemma 2, dC(x) ≤ 4 for any x ∈ X. Now we consider degree
sequences defined in Section 1 (Introduction) from four vertices of X to C. Recall that when we write
(d1, d2, d3, d4), we assume dC(x j) = d j for each 1 ≤ j ≤ 4, since it is sufficient to consider the case of
equality. It follows that the degree sequences from four vertices of X to C are (4, 4, 4, 1), (4, 4, 3, 2)
or (4, 3, 3, 3). Since each degree sequence contains a vertex with degree 4 in C, we have |C| = 4 by
Lemma 2. Thus the subclaim holds. □

Now we consider the following three cases based on comp(H).
Case 1. Suppose comp(H) ≥ 4.

By Theorem 1, there exists xi ∈ V(Hi) for each 1 ≤ i ≤ 4 such that dHi(xi) ≤ 2. Let X =
{x1, x2, x3, x4}. Then X is an independent set and dH(X) ≤ 8. By Subclaim 15, the degree sequences
from four vertices of X to some C in C are (4, 4, 4, 1), (4, 4, 3, 2) or (4, 3, 3, 3) and |C| = 4. Let
C = v1, v2, v3, v4, v1. Without loss of generality, we may assume dC(x1) ≥ dC(x2) ≥ dC(x3) ≥ dC(x4).
Then dC(x1) = 4. Since |C| = 4, for each degree sequence, x2, x3, x4 must all have a common neighbor
in C, say v1. Since dC(x1) = 4, C′ = x1, v2, v3, v4, x1 is a 4-cycle with chord x1v3. If x1 is not a
cut-vertex of H1, then H1 − x1 is connected. Replacing C in C by C′, we consider the new H′. Then
comp(H′) ≤ comp(H)−2. This contradicts (A2). Thus we may assume x1 is a cut-vertex of H1. Since
dH1(x1) ≤ 2, dH1(x1) = 2. Thus comp(H1 − x1) = 2, and comp(H′) ≤ comp(H) − 1 for the new H′.
This contradicts (A2).
Case 2. Suppose comp(H) = 3.

Without loss of generality, we may assume |H1| ≥ |H2| ≥ |H3|. Since |H| ≥ 18 by Claim 12, we
have |H1| ≥ 6. Let P1 = u1, . . . , us be a longest path in H1. Note s ≥ 3. By Theorem 1, there exists
x j ∈ V(H j) for each j ∈ {2, 3} such that dH j(x j) ≤ 2.

First suppose u1us ∈ E(G). Then P1[u1, us], u1 is a Hamiltonian cycle in H1, otherwise, since H1

