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Abstract: A graph G is asymmetric if its automorphism group is trivial. Asymmetric graphs
were introduced by Erdős and Rényi [1]. They suggested the problem of starting with an
asymmetric graph and removing some number, r, of edges and/or adding some number, s, of
edges so that the resulting graph is non-asymmetric. Erdős and Rényi defined the degree of
asymmetry of a graph to be the minimum value of r + s. In this paper, we consider another
property that measures how close a given non-asymmetric graph is to being asymmetric. Brewer
et al defined the asymmetric index of a graph G, denoted ai(G) is the minimum of r +s so that
the resulting graph G is asymmetric [2]. It is noted that ai(G) is only defined for graphs with
at least six vertices. We investigate the asymmetric index of both connected and disconnected
graphs including paths, cycles, and grids, with the addition of up to two isolated vertices.
Furthermore for a graph in these families G we determine the number of labelled asymmetric
graphs that can be obtained by adding or removing ai(G) edges. This leads to the related
question: Given a graph G where ai(G) = 1, what is the probability that for a randomly
chosen edge e, that G − e will be asymmetric? A graph is called minimally non-asymmetric if
this probability is 1. We give a construction of infinite families of minimally non-asymmetric
graphs.

Keywords: Labelled asymmetric graphs, asymmetric graphs, non-asymmetric graphs

1. Introduction

For a graph G we will use V (G) to denote the set of vertices, and E(G) to denote the set
of edges. The edge between vertices u and v will be denoted {u, v}. Two graphs G and H are
isomorphic if there is a bijection f : G → H where {u, v} ∈ E(G) ⇔ {f(u), f(v)} ∈ E(H).
Such a function is an automorphism if it is an isomorphism from a graph to itself, and the set of
all automorphisms of a graph forms a group under function composition. We will use AutG to
denote the automorphism group of a graph G. For more information on graph automorphisms,
see the text by Godsil and Royle [3].

Here we start with a non-asymmetric graph and remove some number, r, of edges and/or
add some number, s, of edges so that the resulting graph is asymmetric. The asymmetric index
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Farnsworth et al. 18
of a graph G, denoted ai(G), is the minimum r +s so that the resulting graph G is asymmetric.
This parameter was introduced by Brewer et al. [2].

Many graphs with asymmetric index of 1 have been identified [2, 4]. In this paper we focus
on enumerating the edges that “realize” the asymmetric index of G. Alternatively we consider
the question: Given a graph G where ai(G) = 1, what is the probability that for a randomly
chosen edge e, G − e will be asymmetric? For some graphs the asymmetric index is realized
by adding an edge, as opposed to deleting an edge, and in these cases we will consider the
probability of adding a randomly selected edge to make the resulting graph G asymmetric.

Before considering specific families of graphs, we note in the next theorem that no graph
has a single edge whose removal gives an asymmetric graph.
Theorem 1. There is no non-asymmetric graph G with a unique edge e such that G − e is
asymmetric.
Proof. An orbital is an orbit of Aut(G) acting on the ordered pairs V (G) × V (G). Note that
the orbitals partition the arcs of G. Suppose that G is non-asymmetric, and G − {u, v} is
asymmetric, for some {u, v} ∈ E(G). Since G − {u, v} is asymmetric, there is no non-identity
automorphism ϕ of G so that ϕ({u, v}) = {u, v}.

Consider the orbital O containing (u, v). If (x, y) ∈ O, then G − {x, y} is asymmetric, as
there is an automorphism of G that maps the edge {u, v} to the edge {x, y}. Thus if {u, v} is the
unique edge for which G−{u, v} is asymmetric, then either O = {(u, v)}, or O = {(u, v), (v, u)}.

In the first case, every automorphism of G fixes both u and v pointwise. In the second case,
every automorphism of G either fixes u and v pointwise, or maps u 7→ v and v 7→ u. In both
cases we see that every automorphism of G fixes {u, v} setwise. Since G contains a non-trivial
automorphism, this contradicts our assumption that G − {u, v} is asymmetric. Therefore there
is some edge {x, y} , {u, v} so that G − {x, y} is asymmetric. □

In Sections 2, 3, and 4 we investigate paths, cycles, and grid graphs. We determine the
number of labelled asymmetric graphs that can be obtained by adding or removing ai(G) edges
for each of these graphs G. Extending these results, we also consider the graphs G ∪ 2K1 for
each G in these classes.

