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Abstract: Removing clouds is an essential preprocessing step in analyzing remote sensing images,
as cloud-based overlays commonly occur in optical remote sensing images and can significantly limit
the usability of the acquired data. Deep learning has exhibited remarkable progress in remote sensing,
encompassing scene classification and change detection tasks. Nevertheless, the appli-cation of deep
learning techniques to cloud removal in remote sensing images is currently con-strained by the limited
availability of training datasets explicitly tailored for neural networks. This paper presents the Re-
mote sensing Image Cloud rEmoving dataset (RICE) to address this challenge and proposes baseline
models incorporating a convolutional attention mechanism, which has demonstrated superior perfor-
mance in identifying and restoring cloud-affected regions, with quantitative results indicating a 3.08%
improvement in accuracy over traditional methods. This mechanism empowers the network to com-
prehend better the spatial structure, local details, and inter-channel correlations within remote sensing
images, thus effectively addressing the diverse distributions of clouds. Moreover, by integrating this
attention mechanism, our models achieve a crucial comparison advantage, outperforming existing
state-of-the-art techniques in terms of both visual quality and quantitative metrics. We propose adopt-
ing the Learned Per-ceptual Image Patch Similarity metric, which emphasizes perceptual similarity,
to evaluate the quality of cloud-free images generated by the models. Our work not only contributes to
advancing cloud removal techniques in remote sensing but also provides a comprehensive evaluation
framework for assessing the fidelity of the generated images.
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1. Introduction

With the rapid advancements in remote sensing technology and satellite equip-ment performance,
satellite imagery has gained significant importance in various ap-plications [1, 2]. These applications
include Earth observation, climate change analysis, and environmental monitoring [3, 4]. Clouds
can often contaminate optical re-mote-sensing images. Extensive data from the International Satellite
Cloud Climatology Project (ISCCP) reveals that clouds typically cover nearly two-thirds of the Earth’s
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sur-face [5]. Cloud occlusion poses a substantial challenge in optical imagery, as both clouds and their
shadows obstruct ground information and degrade the quality of the images [6]. Consequently, this
hampers the utilization and quality of the image data, thus lim-iting their applicability in further
research and applications [7, 8]. Therefore, removing clouds to enhance the utilization of optical
remote-sensing images becomes necessary.

In recent years, cloud removal research has gained considerable attention, devel-oping numerous
methods and algorithms. There are two main categories of approaches: traditional and deep learning-
based [9,10]. Traditional methods include Dark Channel Prior (DCP) [11], homomorphic filters [12],
and wavelet transforms [13]. These highly interpretable techniques are easy to implement, leading
to widespread adoption. However, traditional approaches need help generalizing processing methods
for thin and thick clouds, relying on prior knowledge and manually extracting feature infor-mation,
thereby limiting their applicability in certain regions [14].

Deep learning techniques have significantly progressed in detecting and removing clouds [15,16].
For instance, Convolutional Neural Networks (CNNs) have been exten-sively employed to address
the cloud removal problem, offering distinct advantages in automatically extracting feature infor-
mation [17]. Chen et al. [18] proposed end-to-end CNN architectures that effectively remove both
thick clouds and cloud shadows sim-ultaneously. This approach demonstrates the power of CNNs
in tackling complex cloud patterns. In addition to CNNs, generative adversarial networks (GANs)
have gained prominence in deep learning research. Enomoto et al. [19] employed multispectral con-
ditional GANs (McGANs) to recover cloud-contaminated regions by synthesizing sim-ulated clouds
on cloudless ground truth images as input data. However, the study re-vealed that the simulated clouds
differ somewhat from real clouds, highlighting the challenges in accurately modeling cloud behav-
ior. Another study by Darbaghshahi et al. [5] utilized two GAN architectures to identify and eliminate
clouds in satellite im-agery. They utilized the Super-Resolution Generative Adversarial Network (SR-
GAN), initially designed for image super-resolution, to eliminate clouds from optical remote sensing
images. Additionally, the Pixel to Pixel (pix2pix) Conditional GAN (cGAN) approach was applied
to restore cloud-free optical images in a cropland time series [20]. It is important to note that these
deep learning-based methods heavily rely on the quality of the input data, and the success of deep
learning techniques in cloud detection and removal underscores the significance of reliable and di-
verse cloud datasets. A well-curated dataset plays a pivotal role in enabling models to learn robust
representa-tions of clouds and their variations, thus leading to improved accuracy in cloud removal
tasks [21].

