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Abstract: Let g, f : V(G) → {0, 1, 2, 3, · · · } be two functions satisfying g(x) ≤ f (x) for every
x ∈ V(G). A (g, f )-factor of G is defined as a spanning subgraph F of G such that g(x) ≤ dF(x) ≤ f (x)
for every x ∈ V(G). An ( f , f )-factor is simply called an f -factor. Let φ be a nonnegative integer-
valued function defined on V(G). Set

Deven
g, f =

{
φ : g(x) ≤ φ(x) ≤ f (x) for every x ∈ V(G) and

∑
x∈V(G)

φ(x) is even
}
.

If for each φ ∈ Deven
g, f , G admits a φ-factor, then we say that G admits all (g, f )-factors. All (g, f )-

factors are said to be all [1, k]-factors if g(x) ≡ 1 and f (x) ≡ k for any x ∈ V(G). In this paper, we
verify that for a connected multigraph G satisfying NG(X) = V(G) or |NG(X)| >

(
1 + 1

k+1

)
|X| − 1 for

every X ⊂ V(G), kG admits all [1, k]-factors, where k ≥ 2 is an integer and kG denotes the graph
derived from G by replacing every edge of G with k parallel edges.
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1. Introduction

The graphs discussed here are multigraphs, which may admit multiple edges but do not admit
loops. A graph is called a simple graph if it admits neither multiple edges nor loops. For convenience,
we simply call a multigraph a graph when we show notations and definitions. Let G be a graph. We
use V(G) and E(G) to denote the vertex set and the edge set of G, respectively. For x ∈ V(G), we
write dG(x) for the degree of x in G, and NG(x) for the set of the vertices adjacent to x in G. We write
NG(X) =

⋃
x∈X

NG(x) for any X ⊆ V(G). We denote by I(G) the set of isolated vertices of G, and by

ω≥k(G) the number of components of G with order at least k. Specially, we write i(G) = |I(G)| and
ω(G) = ω≥1(G). Let kG denote the graph derived from G by replacing every edge of G with k parallel
edges.

Let g, f : V(G) → {0, 1, 2, 3, · · · } be two functions satisfying g(x) ≤ f (x) for every x ∈ V(G). A
(g, f )-factor of G is defined as a spanning subgraph F of G such that g(x) ≤ dF(x) ≤ f (x) for every
x ∈ V(G). An ( f , f )-factor is simply called an f -factor. If g(x) ≡ 1 and f (x) ≡ k for any x ∈ V(G),
then a (g, f )-factor is called a [1, k]-factor, where k ≥ 1 is a fixed integer. A [1, 1]-factor is simply
called a 1-factor.
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Let φ be a nonnegative integer-valued function defined on V(G). In the following, we write

Deven
g, f =

{
φ : g(x) ≤ φ(x) ≤ f (x) for every x ∈ V(G) and

∑
x∈V(G)

φ(x) is even
}
.

If for each φ ∈ Deven
g, f , G admits a φ-factor, then we say that G admits all (g, f )-factors. All (g, f )-

factors are said to be all [1, k]-factors if g(x) ≡ 1 and f (x) ≡ k for any x ∈ V(G).
Lots of authors studied factors [1–16] and all factors [17–20] of graphs. The neighborhood con-

ditions for graphs having factors were derived by many authors [21–27]. Lu, Kano and Yu [18]
characterized a graph G such that kG admits all [1, k]-factors. Lu, Kano and Yu’s results generalized
Tutte’s 1-factor theorem [28].

Theorem 1. ( [18]). Let k ≥ 2 be an integer, and let G be a connected multigraph. Then kG admits
all [1, k]-factors if and only if

k · i(G − X) + ω≥k+1(G − X) ≤ |X| + 1

for any X ⊆ V(G).

Using Theorem 1, we verify some results related to all [1, k]-factors in graphs. Our main results
will be shown in Section 2.

2. Next Section

In this section, we discuss the relationship between neighborhood and all [1, k]-factors, and verify
two results related to all [1, k]-factors.

Theorem 2. Let k be an integer with k ≥ 2, and let G be a connected multigraph. If G satisfies

NG(X) = V(G) or |NG(X)| >
(
1 +

1
k + 1

)
|X| − 1

for every X ⊂ V(G), then kG admits all [1, k]-factors.

Proof. Assume that G satisfies the hypothesis of Theorem 2, but kG does not admit all [1, k]-factors.
Then by Theorem 1, we derive

k · i(G − X) + ω≥k+1(G − X) ≥ |X| + 2 (1)

for some subset X ⊂ V(G). The following proof will be divided into two cases by the value of i(G−X).
Case 1. i(G − X) = 0.

According to (1), we get
ω≥k+1(G − X) ≥ |X| + 2,

which implies that G − X has at least |X| + 2 components with order at least k + 1. We denote by
Y the set of vertices of any |X| + 1 components of G − X with order at least k + 1. It is clear that
NG(Y) , V(G). Thus, we derive

|NG(Y)| >
(
1 +

1
k + 1

)
|Y | − 1. (2)

On the other hand, we easily see that |NG(Y)| ≤ |X| + |Y |. Combining this with (2), we have

|X| + |Y | ≥ |NG(Y)| >
(
1 +

1
k + 1

)
|Y | − 1,

namely,

|X| >
1

k + 1
|Y | − 1. (3)
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Note that |Y | ≥ (k + 1)(|X| + 1). Then using (3), we admit

|X| >
1

k + 1
|Y | − 1 ≥ (|X| + 1) − 1 = |X|,

this is a contradiction.
Case 2. i(G − X) > 0.