A graph is called minimally non-asymmetric if the deletion of any edge results in an asym-
metric graph. In Section 5, we give a construction of infinite families of minimally non-
asymmetric graphs. Let Pre(G) denote the probability that G − e is asymmetric for a ran-
domly selected edge e of G. Then a graph is minimally non-asymmetric if Pre(G) = 1. For the
complete graphs, the deletion of any edge from Kn does not result in an asymmetric graph, so
Pre(Kn) = 0. In Section 6, we show that if 0 ≤ α ≤ 1 is rational, then there is a graph G for
which Pre(G) = α.

2. Paths

Throughout, Pn denotes the path with n vertices. In this section we consider G to be a path
and up to two isolated vertices where ai(G) = 1. We ask what is the probability that for a
randomly chosen edge, what is the probability that G − e will be asymmetric? We establish
that ai (Pn ∪ tK1) = 1 if and only if t ≤ 2. We begin with the following result from Brewer et
al. [2].
Theorem 2. When n ≥ 6, the number of non-isomorphic asymmetric graphs obtained by
adding an edge to a path Pn is

⌊
(n−4)2

4

⌋
.

It was shown that ai (Pn) = 1 for all n ≥ 6 [2]. Next we count the number of asymmetric
labelled graphs that can be obtained by adding an edge to Pn. As an easy consequence of
Theorem 2 we have the following.

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 121, 17–29



Realizing the Asymmetric Index of a Graph 19
Lemma 1. When n ≥ 6, the number of labelled asymmetric graphs obtained by adding an edge
to a path Pn is 2

⌊
(n−4)2

4

⌋
. □

Theorem 3. Let n ≥ 6 and t ∈ {1, 2}. The number of labelled asymmetric graphs obtained by
adding an edge between a path Pn and tK1 is t(n − 4) if n is even and t(n − 5) if n is odd.

Proof. Let the vertices of Pn v0, v1, ..., vn−1 and let the two isolated vertices be u and w. We
first note to obtain an asymmetric graph an added edge must be incident to either u or w.
Without loss of generality we will consider adding an edge that is incident to u. We first note
that adding an edge from u to either v0 or vn−1 will result in a path that is not asymmetric
with one isolated vertex. Also, adding an edge between u and v1 or vn−2 would result in a non-
asymmetrical subdivided star with an isolated vertex. Additionally, if n is odd then adding an
edge between u and the middle vertex of the path will result in a graph that is not asymmetric.
Adding an edge incident to an isolated vertex and any vertex that is not v1, v2, vn−1, or vn−2
will result in a subdivided star where the pendant paths all have different lengths, which is
asymmetric. □

When t = 2, Theorem 3 gives the number of ways the asymmetric index can be realized by
adding one edge. However, in the case of t = 1 the added edge can either connect two vertices
of the path, or connect the isolated vertex to a vertex on a path. Hence Lemma 1 and Theorem
3 can be combined to give the following result.

Theorem 4. Let n ≥ 6. The number of labelled asymmetric graphs obtained by adding an edge
to Pn ∪ K1 is

AP (n, 1) =


(n − 4) + 2

⌊
(n−4)2

4

⌋
if n is even,

(n − 5) + 2
⌊

(n−4)2

4

⌋
if n is odd.

□

We note that a graph consisting of a path and three or more isolated vertices has an asym-
metric index of at least two. Hence we have the following result.

Corollary 1. Let n ≥ 6. Then ai(Pn + tK1) = 1 if and only if t ≤ 2.

3. Cycles

It was shown in Brewer et al. [2] that the asymmetric index of a cycle on at least six vertices
is 2. We will consider cycles with at least six vertices as the asymmetric index is not defined
for cycles with fewer than six vertices [1]. The cycle Cn with n ≥ 6 can be turned into an
asymmetric graph by adding two edges. This can be achieved in three different ways. If Cn is
considered to be a regular n-gon embedded in the unit circle, then two edges can be added to
the n-gon. These chords either meet at a vertex, are totally disjoint, or cross in the interior
of the n-gon. The conditions for which two chords can be added to Cn was determined in [2].
Now we count the total number of labelled asymmetric graphs obtained from Cn by adding two
edges case-by-case.

