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Abstract: A signed magic rectangle SMR(m, n; r, s) is an m × n array with entries from X,
where X = {0, ±1, ±2, . . . , ±(ms − 1)/2} if mr is odd and X = {±1, ±2, . . . , ±mr/2} if mr is
even, such that precisely r cells in every row and s cells in every column are filled, every integer
from set X appears exactly once in the array and the sum of each row and of each column is
zero. In this paper we prove that a signed magic rectangle SMR(m, n; r, 2) exists if and only
if m = 2 and n = r ≡ 0, 3 (mod 4) or m, r ≥ 3 and mr = 2n.
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1. Introduction

A magic rectangle of order m × n, MR(m, n), is an arrangement of the numbers from 0 to
mn − 1 in an m × n rectangle such that each number occurs exactly once in the rectangle and
the sum of the entries of each row is the same and the sum of entries of each column is also the
same. The following theorem, whose proof can be found in [1, 2] and [3], settles the existence
of an MR(m, n).
Theorem 1. An m × n magic rectangle exists if and only if m ≡ n (mod 2), m + n > 5, and
m, n > 1.

A k-magic square of order n is an arrangement of the numbers from 0 to kn − 1 in an n × n
array such that each row and each column has exactly k filled cells, each number occurs exactly
once in the array, and the sum of the entries of any row or any column is the same. The study
of magic squares with empty cells was initiated in [4]. A magic square is called k-diagonal if
its entries all belong to k consecutive diagonals (this includes broken diagonals as well).
Theorem 2. [4] There exists a k-diagonal magic square of order n if and only if n = k = 1
or 3 ≤ k ≤ n and either n is odd or k is even.

A signed magic rectangle SMR(m, n; r, s) is an m × n array with entries from X, where
X = {0, ±1, ±2, . . . , ±(ms − 1)/2} if mr is odd and X = {±1, ±2, . . . , ±mr/2} if mr is even,
such that precisely r cells in every row and s cells in every column are filled, every integer from
set X appears exactly once in the array and the sum of each row and of each column is zero.
By the definition, mr = ns, r ≤ n and s ≤ m. If r = n or s = m, then the rectangle has no
empty cell. In the case where m = n, we call the array a signed magic square. Signed magic
squares represent a type of magic square where each number from the set X is used once.

http://dx.doi.org/10.61091/jcmcc121-03
http://www.combinatorialpress.com/jcmcc


Abdollah Khodkar and Brandi Ellis 32
The following two theorems can be found in [5].

Theorem 3. An SMR(m, n) exists precisely when m = n = 1, or when m = 2 and n ≡ 0, 3
(mod 4), or when n = 2 and m ≡ 0, 3 (mod 4), or when m, n > 2.

In [5] the notation SMS(n; k) is used for a signed magic square with k filled cells in each
row and k filled cells in each column.

Theorem 4. There exists an SMS(n; k) precisely when n = k = 1 or 3 ≤ k ≤ n.

In this paper we prove that a signed magic rectangle SMR(m, n; r, 2) exists if and only if
m = 2 and n = r ≡ 0, 3 (mod 4) or m, r ≥ 3 and mr = 2n.

Being the smallest poset that contains G, ⟨G⟩ is called the principle ideal generated G, which
we refer to as a graph ideal. So, we can describe ↓ G as a union of graph ideals. However, the
use of order theory here is not superficial. Our main method for determining the down-arrow
Ramsey set relies on viewing red-blue colorings of a graph as unions of graph ideals.

2. Main Constructions

A rectangular array is shiftable if it contains the same number of positive entries as negative
entries in every column and in every row. Figure 1 displays a shiftable SMR(2, 4; 4, 2). These
arrays are called shiftable because they may be shifted to use different absolute values. By
increasing the absolute value of each entry by k, we add k to each positive entry and −k to
each negative entry. If the number of entries in a row is 2ℓ, this means that we add ℓk+ℓ(−k) = 0
to each row, and the same argument applies to the columns. Thus, when shifted, the array
retains the same row and column sums.

