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Abstract: A simple graph G with p vertices is said to be vertex-Euclidean if there exists a bijection
f : V(G) → {1, 2, . . . , p} such that f (v1) + f (v2) > f (v3) for each C3-subgraph with vertex set
{v1, v2, v3}, where f (v1) < f (v2) < f (v3). More generally, the vertex-Euclidean deficiency of a graph
G is the smallest integer k such that G ∪ Nk is vertex-Euclidean. To illustrate the idea behind this new
graph labeling problem, we study the vertex-Euclidean deficiency of two new families of graphs called
the complete fan graphs and the complete wheel graphs. We also explore some related problems, and
pose several research topics for further study.
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1. Introduction

On a triangle, the sum of the lengths of any two sides is greater than the length of the third side.
This motivates us to call a simple graph G with q edges edge-Euclidean if it admits a bijective edge
labeling f : E(G) → {1, 2, . . . , q} such that on any C3-subgraph with edges e1, e2 and e3, where
f (e1) < f (e2) < f (e3), we have f (e1) + f (e2) > f (e3). As a result, the edge labels of any triangle
satisfy the triangle inequality. The edge labeling f is called an edge-Euclidean labeling of the graph
G. For example, the graph displayed below on the left is not edge-Euclidean, but the graph on the
right is.
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Let Lk denote the null graph with k isolated vertices, each of them is incident to a loop. If a graph
G is not edge-Euclidean, its edge-Euclidean deficiency or discrepancy, denoted µe(G), is the smallest
integer k so that G ∪ Lk is edge-Euclidean. Hence, a simple graph G is edge-Euclidean if and only if
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µe(G) = 0. The graph below on the left is not edge-Euclidean, its edge-Euclidean deficiency is 1, as
indicated on the right below. g
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We have just started to study this new labeling problem, and discover many interesting properties that
will appear in a series of forthcoming papers.

Note that we can define µe(G) as the smallest integer k such that G admits a bijection edge labeling
f : E(G) → {k + 1, k + 2, . . . , k + q} such that on any C3-subgraph with edges e1, e2 and e3, where
f (e1) < f (e2) < f (e3), we have f (e1) + f (e2) > f (e3). Since all the results we have derived thus far
are based on the original definition, we will stay with it for consistency.

Meanwhile, we also begin to study of the vertex analog of this problem.

Definition 1. A simple graph G with p vertices is said to be vertex-Euclidean if there exists a bi-
jection f : V(G) → {1, 2, . . . , p} such that, on any C3-subgraph on the vertices v1, v2, v3, where
f (v1) < f (v2) < f (v3), we have

f (v1) + f (v2) > f (v3).

In other words, the vertex labels on any C3-subgraph satisfy the triangle inequality.

It is obvious that C3 itself is not vertex-Euclidean, because when its three vertices are labeled with
1, 2, and 3, we find 1 + 2 ≯ 3. Any C3-free graph is, by default, vertex-Euclidean. However, a graph
that contains a C3-subgraph may still be vertex-Euclidean. Here is an example:
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In general, if a graph contains a C3-subgraph, the label 1 cannot be used on any one of its three
vertices. The reason is: if the three vertices of the C3-subgraph are labeled 1, x, and y, where 1 < x <
y, then x + 1 ≤ y. Thus, 1 + x ≯ y.

A graph is said to be triangulated if every vertex lies on a C3-subgraph. It follows that a triangu-
lated graph cannot be vertex-Euclidean.

Definition 2. The vertex-Euclidean deficiency or discrepancy of a graph G is the smallest integer
k such that G ∪ Nk (where Nk denotes the null graph on k vertices) is vertex-Euclidean, and we write
µv(G) = k.

For example, a graph G is vertex-Euclidean if and only if µv(G) = 0. It is easy to see that µv(C3) =
1.
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We also find µv(K4) = 2. The reason is: if µv(K4) = 1, then the four vertices of K4 will be labeled 2,
3, 4, and 5. Since 2 + 3 ≯ 5, this labeling is not vertex-Euclidean. Thus, the smallest label on K4 is 3.
This shows that µv(K4) ≥ 2.

It is easy to find a vertex-Euclidean labeling with two isolated vertices.
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This observation can be generalized.

Theorem 1. For any integer n ≥ 3, we have µv(Kn) = n − 2.

Proof. Let x be the smallest label on the vertices of Kn. Then the next smallest label is x + 1, and the
largest label is x + n − 1. On the C3-subgraph on these three vertices, we find

x + (x + 1) > x + n − 1.

Therefore, x > n − 2, which implies that we need k = n − 2 isolated vertices for Kn ∪ Nk to be
vertex-Euclidean. □

Corollary 1. If G is connected, with p vertices, then µv(G) ≤ p − 2.