Constructing a comprehensive cloud dataset that encompasses both authentic cloud instances and
their cloud-free counterparts is a daunting and intricate endeavor [22]. However, the existing body
of literature offers a range of published manually la-beled cloud datasets that can be effectively em-
ployed. One prominent example is the SEN1-2 dataset, introduced by Schmitt et al. [23]. These
patch-pairs were acquired using the Sentinel-1 Synthetic Aperture Radar (SAR) and Sentinel-2 opti-
cal sensors, thereby capturing diverse optical images in cloudless and cloudy conditions [24]. These
patches were meticulously gathered from the Google Earth Engine platform, encompassing vari-
ous land masses across the globe and representing all four seasons. SEN12MS-CR [25] dataset and
SEN12MS-CR-TS [26] dataset was proposed in 2021 and 2022, respec-tively. SEN12MS-CR-TS
dataset comprises cloud-free and cloudy Sentinel-2 multitem-poral images and incorporates a com-
prehensive one-year-long time series of Sentinel-1 satellite observations. Including multitemporal
data in this dataset offers a unique op-portunity to investigate and analyze temporal changes and vari-
ations in cloud cover over extended periods. Furthermore, Li et al. [27] have released the WHUS2-
CR dataset, which features paired images exhibiting minimal temporal gaps between cloud-free and
cloudy Sentinel-2A images. This dataset serves as a valuable resource for studying the immedi-
ate effects of cloud cover on observed imagery, enabling researchers to delve into the intricacies of
cloud-induced image alterations.
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It is worth noting that manually labeled cloud datasets are the gold standard for evaluating the
performance of diverse algorithms in satellite image analysis [28, 29]. These datasets serve as a fun-
damental reference point, allowing researchers to rigor-ously assess the accuracy and effectiveness
of their algorithms in tasks such as cloud detection and removal. By utilizing these datasets, re-
searchers can establish a bench-mark for comparison, facilitating the development of robust cloud
removal techniques that can substantially enhance the quality and reliability of satellite imagery anal-
ysis. However, the availability of publicly accessible manually labeled datasets for cloud removal is
limited, primarily due to the time-consuming nature of this task.

To address these challenges and limitations of previous studies, this paper intro-duces several
contributions aimed at advancing the progress of deep learning tech-niques in cloud removal from
remote sensing images.

Firstly, we present two subsets of a benchmark dataset named RICE (Remote Sensing Image Cloud
Removing): RICE-I and RICE-II, which comprise 500 pairs of corresponding cloudy and cloud-free
images and additional corresponding masks for comprehensive algorithm evaluation, as shown in
Figure 1 and Figure 2.

Secondly, we propose a baseline model with an integrated convolutional attention mechanism
specifically designed for the RICE dataset. This mechanism allows the network to better understand
the spatial structure, local details, and inter-channel correlations in cloud removal, effectively address-
ing the varied distribution of clouds observed in remote sensing images.

Lastly, we introduce the use of the Learned Perceptual Image Patch Similarity (LPIPS) metric,
which emphasizes perceptual similarity, aligning with the human visual system’s perception, for a
more accurate evaluation of the quality of generated cloud-free images.

In summary, our contributions can be logically summarized as follows:

1. Introduction of the RICE dataset, which includes 1236 pairs of cloudy and cloud-free remote
sensing images with corresponding masks, serving as a comprehensive evaluation resource for
cloud removal algorithms.

2. A baseline model incorporating a convolutional attention mechanism, which enhances the net-
work’s ability to comprehend the spatial structure, local details, and inter-channel correlations
present in remote sensing images, thereby effectively addressing the diverse distribution of
clouds.

