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Abstract: In recent years, there is a lot of interest in the topic of conveying the groups of planar
graphs with an unvarying metric dimension. A few types of planar graphs have recently had their
metric dimension determined, and an outstanding problem concerning these graphs was brought up
that: Illustrate the types of planar graphs Υ that can be generated from a graph Φ through the addition
of more edges to Φ, such that dim(Φ) = dim(Υ) and V(Φ) = V(Υ). While proceeding in a similar
directives, we identify two families of radially identical planar graphs with unaltered metric dimension
in this study: 𭟋n,m and .n,mג We do this by establishing that dim(𭟋n,m) = dim(גn,m) andV(𭟋n,m) = V(גn,m),
respectively. We acquire another family of a radially symmetrical planar graph (i.e., ℸn,m) with a
constant metric dimension. We show that all the vertices of these classes of the plane graphs can
potentially be identified with just three well-chosen nodes.
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1. Introduction

Let Φ = Φ(θ, ξ) be a fundamental, related (i.e., connected and simple) and undirected (i.e., they
have no associated direction, or all of the edges are single-directional) graphical representation (or
graph or network) with an edge set and a vertex set ξ and θ respectively. The metric dimension of
the graph Φ = Φ(θ, ξ) is the smallest number (amount) of vertices (hubs or nodes) in a set that allows
a vertex to be unambiguously identified by the list of shortest paths from that vertex to those ver-
tices. From the definition, the ordered t-tuple (or t-vector) η(ν|ζ) := (dΦ(ν, ν1), dΦ(ν, ν2), . . . , dΦ(ν, νt))
is the metric code (or metric representation) of a node ν of Φ with respect to ζ in a graph Φ where
ζ = {ν1, ν2, ν3, . . . , νt} of nodes ν is an arranged (or ordered) subset. A set ζ that has been arranged
is referred to as a resolving (locating) set of Φ if every pair of different vertices of Φ has a unam-
biguous metric representation. The cardinality (magnitude) of the subset ζ, or the location number
(or metric dimension) of the graph Φ, denoted by dim(Φ) or β(Φ), is the minimum size of locating
set on the graph Φ. This is known as the metric dimension or location number of Φ; mathematically
β(Φ) = dim(Φ) = minimum{|ζ | : ζ is resolving set (or locating set)}. It is realized that the issue of
registering this invariant is NP-hard. If a subset T of the arrangement of nodes θ(Φ) is independent
as well as resolving , then the set T is known as an independent resolving set for the graph Φ.

The pth coordinate (or distance component) of the code η(ν|ζ) for an ordered set of vertices of
Φ is zero if and only if ν = νρ. Consequently, it is ample to verify for any two distinct vertices
u, v ∈ θ(Φ) \ ζ that η(ν|ζ) , η(v|ζ) in order to observe that the set ζ is a resolving set.
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The notions of metric dimension and resolution/location trace back to the 1950s. L. M. Blumen-
thal [1] described them in terms of metric space. Unrelated to one another Melter and Harary [2] in
1976 and P. J. Slater [3] in 1975 introduced these concepts to graph networks. For trees, heptagonal
circular ladders [4], circulant graphs [5], Harary, and other structures, the invariant metric dimen-
sion has been studied. Graph theory is a useful tool for studying the verification process in discrete
science and has applications in many areas of the figure, social, and regular sciences. Applications
of this invariant to problems of picture creation (or image processing) and design identification (or
pattern identification) are discussed in [6]; scientific applications are presented in [7]; applications
to combinatorial improvement (or optimisation) are obtained in [8]; and challenges of validation and
system reveal (or network discovery) are reviewed in [9].

A family of connected graphs, or charts, let ℧ be formed. In particular, if β(Ψ) = dim(Ψ) is
free of the possibility of selecting of the graph Ψ in ℧ and is finite (or constrained), we assign the
family ℧ to have stable (or constant) location number. Stated differently, ℧ is said to as a family with
an unchanging location number if every graph in it has an indistinguishable location number [10].
Chartrand et al. showed in [7] that if a graph on n nodes is a path ℘n, then it has location number one.
Furthermore, for every positive integer n; n ≥ 3, cycle Cn has location number two. Consequently,
a collection of graphs with a constant location number is established by Cn (n ≥ 3) and ℘n (n ≥ 2).
In addition, the families of graphs with unchanged location numbers also include the generalised
Petersen graphs P(n, 2) and the Harary graphs H4,n [5]. Recently, Sharma and Bhat studied the pane
graphs and their metric dimension in [11] heptagonal circular ladder in [12, 13]. Also, G. Gnecco
et. al in [14] studied the optimal data collection designs in machine learning; and N. Iqbal in [15]
reviewed the fractional study of the non-linear burgers’ equation.

Joining two graphsΨ1 = Ψ1(θ1, ξ1) andΨ2 = Ψ2(θ2, ξ2), denoted by Φ = Ψ1+Ψ2, meaning a graph
Φ = Φ(θ, ξ) such that θ = θ1 ∪ θ2 and ξ = ξ1 ∪ ξ2 ∪ {vς : v ∈ θ1and ς ∈ θ2}. Next, we define a wheel
Wκ as Wκ = K1 +Cκ for κ ≥ 3, a fan Fκ = K1 +℘κ for κ ≥ 1, and a Jahangir graph J2κ (κ ≥ 2) resulting
from the wheel graph W2κ by deleting κ spokes of the wheel graph (also known as a gear graph). The
locating number for the fan graph Fκ (κ ≥ 1), as determined by Caceres et al. in [16], is ⌊ 2κ+2

5 ⌋ for
κ < {1, 2, 3, 6}. In [17] Chartrand et al., they determined the location number of the wheel graph Wκ
(κ ≥ 3), which is ⌊ 2κ+2

5 ⌋ for κ < {3, 6}. Tomescu and Javaid [18] obtained the location number of the
Jahangir graph J2κ (κ ≥ 4), which is ⌊2κ

3 ⌋. It should be noted that the location numbers of the plane
graphs in these three families—the Fan, Wheel, and Jahangir graphs—depend on the total number
of vertices in the graphs. As a result, these families do not belong to the plane graphs having fixed
location numbers, also known as constant metric dimensions.