Lemma 2. For n ≥ 6, the number of labelled asymmetric graphs obtained from Cn by adding
two chords that meet at a vertex is

A1(n) =


n
2 (n − 4)2, if n is even,
n
2 (n − 3)(n − 5), if n is odd.
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Proof. Let S1(n) be the number of labelled non-asymmetric graphs obtained from Cn by adding
two chords that meet at a vertex. We show that

S1(n) =
n(n−4

2 ), if n even,
n(n−3

2 ), if n odd.

Label the vertices of Cn cyclically with {0, . . . , n − 1}, and consider adding two chords
incident with 0. There are n − 3 vertices i for which we can add the edge {0, i}, so there are(

n−3
2

)
graphs formed by adding two chords incident with 0.

Suppose we add chords {0, i} and {0, j}. The resulting graph has a non-trivial automorphism
if and only if i ≡n −j, so we get one non-asymmetric graph for each 2 ≤ i ≤ ⌊(n − 1)/2⌋.
Performing the same count for each vertex 1, . . . , n − 1 gives the above formulas for S1(n).

Thus the total number of asymmetric labelled graphs obtained this way is n
(

n−3
2

)
− S1(n).

This gives the stated formulas for A1(n). □

Lemma 3. For n ≥ 8, the number of labelled asymmetric graphs obtained from Cn by adding
two chords that do not intersect is

A2(n) =


n
2

(
n−4

3

)
, if n is even,

n
12(n − 3)(n − 5)(n − 7), if n is odd.

Proof. As in the proof of Lemma 2, we count the non-asymmetric graphs directly, and obtain
the number of asymmetric configurations by taking the complement. We show that the total
number of non-asymmetric labelled graphs with two non-intersecting chords is given by

S2(n) =


n
2

(
n−4

2

)
, if n is even,

n
4 ((n − 4)2 − 1), if n is odd.

Again, label the vertices of Cn cyclically with {0, . . . , n − 1}. Consider adding chords {0, i}
and {j, k} where 0, i, j, k occur in cyclic order. In order to add edges {0, i} and {j, k} we must
have at least one vertex between 0 and i, and between j and k in cyclic order. If we suppress
an arbitrary vertex between each, then we have 0 and three vertices chosen on Cn−2. Likewise,
choosing three vertices i′, j′, k′ in cyclic order on Cn−2, then inserting a vertex between each of
the pairs 0, i′ and j′, k′, we end up with vertices 0, i, j, k on Cn so that {0, i} and {j, k} can be
added to form non-intersecting chords. Thus the total number of configurations anchored at 0
is
(

n−3
3

)
.

The non-asymmetric graphs with two non-intersecting chords anchored at 0 fall into three
categories. We count the total number of each in turn.

First, consider the case where the cycle that uses the path along Cn from 0 to i and the edge
{0, i} has the same length as the cycle that uses the path along Cn from j to k and the edge
{j, k}. This occurs when i−0 = k − j, or equivalently when i+ j = k. So if we choose i, then k

must be i + j, and we have n − 2i − 1 choices for j. Thus the total number of non-asymmetric
graphs of this type is

f(n) =
⌊n/2⌋−1∑

i=2
(n − 2i − 1) =

(n/2 − 2)2, if n is even,
n2/4 − 2n + 15/4, if n is odd.

The second type of non-asymmetric graph occurs when the paths along Cn from i to j, and
from k to 0 have the same length. These graphs are exactly the same as graphs of the first
type, except we want the equal cycle segments to appear clockwise instead of counterclockwise.
So the number of graphs of this type is also f(n).
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Finally, the third category of non-asymmetric graph comprises graphs that fall into both the

first type, and the second type. That is, the paths along Cn from 0 to i and from j to k have
the same length, and the paths along Cn from i to j and from k to 0 have the same length. In
our counting above, we have double-counted these. This can only occur when n is even, and
choosing i fixes both j and k. Since 2 ≤ i ≤ n/2 − 1, there are n/2 − 2 of these graphs.

We have counted the graphs anchored at 0. So to recover the total number of graphs we
multiply by n to account for the n choices of anchor, and divide by 2 as each graph appears
twice, anchored at different vertices. Thus we obtain the stated formulas for S2(n).