is connected, there exists a longer path than P1, a contradiction. Since H1 does not contain a chorded
cycle, we have u1u3 < E(H1). Note dH1(ui) = 2 for each i ∈ {1, 3}. Let X = {u1, u3, x2, x3}. Then X is
an independent set and dH(X) ≤ 8. By Subclaim 15, the degree sequences from four vertices of X to
some C in C are (4, 4, 4, 1), (4, 4, 3, 2) or (4, 3, 3, 3) and |C| = 4. Let C = v1, v2, v3, v4, v1. Without loss
of generality, we may assume dC(u1) ≥ dC(u3). Then dC(u1) ≥ 3 and NC(u3) ∩ NC(x2) ∩ NC(x3) , ∅
by the degree sequences. Without loss of generality, we may assume v1 ∈ NC(u3) ∩ NC(x2) ∩ NC(x3).
Suppose dC(u1) = 4. Then C′ = u1, v2, v3, v4, u1 is a 4-cycle with chord u1v3. Since H1 contains
a Hamiltonian cycle, u1 is not a cut-vertex of H1. Thus H1 − u1 is connected. Replacing C in C
by C′, we consider the new H′. Then comp(H′) ≤ comp(H) − 2 = 3 − 2 = 1. This contradicts
(A2). Thus dC(u1) = 3 since dC(u1) ≥ 3. Then the degree sequence is (4, 4, 3, 2) or (4, 3, 3, 3).
Without loss of generality, we may assume dC(x2) ≤ dC(x3). In each degree sequence, it is sufficient
to consider dC(u1) = 3, dC(u3) = 2, dC(x2) = 3 and dC(x3) = 4. Without loss of generality, we may
assume v j ∈ NC(u1) for each 1 ≤ j ≤ 3. Then C′ = u1, v1, v2, v3, u1 is a 4-cycle with chord u1v2. If
v4 ∈ NC(x2), then v4 ∈ NC(x2)∩ NC(x3) since dC(x3) = 4. Then comp(H′) ≤ comp(H)− 1 = 3− 1 = 2
for the new H′, a contradiction. Thus NC(u1) = NC(x2). Note C has a chord. Suppose v1v3 ∈ E(G).
Then C′ = u1, v1, v4, v3, u1 is a 4-cycle with chord v1v3. Since dC(x3) = 4, v2 ∈ NC(x2) ∩ NC(x3). Then
comp(H′) ≤ comp(H) − 1 = 3 − 1 = 2 for the new H′, a contradiction. Suppose v2v4 ∈ E(G). Then
C′ = u1, v1, v4, v2, u1 is a 4-cycle with chord v1v2. Since dC(x3) = 4, v3 ∈ NC(x2) ∩ NC(x3). Then
comp(H′) ≤ comp(H) − 1 = 3 − 1 = 2 for the new H′, a contradiction.
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Next suppose u1us < E(G). Let X = {u1, us, x2, x3}. Since H1 does not contain a chorded cycle,
dH1(ui) ≤ 2 for each i ∈ {1, s}. Then X is an independent set and dH(X) ≤ 8. Replacing u3 by us in the
above case where u1us ∈ E(G), we get a similar contradiction.
Case 3. Suppose comp(H) = 2.

Let |H1| ≥ |H2|. Since |H| ≥ 18 by Claim 12, |H1| ≥ 9. Let P1 = u1, . . . , us be a longest path in H1.
Note s ≥ 3. By Theorem 1, there exists x2 ∈ V(H2) such that dH2(x2) ≤ 2.

First suppose u1us ∈ E(H1). Note P1[u1, us], u1 is a Hamiltonian cycle in H1. Then X0 = {u1, u3, u5}

is an independent set and dH1(X0) = 6, and X = X0 ∪ {x2} is an independent set and dH(X) ≤ 8. By
Subclaim 15, the degree sequences from four vertices of X to some C in C are (4, 4, 4, 1), (4, 4, 3, 2)
or (4, 3, 3, 3), and |C| = 4. Let C = v1, v2, v3, v4, v1. Since X0 is on the Hamiltonian cycle, we may
assume dC(u1) = max{dC(u) | u ∈ {u1, u3, u5}}. Then dC(u1) ≥ 3 by the degree sequences. Suppose
dC(u1) = 4. Since NC(u3) ∩ NC(x2) , ∅ by the degree sequences, without loss of generality, we
may assume v4 ∈ NC(u3) ∩ NC(x2). Since dC(u1) = 4, vi ∈ NC(u1) for each 1 ≤ i ≤ 3. Then
C′ = u1, v1, v2, v3, u1 is a 4-cycle with chord u1v2. Since H1 contains a Hamiltonian cycle, u1 is not
a cut-vertex of H1. Thus H1 − u1 is connected. Replacing C in C by C′, we consider the new H′.
Then comp(H′) ≤ comp(H) − 1 = 2 − 1 = 1 for the new H′. This contradicts (A2). Now suppose
dC(u1) = 3. Then by the maximality of dC(u1), we have only to consider the case where dC(ui) = 3
for each i ∈ {1, 3, 5}, and dC(x2) = 4. Let vi ∈ NC(u1) for each 1 ≤ i ≤ 3. Then we may assume
NC(u1) = NC(u3) = NC(u5), otherwise, we get a contradiction by the same arguments as the case
where dC(u1) = 4. Note C has a chord. Suppose v1v3 ∈ E(G). Then C′ = u1, v1, v4, v3, u1 is a 4-cycle
with chord v1v3. Since dC(x2) = 4, v2 ∈ NC(u3)∩NC(x2). Then comp(H′) ≤ comp(H)− 1 = 2− 1 = 1
for the new H′, a contradiction. Suppose v2v4 ∈ E(G). Then C′ = u1, v1, v4, v2, u1 is a 4-cycle with
chord v1v2. Since dC(x2) = 4, v3 ∈ NC(u3) ∩ NC(x2). Then comp(H′) ≤ comp(H) − 1 = 2 − 1 = 1 for
the new H′, a contradiction.