3. Adoption of the LPIPS metric for evaluating the quality of generated cloud-free images, focusing
on perceptual similarity to better match human visual perception.

2. Dataset and Methods

2.1. Dataset

The RICE-I dataset encompasses a comprehensive collection of 500 image pairs from Google
Earth. Acquiring the corresponding cloud and cloudless images involves adjusting the display settings
to include or exclude the cloud layer. Subsequently, the acquired images are uniformly cropped to
a standardized size of 512x512 pixels. In contrast, the RICE-II dataset includes 736 image pairs
from Landsat 8 OLI and TIRS products. Similar to the RICE-I dataset, the images in RICE-II are
also cropped to ensure consistency, with each image patch measuring 512x512 pixels and devoid of
overlapping regions.

Distinct from the RICE-I dataset, the image patches in RICE-II are meticulously labeled into three
explicitly defined classes: cloud-free, cloud mask, and cloud. We selected images captured in the
same location within 15 days to obtain paired optical datasets with cloudy and clear conditions. This
strict temporal constraint ensures that the images within each pair closely correspond to the prevailing
atmospheric conditions.
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Figure 1. Example Data of Rice-I Dataset: Cloud Image and Cloud-Free Image

The RICE dataset encompasses extensive ground scenes, showcasing diverse landscapes such as
water bodies, urban areas, deserts, barren lands, forests, and grass-lands. This diversity allows for a
comprehensive evaluation of algorithms and models for cloud detection and removal tasks, ensuring
their robustness across various environmental contexts.

During the process of creating a dataset, we used the cloud-based remote sensing platform Google
Earth Engine, and the steps of the dataset generation procedure are described in Figure 3. Acquiring
the corresponding cloud and cloudless images involves adjusting the display settings to include or
exclude the cloud layer. Subsequently, the acquired images are uniformly cropped to a standardized
size of 512x512 pixels.

The RICE dataset can be accessed and downloaded from the following GitHub repository:
https://github.com/BUPTLdy/RICE DATASET. Figure 1 and 2 provide examples of data from RICE-I
and RICE-II, respectively, illustrating the dataset’s characteristics.

2.2. Image Quality Assessment

In order to comprehensively assess the effectiveness of algorithm models in cloud detection and
removal tasks, several performance metrics are utilized. These metrics encompass both objective
quantitative measures and subjective visual evaluations, providing a holistic assessment of the gen-
erated images. The subjective evaluation offers valuable insights into the perceptual quality of the
generated images, capturing aspects that may not be entirely captured by quantitative metrics alone.

Two widely used methods for evaluating the quality of images are the structural similarity index
measurement (SSIM) and the peak signal-to-noise ratio (PSNR) [30]. The SSIM metric measures
the similarity between the generated image and the ground truth image, taking into account factors
such as luminance, contrast, and structural information. It is a quantitative method used to evaluate
the performance of algorithms. On the other hand, the PSNR metric quantifies the level of noise or
distortion present in the generated image by comparing it to the original high-quality image.
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Figure 2. Example Data of RICE-II Dataset: Cloud Image, Mask Image, and Cloud-free
Image

Figure 3. Flowchart of Data Processing
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2.2.1. SSIM

SSIM is a well-established metric used to quantitatively assess the degree of structural similarity
between a generated image and its corresponding ground truth image. SSIM considers various vi-
sual attributes, including luminance, contrast, and structural similarities, to evaluate the resemblance
between the two images. A higher SSIM value indicates a more significant similarity between the
generated image and the ground truth image, suggesting a higher quality of the generated image.

SSIM operates by emulating the perceptual processes of the human visual system, which is sensi-
tive to local structural changes in images arising from variations in brightness, contrast, and structure.
By modeling these perceptual aspects, SSIM provides a reliable measure of the visual similarity
between two images. The SSIM value is directly proportional to the resemblance between the im-
ages, with larger SSIM values indicating higher similarity [31]. The mathematical formulation for
computing the SSIM value between two images, denoted as x and y, is crucial for understanding
its application in image quality assessment. The SSIM index is calculated on various windows of
an image, which can be compared with the corresponding windows of the ground truth image. The
mathematical formulation for computing the SSIM value between two images, denoted as x and y,
can be expressed as shown in Eq. (1).