This implies that the total number of asymmetric labelled graphs is (n/2)
(

n−3
3

)
−S2(n), and

gives the stated formulas for A2(n). □

Lemma 4. For n ≥ 7, the number of labelled asymmetric graphs obtained from Cn by adding
two crossing chords is

A3(n) =


n2

24 (n − 4)(n − 5), if n ≡4 0,
n
24(n − 1)(n − 2)(n − 6), if n ≡4 2,
n
24(n − 1)(n − 3)(n − 5), if n ≡4 1, 3.

Proof. As in the proofs of the preceding lemmas, we count the non-asymmetric graphs directly.
We show that the total number of non-asymmetric labelled graphs with two crossing chords is
given by

S3(n) =


n
2 (n−1

2 )(n−2
2 ) − n

2 , n ≡4 0,
n
2 (n−1

2 )(n−2
2 ), n ≡4 2,

n
2 (n−1

2 )(n−3
2 ), n ≡4 1, 3.

Label the vertices of Cn cyclically with {0, . . . , n − 1}. Note that every choice of 4 vertices
corresponds to a graph with two intersecting chords. So the total number of graphs is

(
n
4

)
. We

count the non-asymmetric graphs by choosing 0, and additional vertices i, j, k that appear in
cyclic order. These vertices separate Cn into paths with a, b, c, d edges respectively. The graph
obtained by adding the crossing edges is symmetric when exactly one of the following holds:

1. a = b and c = d;
2. a = d and b = c;
3. a = c or b = d.

We begin by counting the non-asymmetric graphs of type (3). More specifically, we count the
symmetries where a = c. Assume n is odd. If i is fixed, then a is determined, and choosing j
forces k = j + a. So for all 1 ≤ i ≤ (n − 1)/2 we have n − 2i − 1 choices for j, and so there are
2
(

(n−1)/2
2

)
such graphs. Now since n is odd, b , d and all of the non-asymmetric graphs arise in

this way. As we let the anchor range from 0 to n − 1 we count every such configuration twice,
so we have n(n − 1)(n − 3)/8 in total.

If n is even, then we can apply the same logic as in the previous paragraph. Take a = c

and as i varies from 1 to n/2 − 1 the same calculation gives n(n − 2)(n − 4)/8 type (3) graphs.
These account from all graphs that arise when a = c or b = d, but not both. When a = c and
b = d, then the two intersecting chords both bisect Cn. There are n/2 such chords, so there are
an additional

(
n/2

2

)
graphs when n is even.

For the non-asymmetric graphs of types (1) and (2), we see that n must be even. Moreover,
these cases are rotationally equivalent. So it suffices to count those of type (1). If a = b, and
c = d, then a+d = b+c and {i, k} bisects Cn. So we can count these graphs by fixing a bisector
of Cn, and counting all of the “perpendicular bisectors” of this chord. There are n/2 − 1 of
these, so we have (n/2)(n/2 − 1) non-asymmetric graphs of type (1).
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Finally, when n is even we need to pay attention to overcounting. If n is divisible by 4,

then it is possible that a = b = c = d. In this case, our non-asymmetric graph is counted 3
times (it appears once as type (3), and then twice as type (1)). Thus we need to subtract off
2(n/4) = n/2 to fix our overcounting. Putting everything together we find the total number of
non-asymmetric labelled graphs is S3(n) as given.

Now the total number of asymmetric labelled graphs is
(

n
4

)
− S3(n), which gives the stated

formulas for A3(n). □

Putting together Lemmas 2, 3, and 4 we get the following formula for the total number of
labelled asymmetric graphs.

Theorem 5. For n ≥ 8, the number of labelled asymmetric graphs that can be obtained from
Cn by adding two edges is

AC(n) = A1(n) + A2(n) + A3(n) =


n
8 (n − 1)(n − 4)2, if n ≡4 0,
n
8 (n − 2)2(n − 5), if n ≡4 2,
n
8 (n − 1)(n − 3)(n − 5), if n ≡4 1, 3.

□

We can phrase this result in terms of the probability of creating an asymmetric graph by
adding edges to a cycle. Given a cycle Cn with n ≥ 8, adding two edges at random results in
an asymmetric graph with probability Pr(n) = AC(n)/T (n), where

T (n) =
((

n
2

)
− n

2

)
= n

8 (n − 3)(n2 − 3n − 2)

is the total number of ways to add a pair of edges to Cn. In each of the three cases, Pr(n)
converges quickly to 1. Extending Theorem 5, we consider the graph Cn ∪K1 for n ≥ 6. In fact,
the asymmetric index of a cycle (with at least six vertices) with one or two isolated vertices is
the same as the asymmetric index of a cycle.