Now, a characteristic of a connected graph with respect to metric dimension equal to two. Ψ =
Ψ(θ, ξ) was demonstrated by Khuller et al. in [19] and is

Theorem 1. [19] LetA ⊆ θ(Ψ) be the set that forms a basis of the connected graph Ψ = Ψ(θ, ξ) with
cardinal number two i.e., |A| = dim(Ψ) = β(Ψ) = 2, and say A = {ν, ξ}. Then, the below listed three
points are satisfied:

1. Between the pair of vertices ν and ξ, there exists a unique as well as shortest path ℘.
2. The vertices (or nodes) ν and ξ have degrees (or valencies) that are never more than 3.
3. The valency of any other vertex (or node) on ℘ can never be more than 5.

All vertex indices in this article are assumed to be modulo n. The location number of the plane
graph 𭟋n,m is obtained in the subsequent section, and we show that β(𭟋n,m) = 3 for positive integers m,
n, where m ≥ 1 and n ≥ 6.

2. The Plane Graph 𭟋n,m

The plane graph 𭟋n,m comprises of n(m+ 5) number of nodes and n(m+ 8) number of edges. It has
3n 5-sided faces, and an n-sided face (see Figure 1). By ξ(𭟋n,m) and θ(𭟋n,m), We represent the plane
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graph’s 𭟋n,m vertex and edge ordering separately. Consequently, we have

θ(𭟋n,m) = {ρτ, qτ, ℓτ, sτ, ττ, uτl : 1 ⩽ τ ⩽ n and 1 ⩽ l ⩽ m},

and

ξ(𭟋n,m) = {ρτqτ, qτℓτ, ℓτsτ, sτττ, ττuτ1, uτ1uτ2, uτ2uτ3, . . . , uτm−1uτm : 1
⩽ τ ⩽ n} ∪ {ρτρτ+1, ℓτqτ+1, uτ1ττ+1, sτsτ+1 : 1 ⩽ τ ⩽ n}.

Figure 1. The Plane Graph 𭟋n,m

For our motive, let us call the cycle brought forth by the arrangement of nodes {ρτ : 1 ⩽ τ ⩽ n} as
the ρ-cycle, the cycle brought forth by the arrangement of nodes {qτ : 1 ⩽ τ ⩽ n} ∪ {ℓτ : 1 ⩽ τ ⩽ n} as
the qℓ-cycle, the cycle that the node layout creates {sτ : 1 ⩽ τ ⩽ n} as the s-cycle, the cycle that the
node layout creates {ττ : 1 ⩽ τ ⩽ n} ∪ {uτ1 : 1 ⩽ τ ⩽ n} as the τu-cycle, and the rest of the vertices
of the graphs 𭟋n,m as the outer vertices. In the accompanying theorem, we discover that the location
number of the plane graph, 𭟋n,m is 3 i.e., just 3 vertices properly chosen are adequate to determine all
the vertices of the plane graph 𭟋n,m. Note that the choice of appropriate basis node is the crux of the
problem.

Theorem 2. For any two positive integers m ⩾ 1 and n ⩾ 6, let 𭟋n,m be the planar graph on n(m + 5)
vertices as discussed earlier. Then, we have dim(𭟋n,m) = 3 i.e., the location number is 3.

Proof. In order to illustrate this, we excitedly examine the two ensuing possibilities that depend on
the positive integer n, namely, the even and odd values of the positive whole number n.

Case(slowromancapi@) When the integer n is even.
In this case, we can write n = 2v, v ≥ 3, v ∈ N . Let R = {ρ2, ρv+1, ρn} ⊂ θ(𭟋n,m), we show that

R is a locating set for 𭟋n,m in this case. For this, we give the metric codes for every node of θ(𭟋n,m)
concerning the set R.

Presently, the metric codes for the vertices of ρ-cycle {ρτ : 1 ⩽ τ ⩽ n} are
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η(ρτ|R) =



(1, v, 1), τ = 1;
(0, v − 1, 2), τ = 2;
(τ − 1, v − τ + 1, τ), 5 ≤ τ ≤ v;
(v − 1, 0, v − 1), τ = v + 1;
(2v − τ + 2, τ − v − 1, 2v − τ), v + 2 ≤ τ ≤ 2v − τ :
(2, v − 1, 0), τ = 2v.

The vertices of qℓ-cycle {qτ : 1 ⩽ τ ⩽ n} ∪ {ℓτ : 1 ⩽ τ ⩽ n} have metric codes:

η(qτ|R) = η(ρτ|R) + (1, 1, 1),

and

η(ℓτ|R) =



(2, v + 1, 3), τ = 1;
(τ, v − τ + 2, τ + 2), 2 ≤ τ ≤ v − 1;
(v, 2, v + 1), τ = v;
(v + 1, 2, v), τ = v + 1;
(2v − τ + 3, τ − v + 1, 2v − τ + 1), v + 2 ≤ τ ≤ 2v − 1;
(2v − τ + 3, τ − v + 1, 2), τ = 2v.