SSIM(x,y) =

(
2µxµy +C1

)(
µ2

x + µ
2
y +C1

) × (
2σxy +C2

)(
σ2

x + σ
2
y +C2

) , (1)

where µ is the average of the image and σ is the variances of image, σ2 represents covariance, C1 and
C2 are constants for stabilizing the division with a weak denominator. These constants are typically
set to small values, and their role is to prevent in-stability when the denominator is close to zero. The
SSIM index is a decimal value between -1 and 1, where 1 indicates perfect similarity. This detailed
explanation of SSIM, along with its mathematical formulation, provides a clear understanding of how
image quality is evaluated in our study.

2.2.2. PSNR

PSNR is a standard metric in image processing that measures the fidelity of a generated image
in comparison to an original ground truth image, by quantifying the ratio of the maximum possible
pixel intensity to the mean squared error (MSE) between the two images. A higher PSNR value
suggests that the generated image retains a higher fidelity to the original, with lower levels of noise
and distortion [32]. While it is a helpful indicator of image reconstruction quality, it may not fully
capture all aspects of human visual perception, such as texture and structural integrity. The PSNR can
be calculated using Eq. (2).

PSNR = 10 log10

(
MAX2

I

MSE

)
, (2)

where MAX2
I represents the maximum pixel value of the image and MSE is the mean square error.

2.2.3. LPIPS

In addition to the commonly employed metrics such as SSIM and PSNR, the Learned Percep-
tual Image Patch Similarity (LPIPS) [33] metric has emerged as a significant perceptual measure for
assessing the similarity between patches of images. LPIPS considers human perception principles,
enabling a more comprehensive evaluation of image quality. By examining the visual similarity be-
tween patches, LPIPS captures low-level features, such as color and texture, and high-level semantic
information.

By examining the visual similarity between patches, LPIPS captures low-level features, such as
color and texture, and high-level semantic information, which is shown in Eq. (3).
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LPIPS(x, y) =
∑

l

1
HlWl

∑
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∥∥∥2

2
, (3)

where x and y are the patches from the generated and ground truth images, respectively; Hl and
Wl denote the height and width of the feature maps at layer l; ϕl(x)h,w represents the feature vector at
position (h,w) in the feature maps extracted from layer l of the deep network; and ||.||2 is the Euclidean
distance. This computation integrates the contributions of multiple layers of a deep network, thereby
providing a robust and nuanced measure of image quality that takes into account a wide range of
visual attributes.

LPIPS quantifies the similarity between two images based on human perception. A smaller LPIPS
value indicates higher perceptual similarity between the images. Moreover, human observers possess
the ability to discern differences in image details. Given the simplicity of the algorithms employed
in image quality assessment and the complexity inherent in real-world image structures, subjective
visual analysis can provide an intuitive and comprehensive understanding of detail comparison and
equip-ment performance [34].

2.3. Methods

2.3.1. Task Definition

The primary aim of this study is to put forth a CNN framework explicitly designed for cloud re-
moval in remote sensing imagery. This undertaking involves the conversion of an image that has been
adversely affected by the presence of clouds, referred to as the cloud-contaminated image, into a pris-
tine cloud-free image, referred to as, through the effective utilization of deep learning methodologies.
By employing the advanced capa-bilities of CNNs, this research seeks to address the challenge of
cloud interference in remote sensing data, thereby enhancing the quality and utility of the resultant
imagery for various applications.

The input to the CNN model is a cloud-contaminated image x, acquired from remote sensing
sensors. The image is represented as a two-dimensional matrix, where each element corresponds to
a pixel value. The dimensions of the input image vary based on the resolution of the remote sensing
system. Let x ∈ R∧(H × W × C) represent the input image, where H W, and C denote the height,
width, and number of channels, respectively.