Corollary 2. We have that ai(Cn ∪ 2K1) = ai(Cn ∪ K1) = ai(Cn) = 2.

Proof. We consider the case of Cn ∪ 2K1 (the graph obtained from Cn by adding two isolated
vertices) for n ≥ 5. In this case we must add one edge joining one of the isolated vertices to the
cycle, as well as an edge amongst the cycle vertices to break the reflection that fixes a vertex of
degree 1 and a vertex on the original cycle. It is clear that ai(Cn ∪ K1) ≤ 2 since the same two
edges that could be added to Cn to create an asymmetric graph, could be added to Cn ∪ K1 to
create an asymmetric graph. To show the reverse inequality, we first note that adding a chord
to the cycle will leave an automorphism that is a reflection that preserves that two vertices
incident to the chord. We next note that adding an edge incident to the isolated vertex will
leave a graph that has a reflection preserving the vertex (now of degree 1) and a vertex in the
original cycle as a non-trivial automorphism, so ai(Cn ∪ K1) ≥ 2. □

Theorem 6. The number of labelled asymmetric graphs that can be obtained from Cn ∪ 2K1,
when n ≥ 5, by adding two edges is

AC(n, 2) =
n2(n − 4), for n even,

n(n − 1)(n − 3), for n odd.

Proof. Consider the cycle Cn with vertices labelled {0, . . . , n − 1} in cyclic order. Label the
isolated vertices a and b. Now suppose we add the edge {0, a} to Cn ∪ 2K1. The resulting
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graph has a single non trivial automorphism ϕ that can be described as a “reflection” about
the vertex 0. That is, ϕ fixes a, b, and 0 pointwise, and maps ϕ(i) = n − i for all 1 ≤ i ≤ n − 1.

To break this symmetry, we add one edge to Cn so that ϕ is no longer an automorphism,
and no new automorphism is created. Suppose we add the edge {i, j} for some 0 ≤ i, j ≤ n−1.
Then ϕ is no longer an automorphism unless j = n − i, and no new automorphism is created.
Thus there are

A(n) =
n(n − 4)/2, if n is even,

(n − 1)(n − 3)/2, if n is odd,

edges that can be added to break the symmetry. Here the difference between the even and odd
case is that when n is odd, i = 0, (n − 1)/2, and (n + 1)/2 have no invalid choice of j.

Finally, we have A(n) sets of two edges for each “anchor” vertex i on Cn, and two choices
for which of a and b to connect i to. Thus the total number is 2nA(n), which is the given
formula. □

4. Grid Graphs

In this section our focus is on the graphs G(m, n) = Pm□Pn. For rectangular grids,
ai(G(m, n)) = 1, and we let AG(m, n) be the number of edges e so that G(m, n) − e is asym-
metric. Note that AG(m, n) is symmetric in its inputs. Throughout, we let Pn be labelled with
the numbers {0, . . . , n−1} in linear order, so the vertices of G(m, n) are labelled with the pairs
(i, j) for 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1.

Theorem 7. For m ≥ 2 we have

AG(m, 2) = AG(2, m) =



0, m ∈ {2, 3},

4, m = 4,

2m − 6, m ≥ 5 is odd,
2m − 8, m ≥ 6 is even.

Proof. For m ≤ 4 the result is easily verified. Suppose m ≥ 5. Let ϕ be the automorphism
that maps (i, 0) 7→ (i, 1) and (i, 1) 7→ (i, 0). Then if e = {(i, 0), (i, 1)}, ϕ is an automorphism of
G(m, 2) − e. So none of the edges of this type can be removed to create an asymmetric graph.

Given symmetry by ϕ, we consider the edges of the form e = {(i, 1), (i+1, 1)}. Consider the
graph G = G(m, 2) − e. When i = 0 or i = m − 2, the graph G is isomorphic to G(m − 1, 2)
with a path of length 2 appended to one of its “corner” vertices. Since m − 1 ≥ 6 we see that
the automorphisms of G(m − 1, 2) permute the corner vertices among themselves, and that the
stabilizer of each is trivial. Thus G is asymmetric.