1 −2 −3 4
−1 2 3 −4

Figure 1. A Shiftable SMR(2, 4; 4, 2)

Theorem 5. Let there exist a shiftable SMR(m, n; r, s). Then for every k ≥ 1

1. there exists a shiftable SMR(m, kn; kr, s) and
2. there exists a shiftable SMR(km, kn; r, s) .

Proof. Let A be a shiftable SMR(m, n; r, s). Note that since A is shiftable, it follows that r

and s are both even. Partition an empty m × kn rectangle, say B, into k empty rectangles of
size m × n, say Pℓ, where 0 ≤ ℓ ≤ k − 1. For each (i, j; e) ∈ A we fill the cell (i, j) of Pℓ with
e + ℓ(mr/2) if e is positive or with e − ℓ(mr/2) if e is negative. The resulting rectangle is a
shiftable SMR(m, kn; kr, s). See Figure 2.

1 −2 −3 4 5 −6 −7 8 9 −10 −11 12
−1 2 3 −4 −5 6 7 −8 −9 10 11 −12

Figure 2. A Shiftable SMR(2, 12; 12, 2)

□

Theorem 6. Let there exist a shiftable SMR(m, n; r, s) and a (shiftable) SMR(m, n′; r′, s)
with mr′ even. Then there exists a (shiftable) SMR(m, kn + n′; kr + r′, s) for k ≥ 1.
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1 −2 −3 4

−1 2 3 −4
5 −6 −7 8

−5 6 7 −8
9 −10 −11 12

−9 10 11 −12

Figure 3. A Shiftable SMR(6, 12; 4, 2)

Proof. Apply Part 1 of Theorem 5 with a shiftable SMR(m, n; r, s) to obtain a shiftable
SMR(m, kn; kr, s), say A, for k ≥ 1. Let B be a (shiftable) SMR(m, n′; r′, s) and let C
be the m × kn rectangle obtained from A by adding mr′/2 to each positive entry of A and
subtracting mr′/2 from each negative entry of A. Finally, let D be the m × (kn + n′) rectangle
obtained from B and C as follows: if (i, j; e) ∈ B, then (i, j; e) ∈ D and if (i, j; e) ∈ C, then
(i, j + n′; e) ∈ D. It is easy to see that D is a (shiftable) SMR(m, kn + n′; kr + r′, s). □

Figure 4 displays an SMR(2, 11; 11, 2) obtained by the construction given in the proof of
Theorem 6 using the shiftable SMR(2, 4; 4, 2) given in Figure 1, an SMR(2, 3; 3, 2) and k = 2.

−1 −2 3 −4 5 6 −7 −8 9 10 −11
1 2 −3 4 −5 −6 7 8 −9 −10 11

Figure 4. An SMR(2, 11; 11, 2)

Theorem 7. Let there exist a shiftable SMR(m, n; r, s) and a (shiftable) SMR(m′, n′; r, s) with
m′r even., then there exists a (shiftable) SMR(km + m′, kn + n′; r, s) for k ≥ 1.

Proof. Apply Part 2 of Theorem 5 with a shiftable SMR(m, n; r, s) to obtain a shiftable
SMR(km, kn; r, s), say A, for k ≥ 1. Let B be a (shiftable) SMR(m′, n′; r, s) and let C be the
m × kn rectangle obtained from A by adding m′r/2 to each positive entry of A and subtracting
m′r/2 from each negative entry of A. Finally, let D be the (km + m′) × (kn + n′) rectangle
obtained from B and C as follows: if (i, j; e) ∈ B, then (i, j; e) ∈ D and if (i, j; e) ∈ C, then
(i + m′, j + n′; e) ∈ D. It is easy to see that D is a (shiftable) SMR(km + m′, kn + n′; r, s). □

Figure 5 displays a shiftable SMR(7, 14; 4, 2) obtained by the construction given in the proof
of Theorem 7 using the shiftable SMR(2, 4; 4, 2) given in Figure 1, the shiftable SMR(3, 6; 4, 2)
given in Figure 12, and k = 2.