The vertices of s-cycle {sτ : 1 ⩽ τ ⩽ n} have metric codes:

η(sτ|R) = η(ℓτ|R) + (1, 1, 1).

The metric codes for the vertices of τu-cycle {ττ : 1 ⩽ τ ⩽ n} ∪ {uτ1 : 1 ⩽ τ ⩽ n} are

η(ττ|R) = η(sτ|R) + (1, 1, 1),

and

η(uτ1|R) =



(5, v + 3, 6), τ = 1;
(τ + 3, v − τ + 4, τ + 5), 2 ≤ τ ≤ v − 1;
(v + 3, 5, v + 3), τ = v;
(2v − τ + 5, τ − v + 4, 2v − τ + 3), v + 1 ≤ τ ≤ 2v − 2;
(2ϱ − τ + 5, τ − ϱ + 4, 5), 2ϱ − 1 ≤ τ ≤ 2ϱ.

At last, the set of outer vertices {uτl : 1 ⩽ τ ⩽ n and 2 ⩽ l ⩽ m} have metric codes:

η(uτl|R)) = η(uτ1|R) + (l − 1, l − 1, l − 1).

Since no two vertices have metric codes that are indistinguishable from one another, β(𭟋n,m) ≤ 3, it
appears. Now, so as to finish the evidence for this case, we show that β(𭟋n,m) ≥ 3 by working out
that there does not exist a resolving set R with the end goal that |R| = 2. Despite what might be
expected, we guess that β(𭟋n,m) = 2. At that point by Theorem 1.1, we find that the valency of basis
nodes can never exceed 3. But except the vertices of the set {sτ : 1 ⩽ τ ⩽ n}, all other nodes of the
radially symmetrical plane graph 𭟋n,m have a valency less than or equals to 3. At that point, we have
the accompanying prospects to be talked about.
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Resolving set Contradiction
{ρ1, ρ1}, ρ1 (2 ≤ 1 ≤ n) for 2 ≤ 1 ≤ ϱ, we have η(q1|{ρ1, ρ1}) = η(ρn|{ρ1, ρ1}),

and when 1 = ϱ + 1, we have
η(ρn|{ρ1, ρϱ+1}) = η(ρ2|{ρ1, ρϱ+1}), a contradiction.

{q1, q1}, q1 (2 ≤ 1 ≤ n) For 2 ≤ 1 ≤ ϱ − 2, we have η(qn−1|{q1, q1}) = η(ρn−2|{q1, q1}),
when ϱ − 1 ≤ 1 ≤ ϱ, we have η(q2|{q1, q1}) = η(s1|{q1, q1}),

and when 1 = ϱ + 1, we have
η(ρn|{q1, qϱ+1}) = η(ρ2|{q1, qϱ+1}), a contradiction.

{ℓ1, ℓ1}, ℓ1 (2 ≤ 1 ≤ n) For 2 ≤ 1 ≤ ϱ, we have η(τ1|{ℓ1, ℓ1}) = η(sn|{ℓ1, ℓ1}),
and when 1 = ϱ + 1, we have

η(sn|{ℓ1, ℓϱ+1}) = η(s2|{ℓ1, ℓϱ+1}), a contradiction.

Resolving set Contradiction
{τ1, τ1}, τ1 (2 ≤ 1 ≤ n) For 2 ≤ 1 ≤ ϱ, we have η(ℓ1|{τ1, τ1}) = η(sn|{τ1, τ1}),

and when 1 = ϱ + 1, we have
η(sn|{τ1, τϱ+1}) = η(s2|{τ1, τϱ+1}), a contradiction.

{u1l, u1l}, u1l (1 ≤ l ≤ m, 2 ≤ 1 ≤ n) For 2 ≤ 1 ≤ ϱ − 1, we have η(ℓ1|{u1l, u1l}) = η(sn|{u1l, u1l}),
when 1 = ϱ, we have η(sn|{u1l, uϱl}) = η(ℓ2|{u1l, uϱl}),

and when 1 = ϱ + 1, we have
η(s1|{u1l, uϱ+1l}) = η(s2|{u1l, uϱ+1l}), a contradiction.

{ρ1, q1}, q1 (1 ≤ 1 ≤ n) For 1 ≤ 1 ≤ ϱ − 2, we have η(qn−1|{ρ1, q1}) = η(ρn−2|{ρ1, q1}),
when ϱ − 1 ≤ 1 ≤ ϱ, we have, η(q2|{ρ1, q1}) = η(s1|{ρ1, q1}),

and when 1 = ϱ + 1, we have
η(ρn|{ρ1, qϱ+1}) = η(ρ2|{ρ1, qϱ+1}), a contradiction.

{ρ1, ℓ1}, ℓ1 (1 ≤ 1 ≤ n) For 1 ≤ 1 ≤ ϱ − 3, we have η(qn−1|{ρ1, ℓ1}) = η(ρn−2|{ρ1, r1}),
when 1 = ϱ − 2, we have, η(q2|{ρ1, ℓϱ−2}) = η(ℓ1|{ρ1, ℓϱ−2}),

and when ϱ − 1 ≤ 1 ≤ ϱ + 1, we have
η(sn−1|{ρ1, ℓ1}) = η(qn−2|{ρ1, ℓ1}), a contradiction.

