

Article

On Vertex Euclidean Deficiency of One-Point Union and One-Edge Union of Complete Graphs

Zhao-Bin Gao¹, Wei Qiu¹, Sin-Min Lee², Tai-Chieh Yang³, and Carl Xiaohang Sun^{4,*}

- ¹ College of Math. Sci Harbin Engineering Univ. Harbin, 150001, China
- ² 1304N, 1st Avenue Upland, CA 91786 USA
- ³ Dept. of Maths. National Changhua Univ. of Education. Changhua, Taiwan
- ⁴ Sacramento Waldorf School 3750, Bannister Road, Fair Oaks, CA 95628

* Correspondence: carlsun6@gmail.com

Abstract: A (p, g)-graph *G* is Euclidean if there exists a bijection $f : V \to \{1, 2, ..., p\}$ such that for any induced *C*₃-subgraph $\{v_1, v_2, v_3\}$ in *G* with $f(v_1) < f(v_2) < f(v_3)$, we have that $f(v_1) + f(v_2) > f(v_3)$. The Euclidean Deficiency of a graph *G* is the smallest integer *k* such that $G \cup N_k$ is Euclidean. We study the Euclidean Deficiency of one-point union and one-edge union of complete graphs.

Keywords: Euclidean Deficiency, Complete graph

1. Introduction

Definition 1. A (p,g)-graph G is Euclidean if there exists a bijection $f : V \to \{1, 2, ..., p\}$ such that for any induced C_3 -subgraph $\{v_1, v_2, v_3\}$ in G with $f(v_1) < f(v_2) < f(v_3)$, we have that

$$f(v_1) + f(v_2) > f(v_3).$$

Let Euclid(0) *be the set of all Euclidean graphs.*

Example 1. An Euclidean graph with 5 vertices:

Figure 1

Example 2. All triangle free graphs are Euclidean.

Example 3. Euclidean (p, g)-graphs with p = 1, 2, ..., 6

An immediate observation is that C_3 is not Euclidean, for the vertices will be labeled with 1, 2, 3, but $1 + 2 \ge 3$. This observation can also be extended: the label 1 cannot be used on any vertices

contained in some C_3 subgraph. For the sake of contradiction, assume this C_3 subgraph is labeled 1, x, y where 1 < x < y, then $1 + x \le y$ and hence $1 + x \ge y$ for any integer y > x. It follows

That if all vertices are part of some C_3 subgraph then, the graph must necessarily not be Euclidean.

Definition 2. The Euclidean deficiency of a (p,g)-graph G is $\min\{k : G \cup N_k \in Euclid(0)\}$, where N_k is the null graph with k vertices, and we'll denote this number by $\mu(G)$. For a given k > 0, let Euclid(k) be the set of all graphs with Euclidean deficiency k.

Example 4. Graphs with Euclidean deficiency 1:

Theorem 1. Let $n \ge 3$ and K_n be the complete graph of order n, then $\mu(K_n) = n - 2$.

Proof. Observe letting the vertices having labels n - 1, n, ..., 2n - 1 works, since n - 1, n are the smallest labels, it follows that, for label of any two vertices v_1, v_2 ,

$$f(v_1) + f(v_2) \ge n - 1 + n = 2n - 1,$$

greater than all other labels. This establishes that $\mu(K_n) \le n - 2$. On the other hand, let x, x + 1 be the smallest two labels, then the largest label is x + n and since the graph is complete, the vertices containing these labels form a C_3 subgraph, therefore

$$x + x + 1 > x + n,$$

or equivalently, x > n - 1. This establishes that $\mu(K_n) \ge n - 2$, and therefore $\mu(K_n) = n - 2$.

Theorem 2. *If* $H \in Euclid(k)$ *and* $H \subseteq G$ *such that*

1. $G \setminus H$ is triangular free, 2. $|V(G \setminus H)| > k$

$$2. ||V(G \setminus H)| \ge k$$

then $G \in Euclid(0)$ *.*

Proof. Instead of *NK*, we can use the vertices of $G \setminus H$ and the result follows.

2. Construction of graphs

Definition 3. Let v_1, v_2 be vertices of graphs G_1, G_2 , respectively, then the one-point union,

$$OU((G_1, \{v_1\}), (G_2, \{v_2\})),$$

is the disjoint union G_2 to G_1 then v_2 attaches to v_1 .

Example 5. We'll now look at the Euclid deficiency of one-point union of complete graphs. First, looking at $OU(K_3, K_n)$ for $n \ge 3$ we see that

$$OU(K_3, K_n) \in \begin{cases} Euclid(1) & n-4, \quad 3 \le n \le 5\\ Euclid(n-4) & n \ge 6. \end{cases}$$

By testing out $OU(K_4, K_n)$ for $n \ge 4$, we have that

$$OU(K_4, K_n) \in \begin{cases} Euclid(2) & n-5, \quad 4 \le n \le 7\\ Euclid(n-5) & n \ge 8. \end{cases}$$