Obviously, NG(V(G) \ X) , V(G). Thus, we have

|NG(V(G) \ X)| >
(
1 +

1
k + 1

)
|V(G) \ X| − 1 =

(
1 +

1
k + 1

)
(|V(G)| − |X|) − 1. (4)

Using (4) and |NG(V(G) \ X)| ≤ |V(G)| − i(G − X), we obtain

|V(G)| − i(G − X) ≥ |NG(V(G) \ X)| >
(
1 +

1
k + 1

)
(|V(G)| − |X|) − 1,

that is,
|V(G)| + (k + 1) · i(G − X) < (k + 2) · |X| + k + 1. (5)

On the other hand, we easily see that

|V(G)| ≥ i(G − X) + |X| + (k + 1) · (|X| + 2) = i(G − X) + (k + 2) · |X| + 2(k + 1). (6)

It follows from (5) and (6) that

(k + 2) · |X| + k + 1 > |V(G)| + (k + 1) · i(G − X)
≥ i(G − X) + (k + 2) · |X| + 2(k + 1) + (k + 1) · i(G − X)
= (k + 2) · i(G − X) + (k + 2) · |X| + 2(k + 1),

which implies
(k + 2) · i(G − X) + k + 1 < 0,

which is a contradiction. Theorem 2 is proved. □

Theorem 3. For any positive integer k with k ≥ 2, there exist infinitely many graphs G that satisfy

NG(Y) = V(G) or |NG(Y)| ≥
(
1 +

1
k + 1

)
|Y | − 1

for every Y ⊂ V(G), but kG does not admit all [1, k]-factors.

Proof. Let r ≥ 1 be an integer. We construct a graph G = Kr ∨ ((r + 2)Kk+1), where Kr denotes the
complete graph of order r, Kk+1 denotes the complete graph of order k + 1 and ∨ means “join”.

Next, we demonstrate that

NG(Y) = V(G) or |NG(Y)| ≥
(
1 +

1
k + 1

)
|Y | − 1

for every Y ⊂ V(G). We shall consider two cases by the value of |Y |.
Case 1. |Y | = 1.

In this case, we obviously have that |NG(Y)| ≥ k + r > 1
k+1 =

(
1 + 1

k+1

)
|Y | − 1.

Case 2. |Y | ≥ 2.
Case 2.1. Y ∩ V(Kr) , ∅.

It is clear that NG(Y) = V(G).
Case 2.2. Y ∩ V(Kr) = ∅.
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Let Kk+1(i), 1 ≤ i ≤ r + 2, denote the disjoint copies of Kk+1 in G − V(Kr). Write

b1 = #{i : |Y ∩ V(Kk+1(i))| = 1},

b2 = #{i : |Y ∩ V(Kk+1(i))| = 2}, · · · ,

and
bk+1 = #{i : |Y ∩ V(Kk+1(i))| = k + 1}.

Thus, we derive |Y | = b1 + 2b2 + · · · + (k + 1)bk+1 and |NG(Y)| = r + kb1 + (k + 1)(b2 + · · · + bk+1). If
|Y | ≤ (k + 1)(r + 1 + (k − 1)b1 + (k − 1)b2 + (k − 2)b3 + · · · + bk), then we admit

|NG(Y)| = r + |Y | + (k − 1)b1 + (k − 1)b2 + (k − 2)b3 + · · · + bk ≥
(
1 +

1
k + 1

)
|Y | − 1.

In the following, we may assume that |Y | > (k+1)(r+1+ (k−1)b1+ (k−1)b2+ (k−2)b3+ · · ·+bk).
Note that Y ∩ V(Kr) = ∅. Thus, we have |Y | ≤ |V(G)| − |V(Kr)| = (r + 2)(k + 1). Hence, we gain

(k + 1)(r + 1 + (k − 1)b1 + (k − 1)b2 + (k − 2)b3 + · · · + bk) < |Y | ≤ (r + 2)(k + 1),

namely,
(k − 1)b1 + (k − 1)b2 + (k − 2)b3 + · · · + bk < 1,

which implies b1 = b2 = · · · = bk = 0, and so |Y | = (k + 1)bk+1. If bk+1 = r + 2, then we derive
Y = V((r + 2)Kk+1), and so NG(Y) = V(G). Next, we assume that bk+1 ≤ r + 1. Clearly, |NG(Y)| =
r + (k + 1)bk+1 = (k + 2)bk+1 − 1 + r + 1 − bk+1 ≥ (k + 2)bk+1 − 1 =

(
1 + 1

k+1

)
|Y | − 1.

Consequently, we verify that

NG(Y) = V(G) or |NG(Y)| ≥
(
1 +

1
k + 1

)
|Y | − 1

for every Y ⊂ V(G).
Set X = V(Kr). Then i(G − X) = 0 and ω≥k+1(G − X) = r + 2. Thus, we deduce

k · i(G − X) + ω≥k+1(G − X) = r + 2 = |X| + 2 > |X| + 1.

Therefore, kG does not admit all [1, k]-factors by Theorem 1. Theorem 3 is verified. □
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