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Abstract: Let g, f : V(G) — {0,1,2,3,---} be two functions satisfying g(x) < f(x) for every
x € V(G). A (g, f)-factor of G is defined as a spanning subgraph F of G such that g(x) < dp(x) < f(x)
for every x € V(G). An (f, f)-factor is simply called an f-factor. Let ¢ be a nonnegative integer-
valued function defined on V(G). Set

DY = {()0 : g(x) < p(x) < f(x) for every x € V(G) and Z @(x) is even}.
V(G)

If for each ¢ € Dg’f".”, G admits a g-factor, then we say that G admits all (g, f)-factors. All (g, f)-
factors are said to be all [1, k]-factors if g(x) = 1 and f(x) = k for any x € V(G). In this paper, we
verify that for a connected multigraph G satisfying Ng(X) = V(G) or |[Ng(X)| > (1 + ﬁ)lX | — 1 for
every X C V(G), kG admits all [1, k]-factors, where k > 2 is an integer and kG denotes the graph

derived from G by replacing every edge of G with k parallel edges.
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1. Introduction

The graphs discussed here are multigraphs, which may admit multiple edges but do not admit
loops. A graph is called a simple graph if it admits neither multiple edges nor loops. For convenience,
we simply call a multigraph a graph when we show notations and definitions. Let G be a graph. We
use V(G) and E(G) to denote the vertex set and the edge set of G, respectively. For x € V(G), we
write dg(x) for the degree of x in G, and Ng(x) for the set of the vertices adjacent to x in G. We write
Ng(X) = U Ng(x) for any X C V(G). We denote by I(G) the set of isolated vertices of G, and by

xeX
ws;(G) the number of components of G with order at least k. Specially, we write i(G) = |I(G)| and

w(G) = ws1(G). Let kG denote the graph derived from G by replacing every edge of G with k parallel
edges.

Letg, f: V(G) — {0,1,2,3,---} be two functions satisfying g(x) < f(x) for every x € V(G). A
(g, f)-factor of G is defined as a spanning subgraph F of G such that g(x) < dr(x) < f(x) for every
x € V(G). An (f, f)-factor is simply called an f-factor. If g(x) = 1 and f(x) = k for any x € V(G),
then a (g, f)-factor is called a [1, k]-factor, where k > 1 is a fixed integer. A [1, 1]-factor is simply
called a 1-factor.
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Let ¢ be a nonnegative integer-valued function defined on V(G). In the following, we write

DY = {¢ : g(x) < @(x) < f(x) for every x € V(G) and Z @(x) 1s eVen}-
xeV(G)

If for each ¢ € D;Zi”, G admits a gp-factor, then we say that G admits all (g, f)-factors. All (g, f)-
factors are said to be all [1, k]-factors if g(x) = 1 and f(x) = k for any x € V(G).

Lots of authors studied factors [1-16] and all factors [17-20] of graphs. The neighborhood con-
ditions for graphs having factors were derived by many authors [21-27]. Lu, Kano and Yu [18]
characterized a graph G such that kG admits all [1, k]-factors. Lu, Kano and Yu’s results generalized
Tutte’s 1-factor theorem [28].

Theorem 1. ( [18]). Let k > 2 be an integer, and let G be a connected multigraph. Then kG admits
all [1, k]-factors if and only if

k-i(G—=X)+ wsk+1(G=X) < |X[+ 1

for any X C V(G).

Using Theorem 1, we verify some results related to all [1, k]-factors in graphs. Our main results
will be shown in Section 2.

2. Next Section

In this section, we discuss the relationship between neighborhood and all [1, k]-factors, and verify
two results related to all [1, k]-factors.

Theorem 2. Let k be an integer with k > 2, and let G be a connected multigraph. If G satisfies
1
No(X) = V(G) or INa(X)| > (1 + m)m -1

for every X C V(G), then kG admits all [1, k]-factors.

Proof. Assume that G satisfies the hypothesis of Theorem 2, but kG does not admit all [1, k]-factors.
Then by Theorem 1, we derive

k-i(G—=X)+ ws1(G=X) > |X|+2 (1)

for some subset X C V(G). The following proof will be divided into two cases by the value of i(G —X).
Case l. i(G-X)=0.
According to (1), we get
wsi1(G = X) 2 |X]| + 2,

which implies that G — X has at least |X| + 2 components with order at least k + 1. We denote by
Y the set of vertices of any |X| + 1 components of G — X with order at least k + 1. It is clear that
Ng(Y) # V(G). Thus, we derive

ING(V)| > (1 + —)I¥| - 1. )

k+1
On the other hand, we easily see that [Ng(Y)| < |X| + |Y]. Combining this with (2), we have