1 −3 −4 6
−1 2 4 −5

−2 3 5 −6
−7 8 9 −10
7 −8 −9 10

−11 12 13 −14
11 −12 −13 14

Figure 5. A Shiftable SMR(7, 14; 4, 2)
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3. The Existence of an SMR(m, 3m/2; 3, 2) and an SMR(m, 5m/2; 5, 2)

In this section we present direct constructions for the existence of an SMR(m, 3m/2; 3, 2),
where m ≥ 2 and even, and an SMR(m, 5m/2; 5, 2), where m ≥ 4 and even. We will make use
of these results in Section 4. Note that if m is odd there is no SMR(m, 3m/2; 3, 2) because
3m is odd and there is no SMR(m, 5m/2; 5, 2) because 5m is odd.

Proposition 1. There exists an SMR(m, 3m/2; 3, 2) for m even and m ≥ 2.

Proof. Define an m × 3 rectangle A as follows.

Column 1:
{

(i, 1; i) ∈ A for 1 ≤ i ≤ m/2,

(i, 1; (m/2) − i) ∈ A for (m/2) + 1 ≤ i ≤ m.

Column 2:
{

(i, 2; (3m/2) − 2i + 1) ∈ A for 1 ≤ i ≤ m/2,

(i, 2; −i) ∈ A for (m/2) + 1 ≤ i ≤ m.

Column 3:
{

(i, 3; (−3m/2) + i − 1) ∈ A for 1 ≤ i ≤ m/2,
(i, 3; (−m/2) + 2i) ∈ A for (m/2) + 1 ≤ i ≤ m.

By construction, it is easy to see that the entries in A consist of {±1, ±2, . . . , ±3m/2}, which
are the numbers in an SMR(m, 3m/2; 3, 2). Figure 6 displays the rectangle A when m = 8, 10.
We now prove that the sum of each row of A is zero. The row sum for row i of A, where
1 ≤ i ≤ m/2, is

i + ((3m/2) − 2i + 1) + ((−3m/2) + i − 1) = 0.

Similarly, the row sum for row i of A, where (m/2) + 1 ≤ i ≤ m, is

((m/2) − i) + (−i) + ((−m/2) + 2i) = 0.

Let a, k and −k be the numbers in a row of A. Then a + k + (−k) = 0, which implies that
a = 0. Since zero does not appear in A, it follows that the numbers k and −k do appear in the
same row of A.

Now let B be an empty m × 3m/2 rectangle. For each (i, j; k) ∈ A let (i, |k|; k) ∈ B. By
construction, the numbers in row i of B are precisely the numbers in row i of A. Therefore the
row sum for each row of B is also zero. Since ±k are entries of A for each 1 ≤ k ≤ 3m/2, it
follows that column k of B contains only k and −k. Hence, B is an SMR(m, 3m/2; 3, 2) for m

even and m ≥ 2. □

Figure 7 displays an SMR(8, 12; 3, 2) obtained by the construction given in Proposition 1.

1 11 −12
2 9 −11
3 7 −10
4 5 −9

−1 −5 6
−2 −6 8
−3 −7 10
−4 −8 12

1 14 −15
2 12 −14
3 10 −13
4 8 −12
5 6 −11

−1 −6 7
−2 −7 9
−3 −8 11
−4 −9 13
−5 −10 15

Array A when m = 8 Array A when m = 10

Figure 6. Array A Given in Proposition 1

It is an easy exercise to see that there is no SMR(2, 5; 5, 2). The following proposition shows
how to build an SMR(m, 5m/2; 5, 2) for m even and m ≥ 4.
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1 11 −12

2 9 −11
3 7 −10

4 5 −9
−1 −5 6

−2 −6 8
−3 −7 10

−4 −8 12

Figure 7. An SMR(8, 12; 3, 2)

Proposition 2. There exists an SMR(m, 5m/2; 5, 2) for m even and m ≥ 4.