Now suppose 1 ≤ i ≤ m − 3. The graph G is isomorphic to G(i + 1, 2) and G(m − i − 1, 2)
joined by a cut edge connecting two of their corner vertices. Call the vertices incident with
the edge u and v. Any automorphism of G either fixes u and v, or swaps them. If u and
v are swapped, then the automorphism swaps G(i + 1, 2) and G(m − i − 1, 2) which implies
that i + 1 = m − i − 1. This is only possible when m is even and i = (m − 2)/2. If ϕ is a
non-trivial automorphism of G that fixes both u and v, then ϕ is a non-trivial automorphism
on one of G(i + 1, 2) and G(m − i − 1, 2) that fixes a corner vertex. This is only possible if
i + 1 = 2, or m − i − 1 = 2. Since m ≥ 5, we see that this gives two choices for i that result in
a non-asymmetric graph G.

Thus the total number of edges e for which G is asymmetric is 2((m − 1) − 2) = 2m − 6
when m is odd, and 2((m − 1) − 1 − 2) = 2m − 8 when m is even. □
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Theorem 8. For m, n ≥ 3,

AG(m, n) =


2(m − 1)(n − 1) − 2, m, n are both even,
2(m − 1)(n − 1) − 1, exactly one of m and n is even,
2(m − 1)(n − 1), m, n are both odd.

Proof. Note that every automorphism of G(m, n) is determined by its action on the corner
vertices. Since the corners are the only vertices of degree 2 in G(m, n), any automorphism ϕ
permutes the corners amongst themselves. Once we specify ϕ’s action on the corner vertices,
we have also determined the action of ϕ on the paths between the corners along the boundary.
This follows as the non-corner boundary vertices are the only vertices of degree 3. Thus their
images under ϕ are determined by their distances to the nearest corner vertices. This implies
that the corners fix the action of ϕ on the entire boundary cycle C. Now consider G(m, n) − C.
This graph is isomorphic to G(m − 2, n − 2). Again on this smaller grid, the action of ϕ on
C determines the images of the corner vertices of G(m − 2, n − 2). This follows as each such
corner is contained in a C4, the remaining vertices of which have already been mapped by ϕ.
Now we simply iterate the previous argument. The images of the corners of G(m − 2, n − 2)
are determined, thus its outer cycle is determined, we remove this cycle and consider the next
smaller grid. Thus the action of ϕ on the corners of G(m, n) determines ϕ completely.

Now consider the graph G = G(m, n) − e for some edge e of G(m, n). We refer to e as a
vertical edge if e = {(i, j), (i, j +1)}, or a horizontal edge if e = {(i, j), (i+1, j)}. Note that the
argument in the previous paragraph implies that every automorphism of G(m, n) either maps
every horizontal edge to a horizontal edge and every vertical edge to a vertical edge, or every
horizontal edge to a vertical edge and vice versa. This implies that the automorphisms of G
map horizontal edges to horizontal edges, and vertical edges to vertical edges. It also follows
from our first argument that the automorphisms of G are also determined by their action
on the corner vertices of G(m, n). Together this implies that the only possible non-identity
automorphisms of G − e (for any edge e) are the maps

ρ : (i, j) 7→ (m − 1 − i, j), and
τ : (i, j) 7→ (i, n − 1 − j).

If e is a vertical edge, then ρ is only an automorphism if e = {((m−1)/2, j), ((m−1)/2, j+1)},
in which case m must be odd. Also, if e is vertical, then τ is only an automorphism if e =
{(i, n/2 − 1), (i, n/2)}, in which case n is even. Similarly, if e is a horizontal edge, then ρ is
only an automorphism if e = {(m/2 − 1, j), (m/2, j)}, in which case m must be even; and τ is
only an automorphism if e = {(i, (n − 1)/2), (i + 1, (n − 1)/2)}, in which case n is odd. Now a
simple count completes the proof. □

As for paths and cycles, we consider the graphs G(m, n) ∪ tK1 for t ∈ {1, 2}. For G(m, n) ∪
2K1, there is always an automorphism swapping two isolated vertices, so this graph can no
longer be made asymmetric by the deletion of an edge. We see that ai(G(m, n) ∪ 2K1) =
ai(G(m, n)) = 1, however now we must add an edge instead of deleting one.