Testing out similar cases, we see that

$$OU(K_5, K_n) \in \begin{cases} Euclid(3) & n-6, \quad 5 \le n \le 9\\ Euclid(n-6) & n \ge 10, \end{cases}$$

$$OU(K_6, K_n) \in \begin{cases} Euclid(4) & n - 7, & 6 \le n \le 11 \\ Euclid(n - 7) & n \ge 12, \end{cases}$$
$$OU(K_7, K_n) \in \begin{cases} Euclid(5) & n - 8, & 7 \le n \le 13 \\ Euclid(n - 8) & n \ge 14. \end{cases}$$

Figure 4

In general, we have that

Theorem 3. For $m \le n$,

$$OU(K_m, K_n) \in \begin{cases} Euclid(m-2) & n-m-1, \quad n \le 2m-1\\ Euclid(n-m-1) & n \ge 2m. \end{cases}$$

Proof. Let $G = OU(K_m, K_n)$ and $a = \mu(G)$. We'll label the vertices on K_m with a + 1, a + 2, ..., a + m with a + m at the common vertex, and a + m, a + m + 1, ..., a + m + n - 1 on the K_n graph.

If $n \le 2m - 1$ then from the subgraph K_m consisting of a + 1, a + 2, a + m, we have that

$$a + 1 + a + 2 > a + m$$

or $a \ge m-2$. Direct calculation of with a = m-2 on the C_3 subgraphs of *G* consisting of the smallest, second smallest and largest labels in K_n and K_m respectively:

$$a + 1 + a + 2 = 2m - 1 > 2m - 2 = a + m$$

and

$$a + m + a + m + 1 = 4m - 3 = (2m - 1) + (2m - 2) \ge n + a + m > a + m + n - 1,$$

shows that $\mu(G) = m - 2$.

If $n \ge 2m$ then from the subgraph of K_n consisting of a + m, a + m + 1, a + m + n - 1, we have that

a + m + a + m + 1 > a + m + n - 1,

or equivalently $a \ge n - m - 1$. Direct calculation of with a = n - m - 1 on the C_3 subgraphs of G consisting of the smallest, second smallest and largest labels in K_n and K_m respectively:

$$a + 1 + a + 2 = 2n - 2m + 1 \ge n + 1 > n - 1 = a + m$$

and

a + m + a + m + 1 = 2n - 1 > 2n - 2 = a + m + n - 1,

shows that $\mu(G) = n - m - 1$.

Definition 4. Let e_1, e_2 be edges of graphs G_1, G_2 , respectively, then the one-edge union,

 $OE((G_1, \{v_1\}), (G_2, \{v_2\})),$

is the disjoint union G_2 to G_1 then collapse e_2 to e_1 .

This construction is dual of one-point union of graphs.

Example 6.

$$OE((C_3, (c_1, c_2)), (C_4, (v_1, v_2))).$$

We'll now look at the Euclid deficiency of one-edge union of complete graphs. First, looking at $OE(K_3, K_n)$ for $n \ge 3$ we see that

$$OE(K_3, K_3) \in Euclid(1)$$

 $OE(K_3, K_5) \in Euclid(2)$

or in general,

$$OE(K_3, K_4) \in Euclid(1)$$

 $OE(K_3, K_6) \in Euclid(3)$

$$OE(K_3, K_n) \in \begin{cases} Euclid(1) & 3 \le n \le 4\\ Euclid(n-3) & n \ge 5. \end{cases}$$

By testing out $OE(K_4, K_n)$ for $n \ge 4$, we have that

 $OE(K_4, K_4) \in Euclid(2)$ $OE(K_4, K_6) \in Euclid(2)$

or in general,

 $OE(K_4, K_5) \in Euclid(2)$

$$OE(K_4, K_7) \in Euclid(3)$$
$$OE(K_4, K_n) \in \begin{cases} Euclid(2) & 4 \le n \le 6\\ Euclid(n-4) & n \ge 7. \end{cases}$$

Testing out similar cases, we see that

$$OE(K_5, K_n) \in \begin{cases} Euclid(3) & 5 \le n \le 8\\ Euclid(n-5) & n \ge 9, \end{cases}$$
$$OE(K_6, K_n) \in \begin{cases} Euclid(4) & 6 \le n \le 10\\ Euclid(n-6) & n \ge 12, \end{cases}$$
$$OE(K_7, K_n) \in \begin{cases} Euclid(5) & 7 \le n \le 12\\ Euclid(n-7) & n \ge 13. \end{cases}$$

In general, we have that

Theorem 4. For $m \le n$,

$$OU(K_m, K_n) \in \begin{cases} Euclid(m-2) & n \le 2m-2\\ Euclid(n-m) & n \ge 2m-1. \end{cases}$$

Proof. The proof is similar to that of Theorem 3.

Acknowledgment

We appreciate Prof. Harris Kwong for his critical and helpful suggestions on this paper.

Conflict of interest

The author declares no conflict of interest.

References

- 1. Gallian, J. A., 2017. A dynamic survey of graph labeling. Electronic Journal of Combinatorics, 20(DS6), pp.1-30.
- 2. Harary, F., 1969. Graph theory. Reading, MA: Addison-Wesley.
- 3. Lee, S. M., n.d.. On vertex Euclidean graphs. (Manuscript)
- 4. Shee, S. C. and Ho, Y. S., 1993. The cordiality of one-point union of copies of graphs. Discrete Mathematics, 117, pp.225-243.

 \bigcirc 2024 the Author(s), licensee Combinatorial Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)