Next suppose u1us < E(H1). Without loss of generality, we may assume dC(u1) ≥ dC(us). Assume
P1 is a Hamiltonian path in H1. Note s ≥ 9 since |H1| ≥ 9. Since P1 is a Hamiltonian path in H1, note
dP1(u) = dH1(u) for any u ∈ V(P1). We also note dP1(ui) ≤ 2 for each i ∈ {1, s}. Suppose dP1(u1) = 1.
By Lemma 7, dH1(ui) = 2 for some 3 ≤ i ≤ 5. Since s ≥ 9, X0 = {u1, ui, us} is an independent set and
dH1(X0) ≤ 6. Thus X = X0 ∪ {x2} is an independent set and dH(X) ≤ 8. Then we get a contradiction
by the same arguments as the case where u1us ∈ E(G). Next suppose dP1(u1) = 2. Now assume
u1u3 ∈ E(H1). By Lemma 7, dH1(ui) = 2 for some 4 ≤ i ≤ 6. Since s ≥ 9, X0 = {u1, ui, us} is an
independent set and dH1(X0) ≤ 6, and we get a contradiction by considering X = X0 ∪ {x2} similar to
the case where u1us ∈ E(H1). Thus u1u3 < E(H1), that is, u1ui ∈ E(H1) for some 4 ≤ i ≤ s − 1. By
Lemma 6, dH1(ui−1) = 2. Since s ≥ 9, X0 = {u1, ui−1, us} is an independent set and dH1(X0) ≤ 6, and
we get a contradiction by considering X = X0 ∪ {x2}.

Assume P1 is not a Hamiltonian path in H1. Then V(H1 − P1) , ∅. Let P2 = v1, . . . , vt (t ≥ 1) be a
longest path in H1−P1. Without loss of generality, we may assume dH1(v1) ≤ dH1(vt). If u1us ∈ E(H1),
then since there exists a longer path than P1, we may assume u1us < E(H1). Also we may assume
dH1(v1) ≤ 2, otherwise, since dP1(vi) ≥ 1 for each i ∈ {1, t} by Lemma 11 (iii) and (iv), there exists
a cycle in ⟨P1 ∪ P2⟩ with chord incident to v1 or vt, a contradiction. Thus X0 = {u1, us, v1} is an
independent set and dH1(X0) ≤ 6. Then X = X0 ∪ {x2} is an independent set and dH(X) ≤ 8. By
Subclaim 15, the degree sequences from four vertices of X to some C in C are (4, 4, 4, 1), (4, 4, 3, 2)
or (4, 3, 3, 3), and |C| = 4. Let C = w1,w2,w3,w4,w1. Since dC(u1) ≥ dC(us) by our assumption,
dC(u1) ≥ 3 by the degree sequences. First suppose dC(u1) = 4. Since NC(v1) ∩ NC(x2) , ∅ by the
degree sequences, without loss of generality, we may assume w4 ∈ NC(v1)∩NC(x2). Since dC(u1) = 4,
wi ∈ NC(u1) for each 1 ≤ i ≤ 3. Then C′ = u1,w1,w2,w3, u1 is a 4-cycle with chord u1w2. Since u1