Theorem 9. The number of labelled asymmetric graphs that can be created by adding an edge
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to G(m, n) ∪ 2K1 is

AG(m, n, 2) =



0, m = n = 2,

2m(n − 1), m ≥ 3 odd, n ≥ 3 even,
2n(m − 1), m ≥ 3 even n ≥ 3 odd,
2(mn − m − n + 1), m ≥ 3 odd, n ≥ 3 odd, m , n,
2mn, m ≥ 3 even, n ≥ 3 even, m , n,
2(n − 1)(n − 3), m = n ≥ 3 odd,
2n(n − 2), m = n ≥ 3 even.

Proof. Let a and b be the isolated vertices added to G(m, n). Consider adding the edge e =
{a, (i, j)} to G(m, n)∪2K1 to create the graph G′. Note that G′ has a non-trivial automorphism
if and only if (i, j) has a non-trivial stabilizer as a vertex of G(m, n). As was proved in the
previous proof, the automorphisms of G(m, n) are determined by their action on the corner
vertices. This implies that the only vertices with non-trivial stabilizers are: the vertices ((m −
1)/2, j) when m is odd; the vertices (i, (n − 1)/2) when n is odd; and, the vertices (i, i) and the
vertices (i, n − 1 − i) when m = n.

In the first case, we have m vertices for which the edge e results in a non-asymmetric graph.
In the second, we have n such vertices; and, in the last we have 2n when n is even and 2n − 1
when n is odd (in the n = m odd case there is a centre vertex that is counted twice). Subtracting
these from the total number of vertices mn, and multiplying by 2 to account for both a and b,
gives the stated formulas. □

Note that Theorem 9 establishes part of the analogous result for G(m, n)∪K1. For G(m, n)∪
K1, the asymmetric index can be realized by adding one edge. If the edge is added between a
vertex of G(m, n) and the isolated vertex, then the number of asymmetric graphs that result
is counted as AG(m, n, 2)/2. However, for G(m, n) ∪ K1 in addition to deleting an edge we can
also add an edge to create an asymmetric graph.

Our results on G(m, n) suggest an extension to cylindrical grids, Pm□Cn, and toroidal grids,
Cm□Cn. We know that ai(Pm□Cn) = 1. However, unlike G(m, n) these graphs have their
asymmetric index realized by adding an edge, as opposed to removing an edge. For toroidal
grids, ai(Cm□Cn) = 2, and this can be realized either by adding two edges, or subtracting two
edges.

The enumeration problems for the graphs mentioned in the above two paragraphs are a nat-
ural direction for future research, and would make good problems for undergraduate research.

5. Infinite Families of Minimally Non - Asymmetric Graphs

In this section we give a recursive construction that will result in an infinite families of
minimally non-asymmetric graphs.

Theorem 10. There exists an infinite class of recursively-built minimally non-asymmetric
graphs.

Proof. We start with the graph G on 9 vertices shown in Figure 1. We note that G has only
one non-trivial automorphism (corresponding to a reflection of the picture in Figure 1 over the
vertical line through vertex 4). Since the removal of any edge will remove this symmetry, G is
minimally non-asymmetric.

We then extend G by subdividing the edges {2, 3} and {6, 7} with vertices y and v respec-
tively, and adding two additional vertices x, attached to 1, 3, 9, and y, and u attached to 5,
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Figure 1. Minimally Non-asymmetric Graph G with 9 Vertices

6, 8 and v. This operation preserves the asymmetric index of the graph and the single auto-
morphism (which corresponds to the reflection of the picture in Figure ?? over the vertical line
through 4). Hence the extended graph G′ is also minimally non-asymmetric.

u

v

x

y
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8 9

Figure 2. Minimally Non-Asymmetric Graph G′ With 13 Vertices

The construction of G′ from G can be repeated as follows. In G′ we have induced 4-cycles
{7, 8, u, v} and {2, 9, x, y}. Add a new vertex in the middle of {7, 8, u, v}, and connect it to 8,
u, and v, along with an additional vertex v′ that bisects the edge {7, v}. Perform the same
operation to the cycle {2, 9, x, y}. This results in a minimally non-asymmetric graph G′′ that
again has two induced 4-cycles on its ends.

This extension procedure can be repeated to create an infinite family of minimally non-
asymmetric graphs.

We leave verification that the graphs in Figure 1 and Figure 2 are minimally non-asymmetric
to the reader.