Proof. It is clear that if H is a subgraph of G with the same number of vertices, then µv(H) ≤ µv(G).
Since G is a subgraph of Kp, the result follows immediately. □

In this exposition, we study the vertex-Euclidean deficiency of two new families of graphs defined
below. They illustrate why the problem is not as simple or direct as it may appear to be. We also
introduce some related problems for further study.

2. Complete Fan Graphs

The join of two graphs G1 and G2 (see, for example, [1]) is constructed from G1 and G2 by joining
each vertex of G1 to each vertex in G2. It is also called the Zykov sum of G1 and G2 [2], and is denoted
G1+G2. For example, the complete bipartite graph Km,n is the join Nm+Nn. The join Pn+N1 is called
a fan graph. It is formed by connecting an isolated vertex to every vertex on the path Pn. Below are
the graphs Fn ∪ N1 for n = 2, 3, 4, 5, 6:

It appears that µv(Fn) = 1 for all integers n ≥ 2. Since each fan graph is triangulated, µv(Fn) ≥ 1.
To show that Fn ∪ N1 is vertex-Euclidean, we first label the isolated vertex w1 with 1. Next, label
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the left-most C3-subgraph with 2, 3, and 4, such that the edge it shares with the next C3-subgraph is
labeled 3 and 4. Label the remaining vertices with 5, 6, . . . . The result is a vertex-Euclidean labeling.
Thus, µv(Fn) = 1.

A fan graph can be viewed as an array of K3s, aligned in a way that neighboring K3s share a
common edge. Inspired by this observation, we extend the idea to an array of complete graphs Kms.
Again, we demand that neighboring copies of Kms should share a common edge, similar to the neigh-
boring K3s in a fan graph. This produces the complete fan graph KmFn. Hence, the complete fan
graph KmFn is essentially an array of n − 1 copies of the complete graphs Km. A precise definition is
given below.

Definition 3. For m ≥ 3 and n ≥ 2, define the complete fan graph KmFn as follows.

• Let V(KmFn) = {c} ∪ {v1, v2, . . . , vn} ∪ {vi,1, vi,2, . . . , vi,m−3 | 1 ≤ i ≤ n − 1}.
• The edge set E(KmFn) consists of the edges that form a complete graph Km on the vertex set
{c, vi, vi+1, vi,1, . . . , vi,m−3} for 1 ≤ i ≤ n − 1.

Notice that

• the vertex set {c, v1, v2, . . . , vn} induces the fan graph Fn, KmFn = Fn when m = 3;
• KmFn = Km when n = 2; and
• any adjacent complete graphs Km share a common edge of the form cvi, where 2 ≤ i ≤ n − 1.

Below are the graphs K4Fn ∪ N2 for n = 2, 3, 4, 5, 6:

In each case, we find µv(K4Fn) = 2.
In general, since K4Fn contains at least one copy of K4, we know that µv(K4Fn) ≥ µv(K4) = 2.

To show that K4Fn ∪ N2 is vertex-Euclidean, we first label the two isolated vertices w1 and w2 with
the integers 1 and 2. Next, label the left-most copy of K4 with the integers 3, 4, 5, and 6, so that c
is labeled 6, and the highest labels 5 and 6 occupy the edge between the first two K4s. Next, label
the remaining vertices of the second K4 with 7 and 8, such that the highest label 8 is adjacent to c.
This ensures that the edge between the second and third copies of K4 is incident to c and the highest
label that has been used thus far. Repeat this until all vertices have been labeled. The result is a
vertex-Euclidean labeling of K4Fn ∪ N2. This proves that µv(K4Fn) = 2.

Below are the graphs K5Fn ∪ N3 for n = 2, 3, 4, 5:
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The algorithm described above shows that µv(KmFn) = m − 2 for all integers m ≥ 3 and n ≥ 2.

3. Complete Wheel Graphs

The wheel graph Wn is formed by connecting an isolated vertex to every vertex of the cycle Cn.
In other words, Wn = Cn + N1. This is similar to the fan graph except that the two C3 on the far left
and far right wrap around to form a wheel. The result is a circular array of n copies of C3s so that
adjacent copies share a common edge. Here are W3, W4, and W5:

We can form the complete wheel graph KmWn, similar to the construction of KmFn. For KmWn to be
well-defined, we need m, n ≥ 3. Naturally, KmWn = Wn when m = 3. The complete wheel graphs
K4Wn, where m = 4, 5 and n = 3, 4, 5, are displayed below.

Unlike the complete fan graphs, the complete graphs Kms wrap around to produce a wheel-like struc-
ture. This could produce µv(KmWn) > m − 2.

Even the vertex-Euclidean deficiency of the wheel graph does not appear to be obvious:
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The complete wheel graphs are more complicated:

One more example:

The exact value of µv(KmWn) remains unknown. We invite the readers to determine its value.