is an endpoint of the longest path P1, u1 is not a cut-vertex of H1. Thus H1 − u1 is connected. Then
comp(H′) ≤ comp(H) − 1 = 2 − 1 = 1 for the new H′. This contradicts (A2). Suppose dC(u1) = 3.
Then we may assume the degree sequence is (4, 4, 3, 2) or (4, 3, 3, 3). In each degree sequence, it is
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sufficient to consider dC(u1) = 3, dC(us) = 2, and {dC(v1), dC(x2)} = {3, 4}. First assume dC(v1) = 3
and dC(x2) = 4. Without loss of generality, we may assume wi ∈ NC(u1) for each 1 ≤ i ≤ 3. Then
C′ = u1,w1,w2,w3, u1 is a 4-cycle with chord u1w2. If w4 ∈ NC(v1), then w4 ∈ NC(v1) ∩ NC(x2)
since dC(x2) = 4. Then comp(H′) ≤ comp(H) − 1 = 2 − 1 = 1 for the new H′, a contradiction. Thus
NC(u1) = NC(v1). Note C has a chord. Suppose w1w3 ∈ E(G). Then C′ = u1,w1,w4,w3, u1 is a 4-cycle
with chord w1w3. Since dC(x2) = 4, w2 ∈ NC(v1)∩NC(x2). Then comp(H′) ≤ comp(H)−1 = 2−1 = 1
for the new H′, a contradiction. Suppose w2w4 ∈ E(G). Then C′ = u1,w1,w4,w2, u1 is a 4-cycle with
chord w1w2. Since dC(x2) = 4, w3 ∈ NC(v1)∩NC(x2). Then comp(H′) ≤ comp(H)− 1 = 2− 1 = 1 for
the new H′, a contradiction. If dC(v1) = 4 and dC(x2) = 3, then we get a contradiction, similarly.

□

Claim 16. H contains a Hamiltonian path.

Proof. Suppose not, and let P1 = u1, . . . , us be a longest path in H. Note s ≥ 3 since |H| ≥ 18
and H is connected by Claim 14. Let P2 = v1, . . . , vt (t ≥ 1) be a longest path in G − P1 such that
dP1(v1) ≤ dP1(vt). By Lemma 12, there exists an independent set X of four vertices in H such that
{u1, us, v1} ⊆ X and dH(X) ≤ 8. Then the degree sequences from four vertices of X to some C in
C are (4, 4, 4, 1), (4, 4, 3, 2) or (4, 3, 3, 3), and |C| = 4. Let C = x1, x2, x3, x4, x1. We may assume
u1us < E(H), otherwise, a path longer than P1 exists, a contradiction. Without loss of generality, we
may assume dC(u1) ≥ dC(us). By the degree sequences, we have dC(u1) ≥ 3.

Suppose dC(u1) = 4. Since NC(us)∩NC(v1) , ∅ by the degree sequences, without loss of generality,
we may assume x4 ∈ NC(us) ∩ NC(v1). Since dC(u1) = 4, we have xi ∈ NC(u1) for each 1 ≤ i ≤ 3.
Then C′ = u1, x1, x2, x3, u1 is a 4-cycle with chord u1x2. Since u1 is an endpoint of the longest path
P1, u1 is not a cut-vertex of H. Thus H − u1 is connected. Replacing C in C by C′, we consider the
new H′. Then P1[u2, us], x4, P2[v1, vt] is a longer path than P1 in H′. This contradicts (A3).

Suppose dC(u1) = 3. Then we may assume the degree sequence is (4, 4, 3, 2) or (4, 3, 3, 3). First
assume the degree sequence is (4, 4, 3, 2). Since dC(u1) ≥ dC(us), we have dC(u1) = 3, dC(us) = 2
and dC(v1) = 4. Without loss of generality, we may assume xi ∈ NC(u1) for each 1 ≤ i ≤ 3. Then
C′ = u1, x1, x2, x3, u1 is a 4-cycle with chord u1x2. Note u1 is not a cut-vertex of H. If x4 ∈ NC(us),
then since dC(v1) = 4, there exists a longer path than P1 in the new H′, a contradiction. Thus we
may assume x4 < NC(us). Note C has a chord. Suppose x1x3 ∈ E(G). Assume x2 ∈ NC(us). Then
C′ = u1, x3, x4, x1, u1 is a 4-cycle with chord x1x3. Since dC(v1) = 4, x2 ∈ NC(us) ∩ NC(v1), and there
exists a longer path than P1 in the new H′, a contradiction. Thus x2 < NC(us). Since dC(us) = 2,
x1, x3 ∈ NC(us). Then C′ = us, x3, x4, x1, us is a 4-cycle with chord x1x3. Note us is not a cut-vertex of
H. Since dC(v1) = 4, x2 ∈ NC(u1)∩ NC(v1). Then P−1 [us−1, u1], x2, P2[v1, vt] is a longer path than P1 in
the new H′, a contradiction. Suppose x2x4 ∈ E(G). Assume x3 ∈ NC(us). Then C′ = u1, x1, x4, x2, u1