The task can be defined as learning a mapping function F: x ∈ R∧(H×W×C)→ y ∈ R∧(H×W×C)
that takes a cloud-contaminated image x as input and produces a cloud-free image y as output. The
objective is to train the CNN model to accurately learn this mapping function, enabling it to effectively
remove clouds from remote sensing imagery.

2.3.2. SRCNN and VDSR

Dong et al. [35,36] developed SRCNN, a deep CNN depicted in Figure 4, which directly converts
low-resolution images to high-resolution images. It uses bicubic interpolation to upscale LR images
[32] and employs three convolutional layers with Leaky ReLU activation. The first layer has 64 filters
applied to the upscaled LR blocks [37], the second with 64 filters aids in nonlinear mapping, and the
third with three filters reconstructs the HR image from patches [38].

In this article, the SRCNN model is applied to two distinct datasets with the intention of removing
cloud interference from satellite images. For the RICE-I dataset, the model processes images that are
marred by clouds, aiming to output clean, cloud-free images. The SRCNN is trained to detect and
eliminate the cloud distortions, revealing the obscured details of the earth’s surface. For the RICE-
II dataset, the challenge is augmented by providing the SRCNN model with inputs that combine
cloud-contaminated images with a cloud mask appended as an extra channel. This cloud mask offers
valuable information about the cloud coverage, assisting the model in more accurately predicting and
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Figure 4. The Structure of SRCNN for RICE-I Dataset

Figure 5. The Structure of SRCNN for RICE-I Dataset

generating cloud-free images. In both instances, the goal is to use the SRCNN to transform obscured
satellite images into usable data, beneficial for various downstream tasks such as climate analysis,
land usage mapping, and disaster management. Consequently, the input of the first convolutional
layer of SRCNN is conv(3,f1,n1,6), where f1 represents the filter size and n1 represents the number
of filters. The remaining parameters of the SRCNN model remain unchanged. The same processing
approach is applied to the other methods in this article.

Figure 5 illustrates the architecture of the Very Deep Super-Resolution (VDSR) method, which
consists of twenty convolutional neural network (CNN) layers and nineteen Rectified Linear Unit
(ReLU) layers [38]. For this approach, an unsampled image is taken as the input, and a residual image
is generated as the regression output [39]. A High-Resolution image can be obtained by combining
the interpolated image with the residual image [40].

In the context of cloud removal in remote sensing imagery, the VDSR model is employed to ad-
dress this task. The VDSR model takes a cloud-contaminated image as its input and aims to produce a
cloud-free image as the desired output. The primary objective of the VDSR algorithm is to effectively
eliminate the cloud artifacts present in the input image while improving its visual quality. This is
accomplished through the model’s ability to learn and exploit the residual details between the cloud-
contaminated input and the desired cloud-free output. By leveraging the deep architecture of VDSR,
the model can capture and comprehend intricate spatial dependencies within the image data, thus
facilitating the generation of high-quality, cloud-free images. Moreover, integrating the interpolated
image with the residual image further enhances the overall output, leading to visually appealing and
cloud-free images suitable for various remote sensing applications.

2.3.3. Pix2pix and SRGAN

Generative Adversarial Networks (GANs) have gained popularity for improving super-resolution
image generation, as evidenced by various studies [41]. GANs consist of a generator (G) and a
discriminator (D), depicted in Figure 6, and require matching input and output images for train-
ing. In this research, GANs are employed for cloud removal from images; the generator takes a
cloud-contaminated image as input, while the discriminator evaluates the generator’s cloud-free out-
put against the real, labeled cloud-free image to verify its authenticity.

Two popular GAN-based approaches used for cloud removal are Pix2pix and SRGAN [42]. SR-
GAN’s generator adopts a ResNet structure, while its discriminator follows the VGG-19 network
structure [43]. On the other hand, Pix2pix utilizes a well-designed U-Net as the generator and a
PatchGAN structure as the discriminator [44].
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Figure 6. The Structure of SRCNN for RICE-I Dataset

Figure 7. Flowchart Illustrating the Process of Cloud Removal From Remote Sensing Im-
agery Using Gans

By employing GANs for cloud removal, the models aim to generate realistic and visually appeal-
ing cloud-free images by learning the underlying patterns and structures from the labeled cloud-free
images. The adversarial training process between the generator and discriminator helps refine the
generator’s performance, improving cloud removal results.