{ρ1, τ1}, τ1 (1 ≤ 1 ≤ n) For 1 = 1, we have η(u11|{ρ1, τ1}) = η(un1|{ρ1, τ1}),
and when 2 ≤ 1 ≤ ϱ + 1, we have

η(ℓ1|{ρ1, τ1}) = η(q2|{ρ1, τ1}), a contradiction.
{ρ1, u1l}, u1l (1 ≤ l ≤ n, 1 ≤ 1 ≤ n) For 1 = 1, we have η(ℓ2|{ρ1, u1l}) = η(sn|{ρ1, u1l}) ,

when 2 ≤ 1 ≤ ϱ, η(ℓ1|{ρ1, u1l}) = η(q2|{ρ1, u1l}) ,
and when 1 = ϱ + 1, we have

η(ℓn−1|{ρ1, uϱ+1l}) = η(sn|{ρ1, uϱ+1l}), a contradiction.
{q1, ℓ1}, ℓ1 (1 ≤ 1 ≤ n) For 1 ≤ 1 ≤ ϱ − 1, we have η(sn−1|{q1, ℓ1}) = η(τn|{q1, ℓ1}),

and when ϱ ≤ 1 ≤ ϱ + 1, we have
η(s1|{q1, ℓ1}) = η(ρ2|{q1, ℓ1}), a contradiction.
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Resolving set Contradiction
{q1, τ1}, τ1 (1 ≤ 1 ≤ n) For 1 = 1, we have η(un1|{q1, τ1}) = η(u11|{q1, τ1}),

when 2 ≤ 1 ≤ ϱ, we have η(sn|{q1, τ1}) = η(q2|{q1, τ1}),
and when 1 = ϱ + 1, we have

η(s1|{q1, τϱ+1}) = η(qn|{q1, τϱ+1}), a contradiction.
{q1, u1l}, u1l (1 ≤ l ≤ n, 1 ≤ 1 ≤ n) For 1 = 1, we have η(ℓ2|{q1, u1l}) = η(τn|{q1, u1l}),

when 2 ≤ 1 ≤ ϱ − 1, we have η(sn|{q1, u1l}) = η(q2|{q1, u1l}),
when 1 = ϱ, we have η(s1|{q1, uϱl}) = η(sn|{q1, uϱl}),

and when 1 = ϱ + 1, we have
η(s1|{q1, uϱ+11}) = η(qn|{q1, uϱ+11}), a contradiction.

{ℓ1, τ1}, τ1 (1 ≤ 1 ≤ n) For 1 = 1, we have η(un1|{q1, ℓ1}) = η(u11|{q1, ℓ1}),
when 2 ≤ 1 ≤ ϱ, we have η(sn|{q1, ℓ1}) = η(τ1|{q1, ℓ1}),

and when 1 = ϱ + 1, we have
η(s2|{q1, ℓϱ+1}) = η(sn|{q1, ℓϱ+1}), a contradiction.

{ℓ1, u1l}, ul (1 ≤ l ≤ n, 1 ≤ 1 ≤ n) For 1 = 1, we have η(q2|{ℓ1, u1l}) = η(q1|{ℓ1, u1l}),
when 1 = 2, we have η(q2|{ℓ2, u2l}) = η(τ1|{ℓ2, u2l}),

when 3 ≤ 1 ≤ ϱ − 1, we have η(sn|{ℓ1, u1l}) = η(τ1|{ℓ1, u1l}),
when 1 = ϱ, we have η(ℓ2|{ℓ1, uϱl}) = η(sn|{ℓ1, uϱl}),

and when 1 = ϱ + 1, we have
η(s2|{ℓ1, uϱ+11}) = η(ℓn|{ℓ1, uϱ+11}), a contradiction.

{τ1, u1l}, u1l (1 ≤ l ≤ n, 1 ≤ 1 ≤ n) For 1 ≤ 1 ≤ ϱ − 1, we have η(sn|{τ1, u1l}) = η(ℓ1|{τ1, u1l}),
when 1 = ϱ, we have η(τ2|{τ1, uϱl}) = η(sn|{τ1, uϱl}),

and when 1 = ϱ + 1, we have
η(s2|{τ1, uϱ+11}) = η(τn|{τ1, uϱ+11}), a contradiction.

In this manner, the above conversation explains that there is no resolving set comprising of two ver-
tices for θ(𭟋n,m) inferring that β(𭟋n,m) = 3 in this case.

Case(slowromancapii@) When the integer n is odd.

In this case, we can write n = 2ϱ + 1, ϱ ≥ 3, ϱ ∈ N . Let R = {ρ2, ρϱ+1, ρn} ⊂ θ(𭟋n,m), we show that
R is a locating set for 𭟋n,m in this case. For this, we give the metric codes for every node of θ(𭟋n,m)
concerning the set R.

Presently, the metric codes for the vertices of p-cycle {ρτ : 1 ⩽ τ ⩽ n} are

η(ρτ|R) =



(1, ϱ, 1), τ = 1;
(0, ϱ − 1, 2), τ = 2;
(τ − 1, ϱ − τ + 1, τ), 5 ≤ τ ≤ ϱ;
(ϱ − 1, 0, ϱ), τ = ϱ + 1;
(2ϱ − τ + 3, τ − ϱ − 1, 2ϱ − τ + 1), ϱ + 2 ≤ τ ≤ 2ϱ :
(2, ϱ, 0), τ = 2ϱ + 1.

The metric codes for the vertices of qℓ-cycle {qτ : 1 ⩽ τ ⩽ n} ∪ {ℓτ : 1 ⩽ τ ⩽ n} are

η(qτ|R) = η(ρτ|R) + (1, 1, 1),
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and

η(ℓτ|R) =



(2, ϱ + 1, 3), τ = 1;
(τ, ϱ − τ + 2, τ + 2), 2 ≤ τ ≤ ϱ;
(ϱ + 1, 2, ϱ + 1), τ = ϱ + 1;
(2ϱ − τ + 4, τ − ϱ + 1, 2ϱ − τ + 2), ϱ + 2 ≤ τ ≤ 2ϱ;
(2ϱ − τ + 4, τ − ϱ + 1, 2), τ = 2ϱ + 1.