Proof. Define a m × 5 rectangle C as follows.

Column 1:
{

(i, 1; i) ∈ C for 1 ≤ i ≤ m/2,
(i, 1; (m/2) − i) ∈ C for m+2

2 ≤ i ≤ m.

Column 2:
{

(i, 2; (m/2) + 2i − 1) ∈ C for 1 ≤ i ≤ m/2,

(i, 2; (−3m/2) + i − 1) ∈ C for m+2
2 ≤ i ≤ m.

Column 3:
{

(i, 3; (−m) − i) ∈ C for 1 ≤ i ≤ m/2,
(i, 3; (5m/2) − 2i + 2) ∈ C for m+2

2 ≤ i ≤ m.

Column 4:
{

(i, 4; (−3m/2) − i) ∈ C for 1 ≤ i ≤ (m/2),
(i, 4; (3m/2) + i) ∈ C for m+2

2 ≤ i ≤ m.

Column 5:
{

(i, 5; 2m − i + 1) ∈ C for 1 ≤ i ≤ m/2,
(i, 5; −3m + i − 1) ∈ C for m+2

2 ≤ i ≤ m.

By construction, the entries in C consist of {±1, . . . , ±5m/2}, which are the numbers in an
SMR(m, 5m/2; 5, 2). Figure 8 displays the rectangle C when m = 8. We now prove that the
sum of each row of C is zero. The row sum for row i of C, where 1 ≤ i ≤ m/2, is

i + ((m/2) + 2i − 1) + (−m − i) + ((−3m/2) − i) + (2m − i + 1) = 0.

Similarly, the row sum for row i of C, where (m/2) + 1 ≤ i ≤ m, is

((m/2) − i) + ((−3m/2) + i − 1) + (5m/2) − 2i + 2)
+((3m/2) + i) + (−3m + i − 1) = 0.

Let a, b, c, d, e be the numbers in row i and columns 1, 2, 3, 4, 5 of C, respectively. It is
straightforward to see that if x, y ∈ {a, b, c} and z ∈ {d, e}, then x + y , 0 and x + z , 0. Now
let d + e = 0. If 1 ≤ i ≤ m/2, then

d + e = ((−3m/2) − i) + (2m − i + 1) = (m/2) − 2i + 1 = 0.

This implies that i = (m + 2)/4.
If (m/2) + 1 ≤ i ≤ m, then

d + e = ((3m/2) + i) + (−3m + i − 1) = (−3m/2) + 2i − 1 = 0.

This implies that i = (3m + 2)/4.

Therefore if m ≡ 0 (mod 4), then the numbers k and −k do not appear in the same row of
C. If m ≡ 2 (mod 4) and i , (m+2)/2, (3m+2)/4, then the numbers k and −k do not appear
in row i of C.

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 121, 31–40



Abdollah Khodkar and Brandi Ellis 36
When m ≡ 2 (mod 4) we construct an m × 5 array C ′ by rearranging the eight entries of C

which are in the intersection of columns 1 and 2 with rows (m − 2)/2, (m + 2)/2, (3m − 2)/4
and (3m + 2)/4 as follows. Switch

((m − 2)/4, 1; (m − 2)/4) and (m + 2)/4, 1; (m + 2)/4),
((m − 2)/4, 5; (7m + 6)/4) and ((m + 2)/4, 5; (7m + 2)/4),
((3m − 2)/4, 1; (−m + 2)/4) and (3m + 2)/4, 1; (−m − 2)/4),
and ((3m − 2)/4, 5; (−9m − 6)/4) and ((3m + 2)/4, 5;
(−9m − 2)/4).

Figure 8 displays the rectangle C ′ when m = 10. It is easy to see that the sum of each row of
C ′ is zero and k and −k do not appear in any row of C ′.