4. Other Related Topics

We now turn our attention to other related problems. We introduce the notation
mboxvEuclid(k) for the set of all connected graphs G with µv(G) = k. We say a graph G is criti-
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cally vertex-Euclidean if µv(G) = k, and µv(G − v) = k for any vertex v in G, and use the notation
vCritEuclid(k), or simply
mboxvEuclid∗(k) to indicate the set of all critically vertex-Euclidean graphs with µv(G) = k. Obvi-
ously, if G ∈ vEuclid(0), then we also have G ∈
mboxvEuclid∗(0). It is not obvious that
mboxvEuclid∗(k) , ∅ if k , 0. Examples can be drawn from the composition (also called dictionary
or lexicographic product) of two graphs.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the composition G1[G2] is the graph with
V1 × V2 as its vertex set, and the vertices (u1, v1) and (u2, v2) are adjacent if

(i) u1u2 ∈ E(G1), or
(ii) u1 = u2, and v1v2 ∈ E(G2).

See, for example, [1]. The composition C4[P2] is given below.

One can show that µv(C3[N3]) = 5:

Due to symmetry, it suffices to study C3[N3] − v for any vertex v:

Since µv(C3[N3] − v) = 5, we deduce that C3[N3] ∈
mboxvEuclid∗(5).
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Many graphs are not critically vertex-Euclidean. These graphs have the property that the removal
of a single vertex would change their vertex-Euclidean deficiency. The deficiency of G−v may depend
on the choice of v. Let S be a set of integers. We use the notation
mboxvEuclid∗(k ↓ S ) for the set of all connected graphs G with µv(G) = k, and S is the minimal set
that contains all possible values of µv(G − v) taken over the vertices v in G. For example, we find
K3F3 ∈

mboxvEuclid∗(1 ↓ {1, 0}):

Here, we use an asterisk to indicated the removed vertex. We also have K3F4 ∈

mboxvEuclid∗(1 ↓ {1, 0}):

We find K4F3,K4F4 ∈

mboxvEuclid∗(2 ↓ {1}):

We also find K5F3,K5F5 ∈

mboxvEuclid∗(3 ↓ {2}):

and K6F4 ∈

mboxvEuclid∗(4 ↓ {3}):

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 121, 41–52



On Vertex-Euclidean Deficiency of Complete Fan Graphs and Complete Wheel Graphs 49

Conjecture 1.

KmFn ∈


mboxvEuclid∗(1 ↓ {1, 0}) if n = 3,

mboxvEuclid∗(n − 2 ↓ {n − 3}) if n ≥ 4.

The behavior of the complete wheel graphs KmWn is more complex. We find K3W3 ∈

mboxvEuclid∗(1):

However, we have K3W4 ∈

mboxvEuclid∗(2 ↓ {1, 0}):

We also find K3W5 ∈

mboxvEuclid∗(2 ↓ {1, 0}):

However, we have K3W6 ∈

mboxvEuclid∗(3 ↓ {2, 0}):

We also find K3W7 ∈

mboxvEuclid∗(3 ↓ {2, 0}):
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However, we have K3W8 ∈

mboxvEuclid∗(4 ↓ {3, 0}):

Unexpectedly, we find K3W9 ∈

mboxvEuclid∗(5 ↓ {4, 0}):

The behavior becomes more complex when m = 4. We have found that µv(K4W3) = 2:

We find K4W3 ∈

mboxvEuclid∗(2 ↓ {2, 1}):

We know that µv(K4W4) = 2:

But we have K4W4 ∈

mboxvEuclid∗(2 ↓ {3, 2, 1}):
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What if m = 5? We know that µv(K5W4) = 4. We find K5W4 ∈

mboxvEuclid∗(4 ↓ {3, 2}):

Let us consider yet another example. We know that µv(K6W5) = 4. There are three possible choices
for the removed vertex. They are listed in Figure 1. We determine that K6W5 ∈

mboxvEuclid∗(4 ↓ {4, 3}).

Figure 1. The Labeling of K6W5 − v

The case of KmWn appears to be rather complex. We invite the readers the study these problems.
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5. Research Problems

There are many problems that we can study.

1. Determine the vertex-Euclidean deficiency of other families of graphs.
2. The construction of other vertex-Euclidean and non-vertex-Euclidean graphs.
3. For any integer n, we know that µv(Kn+2) = n. What is the maximum number of edges that we

can remove from Kn+2 without altering the vertex-Euclidean deficiency?
4. We can study other extremal problems similar the one we just mentioned. For example, what is

the maximum number of edges on a connected graph G with p vertices so that µv(G) < p − 2?
5. Study the analogous problems for µe(G).
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