1
X|+ Y| = [Ng(Y 1+——)|Y| -1,
X]+1¥] 2 INg(V)| > (1 + = )17

namely,

1
X > Y- 1. 3)
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Note that |Y| > (k + 1)(|X] + 1). Then using (3), we admit

1
Xl >—1Y-1>(X|+1)-1=|X|,
||k+1|| > (IX]+ 1) 1X]

this is a contradiction.
Case 2. i(G-X) > 0.
Obviously, Ng(V(G) \ X) # V(G). Thus, we have

1 1
ING(V(G\X)| > (1+ == )IVG)\ X = 1 = (1 + ——)IV(G)] - XD — 1. )

Using (4) and |Ng(V(G) \ X)| < |V(G)| - i(G — X), we obtain
1
VG = i(G = X) 2 INe(VG\ X)I > (1 + 5 JAV(G)I = IXD) ~ 1,

that 1s,
VGO +k+1D)-i(G-X)<(k+2)-|X|+k+1. &)

On the other hand, we easily see that
VG| =ilG-X)+|X|+k+1D-(X|+2)=i(G-X)+(k+2)-|X|+2(k+1). (6)
It follows from (5) and (6) that

k+2)- 1 X|+k+1

\%

VG| + (k+1)-i(G—-X)
i(G-X)+k+2)- | X|+2k+ D)+ (k+1)-i(G-X)
k+2)- i(G-X)+k+2) | X|+2k+1),

\%

which implies
k+2)-iG-X)+k+1<0,

which is a contradiction. Theorem 2 is proved. O

Theorem 3. For any positive integer k with k > 2, there exist infinitely many graphs G that satisfy
1
Ng(Y) = V(G Ne(M)| =1+ —=))Y| -1
oY) = V(G) or INa(V)| 2 (1 + )V

for every Y C V(G), but kG does not admit all [1, k]-factors.

Proof. Let r > 1 be an integer. We construct a graph G = K, V ((r + 2)K;,1), where K, denotes the
complete graph of order r, K, denotes the complete graph of order k£ + 1 and V means “join”.
Next, we demonstrate that
Na(Y) = V(G) or INg(V)| = (1 + k%)m -1
for every Y C V(G). We shall consider two cases by the value of |Y].
Case 1. |Y| =1.
In this case, we obviously have that [NG(Y)| > k +r > =5 = (1 + ﬁ)m - 1.
Case 2. |Y| = 2.
Case 2.1. YNV(K,) # 0.
It is clear that Ng(Y) = V(G).
Case 2.2. YNV(K,) = 0.
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Let K;.1(i), 1 <i < r+ 2, denote the disjoint copies of K;,; in G — V(K,). Write

by =#i: Y N V(K (D) = 1},

by =#i: Y N V(K (D) =2}, ,
and

bioy = #i : Y N V(K1 (D))l = k + 1}

Thus, we derive |Y| = by + 2by + -+ + (k+ )by and |[Ng(Y)| = r + kby + (k + 1)(by + - - + byyp). If
Y| <k+1Dr+1+k-1b +k—-1)by+ (k—2)bs +---+ by), then we admit

1
|NG(Y)|:r+|Y|+(k—1)b1+(k—1)b2+(k—2)b3+---+bk2(l+m)lY|—l.

In the following, we may assume that |Y| > (k+ 1)(r+ 1+ (k—1)by +(k—1)by + (k—2)b3 + - - - + by.).
Note that Y N V(K,) = 0. Thus, we have |Y| < |V(G)| - |[V(K,)| = (r + 2)(k + 1). Hence, we gain

(k+ D+ 1+ (k=1Dby + (k= Dby + (k=2)bs +--- + b)) <[Y| < (r +2)(k + 1),

namely,
(k=Dby+(k—=1Dby+(k—=2)b3 +---+ b, < 1,

which implies by = by = --- = by = 0, and so |Y| = (k + 1)biyy. If byyy = r + 2, then we derive
Y = V((r + 2)Ki+1), and so Ng(Y) = V(G). Next, we assume that by, < r + 1. Clearly, |[Ng(Y)| =
r4 (k+ Dby = (kK +Dbgay = L+ 7+ 1= by 2 (k+ Dby — 1= (1+ 25) 1Y) - 1.

Consequently, we verify that

1
No(Y) = V(G) or INa(Y)| = (1 + k+—1)|Y| ~1

for every Y C V(G).
Set X = V(K,). Then i(G — X) = 0 and ws;;+1(G — X) = r + 2. Thus, we deduce

k-i(G=X)+ws1(G=X)=r+2=X|+2>|X]+ 1.

Therefore, kG does not admit all [1, k]-factors by Theorem 1. Theorem 3 is verified. |
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