Let G = G(k) be the result of applying the construction shown between the graphs in Figure
1 and Figure 2 k times, for k ≥ 2. To show that G is minimally non-asymmetric, we reverse
the recursive process by identifying a graph H = H(G) created by removing the two vertices
{u, x}, and merging vertex v with vertex 7 and vertex y with vertex 2. If it is the case that in
G(k) − e that e = (v, 7) or (y, 2) then simply delete v or y from H, in lieu of merging.

Now consider an automorphism ϕ of G = G(k). Due to the large degree of vertices 8
and 9, with adjacent vertices 7 and 2 each with small degree, ϕ|{2,9,x,y,7,8,u,v} is the identity
or ϕ|{2,9,x,y,7,8,u,v} = (7, 2)(8, 9)(u, x)(y, v). Then ϕ|V (G)−{u,v,x,y} forms an automorphism of H.
If G = G(k), then H = G(k−1), so by induction, we can conclude that the only non-trivial
automorphism of G(k) is a horizontal reflection.

In a similar manner, let G′ = G(k) − e and consider an automorphism ϕ. As long as e is not
incident to either u or x then ϕ|V (G)−{u,v,x,z} would form an automorphism of H(G′) = G

′(k−1)−e
so by induction ϕ is the trivial automorphism.

Finally if e is incident to either u or x then there is a common neighbor of either v and 8
or y = ϕ(v) and 9 = ϕ(8) but not both, which is a contradiction. If not then u and x are the
common neighbors of v and 8, and y and 9, respectively, so ϕ(u) = x and ϕ(x) = u. However
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since u and x have different degrees, we have a contradiction.

□

6. Realizing All Rational Probabilities

Let Pre(G) denote the probability that the removal of a randomly selected edge from G
results in an asymmetric graph. We show that for any rational number 0 ≤ α ≤ 1 there exists
a graph G where Pre(G) = α.
Theorem 11. For any rational number 0 ≤ α ≤ 1 there exists a graph G such that Pre(G) = α.
Proof. For a minimally non-asymmetric graph G, Pre(G) = 1, and Pre(Kn) = 0. To construct
a graph Gα for which Pre(Gα) = α when 0 < α < 1 is a rational number, we introduce the
graph H shown in Figure 3. Note that H is minimally non-asymmetric.

Figure 3. Minimally Non-Asymmetric Graph H on 9 Vertices

Let H ′ be the graph shown in Figure 4. This graph is constructed from H by adding the
edge e to H. Note that removing any edge other than e from H ′ results in an asymmetric
graph, but H ′ − e is not asymmetric. Thus Pre(H ′) = 12/13.

Figure 4. Graph H ′ With a Single Edge Whose Removal Does Not Create an Asym-
metric Graph

Note that we can modify H ′ by replacing the induced 6-cycle on the left side of the picture
in Figure 4 by an arbitrarily large even cycle. Let Ht be the graph in Figure 5 where the 6-cycle
in H ′ is replaced with an even cycle of length 2t. In the generalization, the graph has only
one non-trivial automorphism (refection over the horizontal midline). As a result the edge e is
the only edge that is not changed under this automorphism. Hence for all t ≥ 6 we see that
Pre(Ht) = (2t + 6)/(2t + 7), and e is the only edge whose removal results in a non-asymmetric
graph.

We also note that in Ht subdividing the edge e gives a graph in which the removal of
any original edge gives an asymmetric graph, while the removal of any edge produced in the
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Figure 5. Graph Ht With a Single Edge Whose Removal Does Not Create an Asym-
metric Graph

subdivision of e gives a non-asymmetric graph. Let Ht(c) be the graph obtained from Ht by
subdividing the edge e to produce c edges.

Now suppose we are given α = x/y, a rational number 0 < α < 1. Then we have x, y positive
integers with x < y. Without loss of generality we can assume that 12 < x < y. Consider the
graph Ht(c). The total number of edges in Ht(c) is 2t + c + 6, and there are 2t + 6 edges whose
removal gives an asymmetric graph. We want

x

y
= 2t + 6

2t + 6 + c
,

which implies
c = (2t + 6)

(
y − x

x

)
.

We can always choose t so that the right-hand side is a positive integer. This gives values of t
and c so that Pre(Ht(c)) = x/y. □
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