The cloud removal process from remote sensing imagery using GANs commences with assem-
bling and labeling a dataset to distinguish between cloudy and clear images. These images are then
preprocessed for network compatibility. A generator network is tasked with creating cloud-free im-
ages from the cloudy inputs, while a discriminator network evaluates the authenticity of the generated
images. Both networks are trained and optimized through a loss function. The trained model is then
assessed using an independent test set for both quantitative metrics and qualitative analysis. Finally,
the refined model is applied to new images to produce declouded outputs which are analyzed to eval-
uate the cloud removal performance (see Figure 7 ).

2.3.4. CBAM

In the context of cloud removal techniques in remote sensing imagery, the Convolutional Block
Attention Module (CBAM) emerges as an innovative approach that enhances the model’s ability to
identify and concentrate on cloud regions, extract relevant cloud attributes dynamically, and effec-
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Figure 8. The Structure of CBAM

tively mitigate extraneous factors unrelated to clouds. By incorporating CBAM, the model’s cloud-
centric capabilities can be augmented, improving performance in removing clouds from remote sens-
ing images. This research aims to enhance the model’s adaptability by leveraging CBAM to capture
cloud-related features while simultaneously suppressing the impact of non-cloud disturbances or in-
terferences.

The CBAM incorporates a convolutional attention mechanism that assigns higher attention weights
to cloud regions, enabling the model to concentrate on clouds effectively. This mechanism enhances
the model’s understanding of cloud location, shape, and distribution, thereby improving its ability
to accurately detect and segment cloud regions. The convolutional attention mechanism of CBAM
allows the model to learn features from cloud regions adaptively. This capability enables the model to
extract better cloud texture, shape, color, and other characteristics. Consequently, the model becomes
more proficient in distinguishing between cloud layers and surface information, even in complex re-
motesensing images. Suppressing non-cloud interference: By incorporating the attention mechanism,
the model can selectively suppress interfering features in non-cloud regions. This capability helps
the model to differentiate clouds from other objects more effectively, reducing false detections and
missegmentation.

The CBAM encompasses two pivotal constituents: the channel attention module and the spatial at-
tention module [45]. The structural configuration of the CBAM is depicted in Figure 8 [46]. Initially,
the feature map undergoes processing in the channel attention module, resulting in the generation of
an attention map tailored to the specific channels. Subsequently, the input feature map is subjected
to elementwise multiplication with the channel attention map, yielding a novel attention map. Anal-
ogously, the obtained attention map serves as the input feature map for the spatial attention module,
culminating in the production of the final feature map [47]. By integrating the CBAM module towards
the concluding stages of convolutional neural network (CNN) architectures, the neural network be-
comes adept at concentrating on pertinent features while disregarding inconsequential ones, leading
to discernible enhancements in experimental accuracy [48].

3. Experiments and Results

3.1. Experiment Setting

In this paper, the network structures of various methods are shown in Table 1. The notation
conv(k,c1,c2,’act’)*n represents a sequence of n consecutive convolutional layers, where the ker-
nel size is k, the input channels are c1, the output channels are c2, and ’act’ denotes the activation
function. For dataset RICE-I, the input consists of cloud-free remote sensing images, and the input
channels of the first convolutional layer are c1=3. On the other hand, for dataset RICE-II, the input
includes cloud-free remote sensing images and masks indicating the locations of clouds, so the input
channels of the first convolutional layer are c1=6.