The metric codes for the vertices of s-cycle {sτ : 1 ⩽ τ ⩽ n} are

η(sτ|R) = η(ℓτ|R) + (1, 1, 1).

The metric codes for the vertices of τu-cycle {ττ : 1 ⩽ τ ⩽ n} ∪ {uτ1 : 1 ⩽ τ ⩽ n} are

η(ττ|R) = η(sτ|R) + (1, 1, 1),

and

η(uτ1|R) =



(5, ϱ + 3, 6), τ = 1;
(τ + 3, ϱ − τ + 4, τ + 5), 2 ≤ τ ≤ ϱ − 1;
(ϱ + 3, 5, ϱ + 4), τ = ϱ;
(ϱ + 4, 5, ϱ + 3), τ = ϱ + 1;
(2ϱ − τ + 6, τ − ϱ + 4, 2ϱ − τ + 4), ϱ + 2 ≤ τ ≤ 2ϱ − 1;
(2ϱ − τ + 6, ϱ + 4, 5), 2ϱ ≤ τ ≤ 2ϱ + 1.

At last, the metric codes for the set of outer vertices {uτl : 1 ⩽ τ ⩽ n and 2 ⩽ l ⩽ m} are

η(uτl|R)) = η(uτ1|R) + (l − 1, l − 1, l − 1).

Again we observe that no pair of vertices are having indistinguishable metric codes, suggesting
β(𭟋n,m) ≤ 3. As a result, we believe that β(𭟋n,m) = 2, as pointed out in Case(slowromancapi@),
to be a parallel prospect, and logical contradiction can be deduced accordingly. Thus, β(𭟋n,m) = 3 also
applies in this case, brought the proof to an a conclusion.

□

The desired result can alternatively be expressed as:

Theorem 3. For two positive integers m ⩾ 1 and n ⩾ 6, let 𭟋n,m be the plane graph on n(m + 5)
vertices as defined earlier. Then, its independent resolving number is 3.

In the accompanying section, we acquire the location number of the plane graph ,n,mג and for
positive integers m, n with m ≥ 1 and n ≥ 6 we demonstrate that β(גn,m) = 3.

3. The Plane Graph n,mג

The plane graph n,mג comprises of n(m + 5) number of nodes and n(m + 9) number of edges.
This graph is obtained from the graph 𭟋n,m by placing the new edges between the nodes qτ and qτ+1

(1 ⩽ τ ⩽ n). It has 2n 5-sided faces, n 4 and 3-sided faces, and an n-sided face (see Figure 2). By
ξ(גn,m) and θ(גn,m), we signify the arrangement of edges and vertices of the plane graph n,mג separately.
Consequently, we have

θ(גn,m) = {ρτ, qτ, ℓτ, sτ, ττ, uτl : 1 ⩽ τ ⩽ n and 1 ⩽ l ⩽ m},
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Figure 2. The Plane Graph n,mג

and

ξ(גn,m) = {ρτqτ, qτℓτ, ℓτsτ, sτττ, ττuτ1, uτ1uτ2, uτ2uτ3, . . . , uτm−1uτm : 1 ⩽
τ ⩽ n} ∪ {ρτρτ+1, qτqτ+1, ℓτqτ+1, uτ1ττ+1, sτsτ+1 : 1 ⩽ τ ⩽ n}.

For our motive, we call cycle brought forth by the arrangement of nodes {ρτ : 1 ⩽ τ ⩽ n} as the
ρ-cycle, the cycle brought forth by the arrangement of nodes {qτ : 1 ⩽ τ ⩽ n} as the q-cycle, the
arrangement of nodes {ℓτ : 1 ⩽ τ ⩽ n} as the set of central nodes, the cycle brought forth by the
arrangement of nodes {sτ : 1 ⩽ τ ⩽ n} as the s-cycle, the cycle brought forth by the arrangement of
vertices {ττ : 1 ⩽ τ ⩽ n} ∪ {uτ1 : 1 ⩽ τ ⩽ n} as the τu-cycle, and the rest of the vertices of the graphs
n,mג as the outer vertices. In the accompanying theorem, we discover that the location number of the
plane graph, n,mג is 3 i.e., just 3 vertices properly chosen are adequate to determine all the vertices of
the plane graph .n,mג Note that the choice of appropriate basis node is the crux of the problem.

Theorem 4. For two positive integers m ⩾ 1 and n ⩾ 6, let n,mג be the planar graph on n(m + 5)
vertices as defined above. Then, we have dim(גn,m) = 3 i.e., it has location number 3.

Proof. In order to illustrate this, we excitedly examine the two following cases that depend on the
positive integer n, that is, the even and odd values of the positive integer n.
Case(slowromancapi@) When the integer n is even.

In this case, we can write n = 2ϱ, ϱ ≥ 3, ϱ ∈ N . Let R = {ρ2, ρϱ+1, ρn} ⊂ θ(גn,m), we show that
R is a locating set for n,mג in this case. For this, we give the metric codes for every node of θ(גn,m)
concerning the set R. As of now, the p-cycle {ρτ : 1 ⩽ τ ⩽ n} has the following metric codes for its
vertices:

η(ρτ|R) =



(1, ϱ, 1), τ = 1;
(0, ϱ − 1, 2), τ = 2;
(τ − 1, ϱ − τ + 1, τ), 5 ≤ τ ≤ ϱ;
(ϱ − 1, 0, ϱ − 1), τ = ϱ + 1;
(2ϱ − τ + 2, τ − ϱ − 1, 2ϱ − τ), ϱ + 2 ≤ τ ≤ 2ϱ − τ :
(2, ϱ − 1, 0), τ = 2ϱ.