Now let m ≡ 0 (mod 4), m ≥ 4, and let D be an empty m × 5m/2 rectangle. For each
(i, j; k) ∈ C let (i, |k|; k) ∈ D. By construction, the numbers in row i of D are precisely the
numbers in row i of C. Therefore the row sum for each row of D is also zero. Since ±k are
entries of C for each 1 ≤ k ≤ 5m/2, it follows that column k of D contains only k and −k.
Hence, D is an SMR(m, 5m/2; 5, 2).

Similarly, if m ≡ 2 (mod 4) and m ≥ 6, we use the array C ′ to build an SMR(m, 5m/2; 5, 2).
□

1 5 −9 −13 16
2 7 −10 −14 15
3 9 −11 −15 14
4 11 −12 −16 13

−1 −8 12 17 −20
−2 −7 10 18 −19
−3 −6 8 19 −18
−4 −5 6 20 −17

1 6 −11 −16 20
3 8 −12 −17 18
2 10 −13 −18 19
4 12 −14 −19 17
5 14 −15 −20 16

−1 −10 15 21 −25
−3 −9 13 22 −23
−2 −8 11 23 −24
−4 −7 9 24 −22
−5 −6 7 25 −21

Array C when m = 8 Array C ′ when m = 10

Figure 8. Arrays C and C ′ Constructed by Proposition 2

4. The Existence of an SMR(m, n; r, 2) with m Even

Let there exist an SMR(m, n; r, 2). If m = 4b or m = 4b + 2, then n = 2br or n = (2b + 1)r,
respectively. We study the existence of an SMR(4b, 2br; r, 2) and an SMR(4b+2, (2b+1)r; r, 2)
in the following two subsections, respectively.

4.1. The Existence of an SMR(4b, 2br; r, 2)

In this subsection we construct signed magic rectangles with parameters (4b, 8ab; 4a, 2),
(4b, 2b(4a+2); 4a+2, 2), (4b, 2b(4a+1); 4a+1, 2), and (4b, 2b(4a+3); 4a+3, 2), where a, b ≥ 1.

Lemma 1. There exists a shiftable SMR(2q, 4pq; 4p, 2) for positive integers p, q ≥ 1.

Proof. Figure 1 displays a shiftable SMR(2, 4; 4, 2). So by Part 1 of Theorem 5, there exists
a shiftable SMR(2, 4p; 4p, 2) for p ≥ 1. Now by Part 2 of Theorem 5 there exists a shiftable
SMR(2q, 4pq; 4p, 2) for p, q ≥ 1. □
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Lemma 2. There exists a shiftable SMR(4b, 8ab; 4a, 2) for a, b ≥ 1.

Proof. Apply Lemma 1 with p = a and q = 2b to obtain a shiftable SMR(4b, 8ab; 4a, 2) for all
a, b ≥ 1. □

Lemma 3. There exists a shiftable SMR(4b, 2b(4a + 2); 4a + 2, 2) for a, b ≥ 1.

Proof. Figure 9 displays a shiftable SMR(4, 12; 6, 2). So by Part 2 of Theorem 5, there exists
a shiftable SMR(4b, 12b; 6, 2), say A, for b ≥ 1. On the other hand, by Lemma 2, there exists
a shiftable SMR(4b, 8(a − 1)b; 4(a − 1), 2), say B, for a ≥ 2 and b ≥ 1. Now apply Theorem 6
with A and B to obtain a shiftable SMR(4b, 2b(4a + 2); 4a + 2, 2) for a, b ≥ 1. □

−1 2 −5 6 9 −11
1 −2 5 −6 −9 11

−3 4 −7 8 10 −12
3 −4 7 −8 −10 12

Figure 9. A Shiftable SMR(4, 12; 6, 2)

Lemma 4. There exists a shiftable SMR(4b, 2b(4a + 1); 4a + 1, 2) for a, b ≥ 1.