To ensure robust evaluation, the dataset used in this study was partitioned into five folds for cross-
validation. The Adam optimizer was selected as the optimization algorithm to train the network,
employing a learning rate of 0.00001. To counteract potential overfitting, we incorporated weight
decay regularization with a coefficient of 0.0001. The batch size was determined to be 64, taking
into consideration both computational resources and empirical performance analysis. Throughout the
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Methods Network Structure
SRCNN conv(9, 3, 64, ’ReLU’)

- conv(5, 64, 32, ’ReLU’)
- conv(5, 32, 3, None)
- VDSR conv(3,3,64, ReLU)
- conv(3, 64, 64, ’ReLU’)*9 -
- conv(3, 64, 3, None)
- Generator: Discriminator:

Pix2pix conv(3, 3, 64, ’ReLU’) conv(4, 3, 64, ’Leaky ReLU’)
- conv(3, 64, 128, ’ReLU’) conv(4, 64, 128, ’Leaky ReLU’)
- conv(3, 128, 256, ’ReLU’) conv(4, 128, 256, ’Leaky ReLU’)
- conv(3, 256, 256, ’ReLU’)*4 conv(4, 256, 512, ’Leaky ReLU’)
- conv(3, 256, 128, ’ReLU’) conv(4, 512, 1, None)
- conv(3, 128, 64, ’ReLU’) -
- conv(3, 64, 3, ’tanh’) -
- Generator: Discriminator:
- conv(9,3,64,ReLU) conv(3,3,64,Leaky ReLU)
- conv(3, 64, 64, ReLU)*7 conv(3, 64, 64, Leaky ReLU)
- conv(3, 64, 3, None) conv(3, 64, 128, Leaky ReLU)

SRGAN - conv(3, 128, 128, ’Leaky ReLU’)
- - conv(3, 128, 256, ’Leaky ReLU’)
- - conv(3, 256, 256, ’Leaky ReLU’)
- - conv(3, 256, 512, ’Leaky ReLU’)
- - conv(3, 512, 512, ’Leaky ReLU’)
- - conv(1, 512, 1, None)

Table 1. The Network Architectures for the Different Methods on the Rice-I Dataset are
Identical. For the Rice-Ii Dataset, the Input Channel Number of the First Convolutional
Layer is 6
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Methods RICE-I/SSIM RICE-I/PSNR RICE-I/ LPIPS RICE-II/SSIM RICE-II/PSNR RICE-II/ LPIPS
SRCNN 0.857 28.798 0.157 0.702 28.476 0.137

SRCNN + CBAM 0.884 28.877 0.149 0.789 28.582 0.126
VDSR 0.873 28.911 0.106 0.749 28.546 0.105

VDSR + CBAM 0.889 28.981 0.104 0.773 28.681 0.091
Pix2pix 0.912 29.106 0.060 0.914 32.075 0.046

Pix2pix + CBAM 0.913 30.612 0.045 0.916 33.749 0.038
SRGAN 0.902 29.039 0.056 0.915 33.244 0.055

SRGAN + CBAM 0.914 31.923 0.085 0.911 29.631 0.067

Table 2. Results of Image Evaluation Metrics for Different Methods. The Best Experimen-
tal Result is In-Dicated in Bold Italics

training process, the model underwent 50 epochs, with early stopping serving as the termination cri-
terion. Specifically, training would cease if the validation loss failed to exhibit improvement for a
consecutive span of 10 epochs. Additionally, a learning rate reduction strategy was adopted, wherein
the learning rate was reduced by a factor of 0.1 if the validation loss stagnated for five consecutive
epochs.

The default configuration of LPIPS incorporates several essential components. Firstly, it employs
the VGG-16 architecture to extract features from images, specifically utilizing intermediate layers
within the VGG-16 network. Subsequently, LPIPS calculates the perceptual distance by quantifying
the Euclidean distance between feature maps. Additionally, spatial pooling is applied to aggregate
the feature maps in LPIPS. Moreover, LPIPS incorporates feature normalization techniques to ensure
scale-invariant and consistent distance measurements.

3.2. Results

The cloud removal outcomes obtained from the RICE-I dataset are visually depicted in Figure
9. The topmost row of the figure exhibits the input images that contain clouds, while the bottom
row showcases the corresponding ground truth cloud-free images. The intermediate rows in the fig-
ure present the cloud removal results obtained through the application of baseline methods. Similarly,
Figure 10 demonstrates the cloud removal results obtained from the RICE-II dataset. The leftmost col-
umn of Figure 10 represents the input images containing clouds, accompanied by their corresponding
mask images, while the rightmost column displays the ground truth cloud-free images. The remaining
columns of the figure illustrate the cloud removal results generated by the baseline methods.