The metric codes for the vertices of q-cycle {qτ : 1 ⩽ τ ⩽ n} are

η(qτ|R) = η(ρτ|R) + (1, 1, 1).
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The metric codes for the set of the central vertices {ℓτ : 1 ⩽ τ ⩽ n} are

η(rτ|R) =



(2, ϱ + 1, 3), τ = 1;
(τ, ϱ − τ + 2, τ + 2), 2 ≤ τ ≤ ϱ − 1;
(ϱ, 2, ϱ + 1), τ = ϱ;
(ϱ + 1, 2, ϱ), τ = ϱ + 1;
(2ϱ − τ + 3, τ − ϱ + 1, 2ϱ − τ + 1), ϱ + 2 ≤ τ ≤ 2ϱ − 1;
(2ϱ − τ + 3, τ − ϱ + 1, 2), τ = 2ϱ.

The metric codes for the vertices of s-cycle {sτ : 1 ⩽ τ ⩽ n} are

η(sτ|R) = η(ℓτ|R) + (1, 1, 1).

The metric codes for the vertices of τu-cycle {ττ : 1 ⩽ τ ⩽ n} ∪ {uτ1 : 1 ⩽ τ ⩽ n} are

η(ττ|R) = η(sτ|R) + (1, 1, 1),

and

η(uτ1|R) =



(5, ϱ + 3, 6), τ = 1;
(τ + 3, ϱ − τ + 4, τ + 5), 2 ≤ τ ≤ ϱ − 1;
(ϱ + 3, 5, ϱ + 3), τ = ϱ;
(2ϱ − τ + 5, τ − ϱ + 4, 2ϱ − τ + 3), ϱ + 1 ≤ τ ≤ 2ϱ − 2;
(2ϱ − τ + 5, τ − ϱ + 4, 5), 2ϱ − 1 ≤ τ ≤ 2ϱ.

At last, the metric codes for the set of outer vertices {uτl : 1 ⩽ τ ⩽ n and 2 ⩽ l ⩽ m} are

η(uτl|R)) = η(uτ1|R) + (l − 1, l − 1, l − 1).

Since no two vertices have metric codes that are indistinguishable from one another, β(גn,m) ≤ 3, it
emerges. Now, so as to finish the evidence for this case, we show that β(גn,m) ≥ 3 by working out that
there does not exist a resolving set R with the end goal that |R| = 2. Despite what might be expected,
we guess that β(גn,m) = 2. Now, on applying the same procedure as in Theorem 2.1, we obtain the
contradictions in the similar fashion.

In this manner, the above conversation explains that there is no resolving set comprising of two
vertices for θ(גn,m) inferring that β(גn,m) = 3 in this case.
Case(slowromancapii@) When the integer n is odd.

In this case, we can write n = 2ϱ + 1, ϱ ≥ 3, ϱ ∈ N . Let R = {ρ2, ρϱ+1, ρn} ⊂ θ(גn,m), we show
that R is a locating set for n,mג in this case. For this, we give the metric codes for every node of θ(גn,m)
concerning the set R. Presently, the vertices of p-cycle {ρτ : 1 ⩽ τ ⩽ n} have metric codes:

η(ρτ|R) =



(1, ϱ, 1), τ = 1;
(0, ϱ − 1, 2), τ = 2;
(τ − 1, ϱ − τ + 1, τ), 5 ≤ τ ≤ ϱ;
(ϱ − 1, 0, ϱ), τ = ϱ + 1;
(2ϱ − τ + 3, τ − ϱ − 1, 2ϱ − τ + 1), ϱ + 2 ≤ τ ≤ 2ϱ :
(2, ϱ, 0), τ = 2ϱ + 1.

The vertices of q-cycle {qτ : 1 ⩽ τ ⩽ n} have metric codes:

η(qτ|R) = η(ρτ|R) + (1, 1, 1).
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The metric codes for the set of central vertices ℓ-cycle {ℓτ : 1 ⩽ τ ⩽ n} are

η(ℓτ|R) =



(2, ϱ + 1, 3), τ = 1;
(τ, ϱ − τ + 2, τ + 2), 2 ≤ τ ≤ ϱ;
(ϱ + 1, 2, ϱ + 1), τ = ϱ + 1;
(2ϱ − τ + 4, τ − ϱ + 1, 2ϱ − τ + 2), ϱ + 2 ≤ τ ≤ 2ϱ;
(2ϱ − τ + 4, τ − ϱ + 1, 2), τ = 2ϱ + 1.

The vertices of s-cycle {sτ : 1 ⩽ τ ⩽ n} metric codes:

η(sτ|R) = η(ℓτ|R) + (1, 1, 1).

The vertices of τu-cycle {ττ : 1 ⩽ τ ⩽ n} ∪ {uτ1 : 1 ⩽ τ ⩽ n} have metric codes:

η(ττ|R) = η(sτ|R) + (1, 1, 1),

and

η(uτ1|R) =



(5, ϱ + 3, 6), τ = 1;
(τ + 3, ϱ − τ + 4, τ + 5), 2 ≤ τ ≤ ϱ − 1;
(ϱ + 3, 5, ϱ + 4), τ = ϱ;
(ϱ + 4, 5, ϱ + 3), τ = ϱ + 1;
(2ϱ − τ + 6, τ − ϱ + 4, 2ϱ − τ + 4), ϱ + 2 ≤ τ ≤ 2ϱ − 1;
(2ϱ − τ + 6, ϱ + 4, 5), 2ϱ ≤ τ ≤ 2ϱ + 1.