Proof. By Proposition 2, there exists an SMR(4b, 10b; 5, 2), say A, for b ≥ 1. On the other
hand, by Lemma 2, there exists a shiftable SMR(4b, 8(a − 1)b; 4(a − 1), 2), say B, for a ≥ 2
and b ≥ 1. Now apply Theorem 6 with A and B to obtain an SMR(4b, 2b(4a + 1); 4a + 1, 2)
for a ≥ 2 and b ≥ 1. When a = 1 we apply Proposition 2. □

Lemma 5. There exists a shiftable SMR(4b, 2b(4a + 3); 4a + 3, 2) for a, b ≥ 1.

Proof. By Proposition 1, there exists an SMR(4b, 6b; 3, 2), say A, for b ≥ 1. On the other
hand, by Lemma 2, there exists a shiftable SMR(4b, 8ab; 4a, 2), say B, for a, b ≥ 1. Now apply
Theorem 6 with A and B to obtain SMR(4b, 2b(4a + 3); 4a + 3, 2) for a, b ≥ 1. □

4.2. The Existence of an SMR(4b + 2, (2b + 1)r; r, 2)
In this subsection we construct signed magic rectangles with parameters (4b + 2, 2a(4b +

2); 4a, 2), (4b+2, (2a+1)(4b+2); 4a+2, 2), (4b+2, (4a+1)(2b+1); 4a+1, 2), and (4b+2, (4a+
3)(2b + 1); 4a + 3, 2) for all a, b ≥ 1.

Lemma 6. Let n ≡ 3 (mod 4). Then there exists an SMR(2, n; n, 2).

Proof. By Lemma 1, there exists a shiftable SMR(2, 4k; 4k, 2), say A, for k ≥ 1. Let B be a
2 × 3 array with first row 1, 2, −3 and second row −1, −2, 3. Then B is an SMR(2, 3; 3, 2).
Now apply Theorem 6 with A and B to obtain an SMR(2, 4k + 3; 4k + 3, 2). See Figure 4. □

Lemma 7. There exists a shiftable SMR(4b + 2, 2a(4b + 2); 4a, 2) for a, b ≥ 1.

Proof. Apply Lemma 1 with p = a and q=2b + 1 to obtain a shiftable SMR(4b + 2, 2a(4b +
2); 4a, 2) for a, b ≥ 1. □

Lemma 8. There exists a shiftable SMR(4b + 2, 3(4b + 2); 6, 2) for b ≥ 1

Proof. Apply Part 2 of Theorem 5 with the shiftable SMR(4, 12; 6, 2) displayed in Figure 9 to
obtain a shiftable SMR(4(b − 1), 12(b − 1); 6, 2), say A. Then apply Theorem 7 with A and
the shiftable SMR(6, 18; 6, 2) displayed in Figure 10 to obtain a shiftable SMR(4b + 2, 3(4b +
2); 6, 2). □
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−1 3 7 −8 13 −14

−2 4 8 −9 14 −15
−3 5 9 −10 15 −16

−4 6 10 −11 16 −17
1 −5 11 −12 −13 18

2 −6 −7 12 17 −18

Figure 10. A SMR(6, 18; 6, 2)

Lemma 9. There exists a shiftable SMR(4b + 2, (2a + 1)(4b + 2); 4a + 2, 2) for a, b ≥ 1.
Proof. By Lemma 8, there is a shiftable SMR(4b + 2, 3(4b + 2); 6, 2) for b ≥ 1, say A. Apply
Lemma 1 with p = a − 1 and q = 2b + 1 to obtain a shiftable SMR(2(2b + 1), 4(a − 1)(2b +
1); 4(a − 1), 2), say B, for a ≥ 2 and b ≥ 1. Finally, apply Theorem 6 with arrays A and B to
obtain a shiftable SMR(4b + 2, (2a + 1)(4b + 2); 4a + 2, 2) for a ≥ 2 and b ≥ 1. When a = 1
apply Lemma 8. □

