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Abstract: A (p, g)-graph G is Euclidean if there exists a bijection f : V → {1, 2, . . . , p} such that for
any induced C3-subgraph {v1, v2, v3} in G with f (v1) < f (v2) < f (v3), we have that f (v1) + f (v2) >
f (v3). The Euclidean Deficiency of a graph G is the smallest integer k such that G ∪ Nk is Euclidean.
We study the Euclidean Deficiency of one-point union and one-edge union of complete graphs.
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1. Introduction

Definition 1. A (p, g)-graph G is Euclidean if there exists a bijection f : V → {1, 2, . . . , p} such that
for any induced C3-subgraph {v1, v2, v3} in G with f (v1) < f (v2) < f (v3), we have that

f (v1) + f (v2) > f (v3).

Let Euclid(0) be the set of all Euclidean graphs.

Example 1. An Euclidean graph with 5 vertices:

Figure 1

Example 2. All triangle free graphs are Euclidean.

Example 3. Euclidean (p, g)-graphs with p = 1, 2, . . . , 6
An immediate observation is that C3 is not Euclidean, for the vertices will be labeled with 1, 2, 3,

but 1 + 2 ≯ 3. This observation can also be extended: the label 1 cannot be used on any vertices
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contained in some C3 subgraph. For the sake of contradiction, assume this C3 subgraph is labeled
1, x, y where 1 < x < y, then 1 + x ≤ y and hence 1 + x ≯ y for any integer y > x. It follows

Figure 2

That if all vertices are part of some C3 subgraph then, the graph must necessarily not be Euclidean.

Definition 2. The Euclidean deficiency of a (p, g)-graph G is min{k : G ∪ Nk ∈ Euclid(0)}, where
Nk is the null graph with k vertices, and we’ll denote this number by µ(G). For a given k > 0, let
Euclid(k) be the set of all graphs with Euclidean deficiency k.

Example 4. Graphs with Euclidean deficiency 1:

Theorem 1. Let n ≥ 3 and Kn be the complete graph of order n, then µ(Kn) = n − 2.

Proof. Observe letting the vertices having labels n − 1, n, . . . , 2n − 1 works, since n − 1, n are the
smallest labels, it follows that, for label of any two vertices v1, v2,

f (v1) + f (v2) ≥ n − 1 + n = 2n − 1,

greater than all other labels. This establishes that µ(Kn) ≤ n − 2. On the other hand, let x, x + 1 be
the smallest two labels, then the largest label is x + n and since the graph is complete, the vertices
containing these labels form a C3 subgraph, therefore

x + x + 1 > x + n,

Figure 3

or equivalently, x > n − 1. This establishes that µ(Kn) ≥ n − 2, and therefore µ(Kn) = n − 2. □

Theorem 2. If H ∈ Euclid(k) and H ⊆ G such that

1. G \ H is triangular free,
2. |V(G \ H)| ≥ k,

then G ∈ Euclid(0).

Proof. Instead of NK, we can use the vertices of G\H and the result follows. □
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2. Construction of graphs

Definition 3. Let v1, v2 be vertices of graphs G1,G2, respectively, then the one-point union,

OU((G1, {v1}), (G2, {v2})),

is the disjoint union G2 to G1 then v2 attaches to v1.

Example 5. We’ll now look at the Euclid deficiency of one-point union of complete graphs. First,
looking at OU(K3,Kn) for n ≥ 3 we see that

OU(K3,Kn) ∈

Euclid(1) n − 4, 3 ≤ n ≤ 5
Euclid(n − 4) n ≥ 6.

By testing out OU(K4,Kn) for n ≥ 4, we have that

OU(K4,Kn) ∈

Euclid(2) n − 5, 4 ≤ n ≤ 7
Euclid(n − 5) n ≥ 8.

Testing out similar cases, we see that

OU(K5,Kn) ∈

Euclid(3) n − 6, 5 ≤ n ≤ 9
Euclid(n − 6) n ≥ 10,

OU(K6,Kn) ∈

Euclid(4) n − 7, 6 ≤ n ≤ 11
Euclid(n − 7) n ≥ 12,

OU(K7,Kn) ∈

Euclid(5) n − 8, 7 ≤ n ≤ 13
Euclid(n − 8) n ≥ 14.