At last, the metric codes for the set of outer vertices {uτl : 1 ⩽ τ ⩽ n and 2 ⩽ l ⩽ m} are

η(uτl|R)) = η(uτ1|R) + (l − 1, l − 1, l − 1).

Again we see that no two vertices are having indistinguishable metric codes, suggesting that β(גn,m) ≤
3. Now, on expecting that β(גn,m) = 2, we consider that to be are parallel prospects as talked about
in Case(slowromancapi@) and logical inconsistency can be inferred correspondingly. Consequently,
β(גn,m) = 3 for this situation too, which concludes the theorem. □

This result can also be written as:

Theorem 5. For two positive integers m ⩾ 1 and n ⩾ 6, let n,mג be the planar graph on n(m + 5)
vertices as defined above. Then, its independent resolving number is 3.

In the accompanying section, we acquire the location number of the plane graph ℸn,m, and for
positive integers m, n with m ≥ 1 and n ≥ 6 we demonstrate that β(ℸn,m) = 3.

4. The Plane Graph ℸn,m

The plane graph ℸn,m comprises of n(m + 4) number of nodes and n(m + 9) number of edges. It
has n 5-sided faces, n 4-sided faces, 2n 3-sided faces, and an n-sided face (see Figure 3). By ξ(ℸn,m)
and θ(ℸn,m), we signify the arrangement of edges and vertices of the plane graph ℸn,m separately.
Consequently, we have
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θ(ℸn,m) = {ρτ, qτ, ℓτ, sτ, ττl : 1 ⩽ τ ⩽ n and 1 ⩽ l ⩽ m},

and

ξ(ℸn,m) = {ρτqτ, qτℓτ, ℓτsτ, sτττ1, ττ1ττ2, ττ2ττ3, . . . , ττm−1ττm : 1 ⩽ τ ⩽ n}

∪{ρτρτ+1, qτρτ+1, qτqτ+1, ℓτℓτ+1, ττ1sτ+1 : 1 ⩽ τ ⩽ n}.

Figure 3. The Plane Graph ℸn,m

For our motive, we call cycle brought forth by the arrangement of nodes {ρτ : 1 ⩽ τ ⩽ n} as the
ρ-cycle, the cycle brought forth by the arrangement of nodes {qτ : 1 ⩽ τ ⩽ n} as the q-cycle, the cycle
brought forth by the arrangement of nodes {ℓτ : 1 ⩽ τ ⩽ n} as the ℓ-cycle, the cycle brought forth
by the arrangement of vertices {sτ : 1 ⩽ τ ⩽ n} ∪ {ττ1 : 1 ⩽ τ ⩽ n} as the sτ-cycle, and the rest of
the vertices of the graph ℸn,m as the outer vertices. In the accompanying theorem, we discover that
the location number of the plane graph, ℸn,m is 3 i.e., just 3 vertices properly chosen are adequate to
determine all the vertices of the plane graph ℸn,m. Note that the choice of appropriate basis node is the
crux of the problem.

Theorem 6. For two positive integers m ⩾ 1 and n ⩾ 6, let ℸn,m be the planar graph on n(m + 4)
vertices as defined above. Then, we have dim(ℸn,m) = 3 i.e., it has location number 3.

Proof. To demonstrate this, we eagerly consider the resulting two cases relying on the positive integer
n i.e., when the positive whole number n is even and when it is odd.
Case(slowromancapi@) When the integer n is even.

In this case, we can write n = 2ϱ, ϱ ≥ 3, ϱ ∈ N . Let R = {ρ2, ρϱ+1, ρn} ⊂ θ(ℸn,m), we show that R
is a locating set for ℸn,m in this case. For this, we give the metric codes for every node of θ(ℸn,m) ∖ R
concerning the set R. Presently, the metric codes for the vertices of ρ-cycle {ρτ : 1 ⩽ t ⩽ n} are

η(ρτ|R) =


(1, ϱ, 1), τ = 1;
(τ − 1, ϱ − τ + 1, τ), 3 ≤ τ ≤ ϱ;
(2ϱ − τ + 2, τ − ϱ − 1, 2ϱ − τ), ϱ + 2 ≤ τ ≤ 2ϱ − 1.

The metric codes for the vertices of q-cycle {qτ : 1 ⩽ τ ⩽ n} are
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η(qτ|R) =



(1, ϱ, 2), τ = 1;
(τ − 1, ϱ − τ + 1, τ − 3), 2 ≤ τ ≤ ϱ − 1;
(ϱ − 1, 1, ϱ), τ = ϱ;
(ϱ, 1, ϱ − 1), τ = ϱ + 1;
(2ϱ − τ + 2, τ − ϱ, 2ϱ − τ), ϱ + 2 ≤ τ ≤ 2ϱ − 1;
(2ϱ − τ + 2, τ − ϱ, 1), τ = 2ϱ.

The metric codes for the vertices of ℓ-cycle {ℓτ : 1 ⩽ τ ⩽ n} are

η(ℓτ|R) = η(qτ|R) + (1, 1, 1).