Lemma 10. There exists an SMR(4b + 2, (4a + 1)(2b + 1); 4a + 1, 2) for a, b ≥ 1.
Proof. Apply Lemma 1 with p = a − 1 and q = 2b + 1 to obtain a shiftable SMR(2(2b +
1), 4(a − 1)(2b + 1); 4(a − 1), 2), say A, for a ≥ 2. By Proposition 2 there is an SMR(4b +
2, 5(2b + 1); 5, 2), say B, for b ≥ 1. Finally, apply Theorem 6 with arrays A and B to obtain
an SMR(4b + 2, (4a + 1)(2b + 1); 4a + 1, 2) for a, b ≥ 1. □

Lemma 11. There exists an SMR(4b + 2, (4a + 3)(2b + 1); 4a + 3, 2) for a, b ≥ 0.
Proof. Apply Lemma 1 with p = a and q = 2b +1 to obtain a shiftable SMR(2(2b +1), 4a(2b +
1); 4a, 2), say A. By Proposition 1 there is an SMR(4b + 2, 3(2b + 1); 3, 2), say B, for b ≥ 1.
Finally, apply Theorem 6 with arrays A and B to obtain an SMR(4b+2, (4a+3)(2b+1); 4a+3, 2)
for a, b ≥ 1. □

We conclude this section with the following theorem.
Theorem 8. Let m be even. There exists an SMR(m, n; r, 2) if and only if m = 2 and
n = r ≡ 0, 3 (mod 4) or m ≥ 4, r ≥ 3 and mr = 2n.

5. The existence of an SMR(m, n; r, 2) with m odd and r even

In this section we investigate the existence of a signed magic rectangle (m, n; r, 2) with m

odd and r even. Note that if m and r are both odd, the is no SMR(m, n; r, 2).

5.1. The existence of an SMR(m, n; 4a, 2) with m odd

We consider two cases: m = 4b + 1 and m = 4b + 3.
Lemma 12. There exists a shiftable SMR(4b + 1, 2a(4b + 1); 4a, 2) for all a, b ≥ 1.
Proof. Apply Lemma 1 with p = a = 1 and q = 2(b − 1) to obtain a shiftable SMR(4(b −
1), 8(b − 1); 4, 2) for b ≥ 2.

Figure 11 displays a shiftable SMR(5, 10; 4, 2). Therefore there is a shiftable SMR(4b +
1, 2(4b+1); 4, 2) by Theorem 7. Now apply Part 1 of Theorem 5 to obtain a shiftable SMR(4b+
1, 2a(4b + 1); 4a, 2) for all a, b ≥ 1. □

Lemma 13. There exists a shiftable SMR(4b + 3, 2a(4b + 3); 4a, 2) for all a, b ≥ 1.
Proof. Apply Lemma 1 with p = 1 and q = 2b to obtain a shiftable SMR(4b, 8b; 4, 2) for
b ≥ 1. Figure 12 displays a shiftable SMR(3, 6; 4, 2). Therefore, by Theorem 7, there is a
shiftable SMR(4b + 3, 2(4b + 3); 4, 2). We now apply Part 1 of Theorem 5 to obtain a shiftable
SMR(4b + 3, 2a(4b + 3); 4a, 2) for all a, b ≥ 1. □
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1 −5 −6 10

−1 2 6 −7
−2 3 7 −8

−3 4 8 −9
−4 5 9 10

Figure 11. A Shiftable SMR(5, 10; 4, 2)

1 −3 −4 6
−1 2 4 −5

−2 3 5 −6

Figure 12. A Shiftable SMR(3, 6; 4, 2)

5.2. The existence of an SMR(m, n; 4a + 2, 2) with m odd

We consider two cases: m = 4b + 1 and m = 4b + 3.

Lemma 14. There exists a shiftable SMR(4b + 1, 3(4b + 1); 6, 2) for all b ≥ 1.