is a 4-cycle with chord x1x2. Since dC(v1) = 4, x3 ∈ NC(us) ∩ NC(v1). Then there exists a longer
path than P1 in the new H′, a contradiction. Thus x3 < NC(us). By symmetry, x1 < NC(us). Thus
dC(us) ≤ 1. This contradicts dC(us) = 2.

Next assume the degree sequence is (4, 3, 3, 3). Since dC(u1) ≥ dC(us) and dC(u1) = 3 by our
assumption, we have dC(us) = 3. Thus dC(v1) ≥ 3. First assume dC(v1) = 4. Let xi ∈ NC(u1) for
each 1 ≤ i ≤ 3. Then C′ = u1, x1, x2, x3, u1 is a 4-cycle with chord u1x2. If x4 ∈ NC(us), then since
dC(v1) = 4, there exists a longer path than P1 in the new H′, a contradiction. Thus NC(u1) = NC(us).
Suppose x1x3 ∈ E(G). Then C′ = u1, x1, x4, x3, u1 is a 4-cycle with chord x1x3. Since dC(v1) = 4,
x2 ∈ NC(us)∩NC(v1). Then there exists a longer path than P1 in the new H′, a contradiction. Suppose
x2x4 ∈ E(G). Then C′ = u1, x1, x4, x2, u1 is a 4-cycle with chord x1x2. Since dC(v1) = 4, x3 ∈

NC(us) ∩ NC(v1). Then there exists a longer path than P1 in the new H′, a contradiction.
Next assume dC(v1) = 3. Recall dC(u1) = dC(us) = 3. Then |NC(us) ∩ NC(v1)| ≥ 2. Let xi ∈ NC(u1)

for each 1 ≤ i ≤ 3. Suppose x1x3 ∈ E(G). If xi ∈ NC(us) ∩ NC(v1) for some i ∈ {2, 4}, then there
exists a longer path than P1, a contradiction. Thus x1, x3 ∈ NC(us)∩ NC(v1). Suppose x4 ∈ NC(us) and
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x2 ∈ NC(v1). Then C′ = us, x4, x1, x3, us is a 4-cycle with chord x3x4, and P−1 [us−1, u1], x2, P2[v1, vt]
is a longer path than P1 in the new H′, a contradiction. Suppose x2 ∈ NC(us) and x4 ∈ NC(v1). Let
w ∈ X − {u1, us, v1}. Since we assume the degree sequence is (4, 3, 3, 3), we have dC(w) = 4. Assume
w ∈ V(P1). Then P1[u1, us], x2, u1 is a cycle with chord wx2, and v1, x1, x4, x3, v1 is the other cycle
with chord x1x3. Thus we have two vertex-disjoint chorded cycles in ⟨H ∪ C⟩, and G contains k
vertex-disjoint chorded cycles, a contradiction. Assume w < V(P1). Then C′ = us, x3, x4, x1, us is a
4-cycle with chord x1x3. Since dC(w) = 4, w, x2, P1[u1, us−1] is a longer path than P1 in the new H′,
a contradiction. Suppose x2x4 ∈ E(G). Note |NC(us) ∩ NC(v1)| ≥ 2. If xi ∈ NC(us) ∩ NC(v1) for some
i ∈ {1, 3, 4}, then there exists a longer path than P1, a contradiction. Thus |NC(us) ∩ NC(v1)| ≤ 1, a
contradiction. □

By Claims 10, 16 and Lemma 10, H contains an independent set X of four vertices such that
dH(X) ≤ 8. By Claim 16 and Lemma 13,

dG(X) = dC (X) + dH(X) ≤ 12(k − 1) + 8 = 12k − 4.

This contradicts the σ4(G) condition. This completes the proof of Theorem 5. □
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