Figure 4

In general, we have that

Theorem 3. For m ≤ n,

OU(Km,Kn) ∈

Euclid(m − 2) n − m − 1, n ≤ 2m − 1
Euclid(n − m − 1) n ≥ 2m.

Proof. Let G = OU(Km,Kn) and a = µ(G). We’ll label the vertices on Km with a + 1, a + 2, . . . , a +m
with a + m at the common vertex, and a + m, a + m + 1, . . . , a + m + n − 1 on the Kn graph.

If n ≤ 2m − 1 then from the subgraph Km consisting of a + 1, a + 2, a + m, we have that

a + 1 + a + 2 > a + m

or a ≥ m−2. Direct calculation of with a = m−2 on the C3 subgraphs of G consisting of the smallest,
second smallest and largest labels in Kn and Km respectively:

a + 1 + a + 2 = 2m − 1 > 2m − 2 = a + m
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and
a + m + a + m + 1 = 4m − 3 = (2m − 1) + (2m − 2) ≥ n + a + m > a + m + n − 1,

shows that µ(G) = m − 2.
If n ≥ 2m then from the subgraph of Kn consisting of a +m, a +m + 1, a +m + n − 1, we have that

a + m + a + m + 1 > a + m + n − 1,

or equivalently a ≥ n − m − 1. Direct calculation of with a = n − m − 1 on the C3 subgraphs of G
consisting of the smallest, second smallest and largest labels in Kn and Km respectively:

a + 1 + a + 2 = 2n − 2m + 1 ≥ n + 1 > n − 1 = a + m

and
a + m + a + m + 1 = 2n − 1 > 2n − 2 = a + m + n − 1,

shows that µ(G) = n − m − 1. □

Figure 5

Definition 4. Let e1, e2 be edges of graphs G1,G2, respectively, then the one-edge union,

OE((G1, {v1}), (G2, {v2})),

is the disjoint union G2 to G1 then collapse e2 to e1.

Figure 6

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 121, 107–112



On Vertex Euclidean Deficiency of One-Point Union 111

Figure 7

Figure 8

Figure 9

This construction is dual of one-point union of graphs.

Example 6.
OE((C3, (c1, c2)), (C4, (v1, v2))).

We’ll now look at the Euclid deficiency of one-edge union of complete graphs. First, looking at
OE(K3,Kn) for n ≥ 3 we see that

OE(K3,K3) ∈ Euclid(1)

OE(K3,K5) ∈ Euclid(2)

or in general,
OE(K3,K4) ∈ Euclid(1)

OE(K3,K6) ∈ Euclid(3)

OE(K3,Kn) ∈

Euclid(1) 3 ≤ n ≤ 4
Euclid(n − 3) n ≥ 5.

By testing out OE(K4,Kn) for n ≥ 4, we have that

OE(K4,K4) ∈ Euclid(2)

OE(K4,K6) ∈ Euclid(2)

or in general,
OE(K4,K5) ∈ Euclid(2)
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OE(K4,K7) ∈ Euclid(3)

OE(K4,Kn) ∈

Euclid(2) 4 ≤ n ≤ 6
Euclid(n − 4) n ≥ 7.

Testing out similar cases, we see that

OE(K5,Kn) ∈

Euclid(3) 5 ≤ n ≤ 8
Euclid(n − 5) n ≥ 9,

OE(K6,Kn) ∈

Euclid(4) 6 ≤ n ≤ 10
Euclid(n − 6) n ≥ 12,

OE(K7,Kn) ∈

Euclid(5) 7 ≤ n ≤ 12
Euclid(n − 7) n ≥ 13.

In general, we have that

Theorem 4. For m ≤ n,

OU(Km,Kn) ∈

Euclid(m − 2) n ≤ 2m − 2
Euclid(n − m) n ≥ 2m − 1.

Proof. The proof is similar to that of Theorem 3. □
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