Proof. Apply Part 2 of Theorem 5 with the shiftable SMR(4, 12; 6, 2) given in Figure 9 to
obtain a shiftable SMR(4(b − 1), 12(b − 1); 6, 2) for b ≥ 1. Figure 13 displays a shiftable
SMR(5, 15; 6, 2). Therefore there is a shiftable SMR(4b + 1, 3(4b + 1); 6, 2) for b ≥ 1 by
Theorem 7. □

1 −2 −6 10 12 −15
2 −3 6 −7 −13 15

3 −4 7 −8 −11 13
4 −5 8 −9 −12 14

−1 5 9 −10 11 −14

Figure 13. A Shiftable SMR(5, 15; 6, 2)

Lemma 15. There exists a shiftable SMR(4b + 1, (2a + 1)(4b + 1); 4a + 2, 2) for all a, b ≥ 1.

Proof. Apply Lemma 1 with p = 1 and q = 2b − 2 to obtain a shiftable SMR(2(2b − 2), 4(2b −
2); 4, 2) for b ≥ 2. Figure 11 displays a shiftable SMR(5, 10; 4, 2). Therefore there is a shiftable
SMR(4b + 1, 2(4b + 1); 4, 2) for b ≥ 1 by Theorem 7. Now apply Part 1 of Theorem 5 to obtain
a shiftable SMR(4b + 1, 2(a − 1)(4b + 1); 4(a − 1), 2), say A1, for all a ≥ 2 and b ≥ 1. By
Lemma 14 there exists a shiftable SMR(4b + 1, 3(4b + 1); 6, 2) for b ≥ 1, say A2. Now apply
Theorem 6 with A1 and A2 to obtain a shiftable SMR(4b + 1, (2a + 1)(4b + 1); 4a + 2, 2) for
a ≥ 2 and b ≥ 1. When a = 1, we apply Lemma 14. □

Lemma 16. There exists a shiftable SMR(4b + 3, 3(4b + 3); 6, 2) for all b ≥ 1.

Proof. Apply Part 2 of Theorem 5 with the shiftable SMR(4, 12; 6, 2) given in Figure 9 to
obtain a shiftable SMR(4b, 12b; 6, 2) for b ≥ 1. Figure 14 displays a shiftable SMR(3, 9; 6, 2).
Therefore there is a shiftable SMR(4b + 3, 3(4b + 3); 6, 2) by Theorem 7. □

Lemma 17. There exists a shiftable SMR(4b + 3, (2a + 1)(4b + 3); 4a + 2, 2) for all a, b ≥ 1.
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1 −2 −4 6 7 −8

2 −3 4 −5 −7 9
−1 3 5 −6 8 −9

Figure 14. A Shiftable SMR(3, 9; 6, 2)

Proof. Apply Lemma 1 with p = 1 and q = 2b to obtain a shiftable SMR(2(2b), 4(2b); 4, 2) for
b ≥ 1. Figure 12 displays a shiftable SMR(3, 6; 4, 2). Therefore there is a shiftable SMR(4b +
3, 2(4b+3); 4, 2) by Theorem 7. Now apply Part 1 of Theorem 5 to obtain a shiftable SMR(4b+
3, 2(a − 1)(4b + 3); 4(a − 1), 2), say A1, for all a ≥ 2 and b ≥ 1. By Lemma 16 there exists a
shiftable SMR(4b + 3, 3(4b + 3); 6, 2), say A2, for b ≥ 1. Now apply Theorem 6 with A1 and
A2 to obtain a shiftable SMR(4b + 3, (2a + 1)(4b + 3); 4a + 2, 2) for a ≥ 2 and b ≥ 1. When
a = 1 we apply Lemma 16. □

We summarise the results obtained in Lemmas 14-17 in the next theorem..

Theorem 9. Let m be odd and r be even. Then there exists an SMR(m, n; r, 2) if and only if
m ≥ 3, r ≥ 4 and mr = 2n.

We are now ready to state the main theorem of this paper.
Main Theorem. There exists an SMR(m, n; r, 2) if and only if m = 2 and n = r ≡ 0, 3
(mod 4) or m, r ≥ 3 and mr = 2n.
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