The experimental findings are presented in Table 2, which provides a comprehensive overview of
the evaluation metrics employed in this study. The SSIM is utilized to measure the similarity between
two images, with values ranging from 0 to 1. A higher SSIM value indicates a greater resemblance
between the two images in terms of their structure, brightness, and contrast. Specifically, an SSIM
value of 1 denotes complete identity between the two images. The PSNR is expressed in decibels
(dB) and typically ranges from non-negative numbers. A higher PSNR value suggests a smaller
disparity between the two images, reflecting improved image fidelity. Furthermore, the LPIPS metric
also employs non-negative values, with a lower LPIPS value indicating a higher degree of perceptual
similarity between the two images. An LPIPS value of 0 signifies complete perceptual equivalence
between the images.

4. Conclusion

This study addresses the prominent issue of cloud removal in remote sensing imagery, an essential
preprocessing step for accurate image analysis. While deep learning has exhibited notable advance-
ments in various remote sensing tasks, the need for suitable training datasets for neural networks has
hindered its application to cloud removal. We introduce the RICE dataset to overcome this limita-
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Figure 9. Detailed Comparison of Cloud Removal Outcomes on the Rice-I Dataset. The
Topmost Row Displays the Original Cloudy Input Images, While the Bottom Row Exhibits
the Ground Truth Images Without Clouds. The Intermediate Rows Represent the Results of
Various Baseline Cloud Removal Methods. Differences in Performance Are Evident, With
Some Methods Retaining Cloud Artifacts and Others Achieving Closer Resemblance to
the Ground Truth. This Figure Highlights the Comparative Visual Quality of the Different
Approaches and the Effectiveness of Gan-Based Methods Over Traditional Convolutional
Neural Networks in Producing Clearer, More Accurate Declouded Images
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Figure 10. Comprehensive Visualization of Cloud Removal Results on the Rice-Ii Dataset.
The Leftmost Column Shows the Cloudy Input Images With Their Respective Cloud Masks,
and the Rightmost Column Presents the Corresponding Ground Truth Images Without
Clouds. The Columns in Between Illustrate the Declouding Results From Different Base-
line Methods. The Figure Provides a Side-by-Side Evaluation of Each Method’s Ability to
Eliminate Cloud Cover and Recover Underlying Details. It Showcases the Superiority of
Gan-Based Methods (Pix2pix, Srgan) in Removing Clouds and the Added Benefit of Con-
volutional Attention Mechanisms in Preserving Intricate Image Details for Enhanced Cloud
Removal Performance
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tion and propose baseline models incorporating a convolutional attention mechanism. Our proposed
models harness the power of the convolutional attention mechanism to enhance the network’s com-
prehension of spatial structures, local details, and interchannel correlations within remote sensing
images. This empowers the models to effectively handle diverse cloud distributions and improve the
precision of cloud removal.

Moreover, we introduce the LPIPS metric as an evaluation criterion to assess the fidelity of gener-
ated cloud-free images. This metric emphasizes perceptual similarity, providing a more comprehen-
sive image quality assessment. By presenting the RICE dataset and evaluating the fidelity of generated
images using the LPIPS metric, this research contributes to advancing cloud removal techniques in
remote sensing. The availability of the RICE dataset not only facilitates further research in this area
but also enables the development of more robust and accurate cloud removal algorithms.

Overall, our work demonstrates the potential of deep learning in addressing the challenges of cloud
removal in remote sensing imagery. Furthermore, it provides a comprehensive evaluation framework
for assessing the quality of generated cloud-free images. The findings presented in this study will
inspire future research endeavors in this field and contribute to the continual improvement of remote
sensing image analysis techniques.

Data Availability

The experimental data used to support the findings of this study are available from the correspond-
ing author upon request.
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