The metric codes for the vertices of sτ-cycle {sτ : 1 ⩽ τ ⩽ n} ∪ {ττ1 : 1 ⩽ τ ⩽ n} are

η(sτ|R) = η(ℓτ|R) + (1, 1, 1),

and

η(ττ1|R) =



(4, ϱ + 2, 5), τ = 1;
(τ + 2, ϱ − τ + 3, τ + 4), 2 ≤ τ ≤ ϱ − 1;
(ϱ + 2, 4, ϱ + 2), τ = ϱ;
(2ϱ − τ + 4, τ − ϱ + 3, 2ϱ − τ + 2), ϱ + 1 ≤ τ ≤ 2ϱ − 2;
(2ϱ − τ + 4, τ − ϱ + 3, 4), 2ϱ − 1 ≤ τ ≤ 2ϱ.

The metric codes for the set of vertices {ττl : 1 ⩽ τ ⩽ n and 2 ⩽ l ⩽ m} are

η(ττl|R)) = η(ττ1|R) + (l − 1, l − 1, l − 1).

We notice that no two vertices are having indistinguishable metric codes, suggesting that β(ℸn,m) ≤ 3.
Now, so as to finish the evidence for this case, we show that β(ℸn,m) ≥ 3 by working out that there
does not exist a resolving set R with the end goal that |R| = 2. Despite what might be expected,
we guess that β(ℸn,m) = 2. Now, on applying the same procedure as in Theorem 2.1, we obtain the
contradictions in the similar fashion.

In this manner, the above conversation explains that there is no resolving set comprising of two
vertices for θ(ℸn,m) inferring that β(ℸn,m) = 3 in this case.
Case(slowromancapii@) When the integer n is even.

In this case, we can write n = 2ϱ + 1, ϱ ≥ 3, ϱ ∈ N . We demonstrate that R is a locating set for
ℸn,m in this case, assuming R = {ρ2, ρϱ+1, ρn} ⊂ θ(ℸn,m). We provide the metric codes for each node in
θ(ℸn,m) ∖ R with respect to the set R in order to do this. Presently, the metric codes for the vertices of
p-cycle {ρτ : 1 ⩽ τ ⩽ n} are

η(ρτ|R) =


(1, ϱ, 1), τ = 1;
(τ − 1, ϱ − τ + 1, τ), 3 ≤ τ ≤ ϱ;
(2ϱ − τ + 3, τ − ϱ − 1, 2ϱ − τ + 1), ϱ + 2 ≤ τ ≤ 2ϱ.

The metric codes for the vertices of q-cycle {qτ : 1 ⩽ τ ⩽ n} are

η(qτ|R) =



(1, ϱ, 2), τ = 1;
(τ − 1, ϱ − τ + 1, τ − 3), 2 ≤ τ ≤ ϱ;
(ϱ, 1, ϱ), τ = ϱ + 1;
(2ϱ − τ + 3, τ − ϱ, 2ϱ − τ + 1), ϱ + 2 ≤ τ ≤ 2ϱ;
(2ϱ − τ + 3, τ − ϱ, 1), τ = 2ϱ + 1.

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 120, 177–190



Some Convex Polytopes Joining Paths and Their Metric Dimension 189

The metric codes for the vertices of ℓ-cycle {ℓτ : 1 ⩽ τ ⩽ n} are

η(ℓτ|R) = η(qτ|R) + (1, 1, 1).

The metric codes for the vertices of sτ-cycle {sτ : 1 ⩽ τ ⩽ n} ∪ {ττ1 : 1 ⩽ τ ⩽ n} are

η(sτ|R) = η(ℓτ|R) + (1, 1, 1),

and

η(ττ1|R) =



(4, ϱ + 2, 5), τ = 1;
(τ + 2, ϱ − τ + 3, τ + 4), 2 ≤ τ ≤ ϱ − 1;
(ϱ + 2, 4, ϱ + 3), τ = ϱ;
(ϱ + 3, 4, ϱ + 2), τ = ϱ + 1;
(2ϱ − τ + 5, τ − ϱ + 3, 2ϱ − τ + 3), ϱ + 2 ≤ τ ≤ 2ϱ − 1;
(2ϱ − τ + 5, ϱ + 3, 4), 2ϱ ≤ τ ≤ 2ϱ + 1.

The metric codes for the set of vertices {ττl : 1 ⩽ τ ⩽ n and 2 ⩽ l ⩽ m} are

η(ττl|R)) = η(ττ1|R) + (l − 1, l − 1, l − 1).

Once more, we discover the fact that there are no two vertices with identical metric codes, implying
that β(ℸn,m) ≤ 3. As a result, we believe that β(ℸn,m) = 2, as discussed in Case(slowromancapi@), to
be a parallel prospect, and logical contradiction can be deduced accordingly. Thus, β(ℸn,m) = 3 also
holds in this case, providing the theorem to a conclusion. □

This result can also be written as:

Theorem 7. For two positive integers m ⩾ 1 and n ⩾ 6, let ℸn,m be the planar graph on n(m + 4)
vertices as defined earlier. Then, the independent resolving number of ℸn,m is 3.

5. Conclusion

This article include the study of the metric dimension of three classes of radially symmetrical
planar graphs viz., 𭟋n,m, ,n,mג and ℸn,m, and we have proved that the location number of these three
classes of planar graphs is finite and is independent of the number of vertices in these graphs, and just
three vertices chosen properly are adequate to determine all the vertices of these classes of radially
symmetrical planar graphs. We besides saw that the basis set R is independent for these three radially
even families of plane graphs. We also note that the metric dimension of the graphs obtained from
these three graphs by placing new edges between the vertices of the paths (making the complete cycle)
remain the same as the metric dimension of these three families of planar graphs.
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