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Abstract: We use a dynamic programming algorithm to establish a new lower bound on the domi-
nation number of complete cylindrical grid graphs of the form Cn□Pm, that is, the Cartesian product
of a path and a cycle, when n ≡ 2 (mod 5), and we establish a new upper bound equal to the lower
bound, thus computing the exact domination number for these graphs.
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1. Introduction

A set S of vertices in a graph G = (V, E) is called a dominating set if every vertex v ∈ V is either
in S or adjacent to a vertex in S . The domination number of G, γ(G), is the minimum size of a
dominating set.

Let Pm denote the path on m vertices and Cn the cycle on n vertices; the complete cylindrical grid
graph or cylinder is the product Cn□Pm. That is, if we denote the vertices of Cn by u1, u2, . . . , un and
the vertices of Pm by w1, . . . ,wm, then Cn□Pm is the graph with vertices vi, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m, and
vi, j adjacent to vk,l if i = k and w j is adjacent to wl or if j = l and ui is adjacent to uk. It will be useful
to think of this graph as Pn□Pm, with the edge paths of length m glued together, that is, connected
with new edges. We assume throughout that m ≥ 2 and n ≥ 3.

P. Pavlič and J. Žerovnik [1] established upper bounds for the domination number of Cn□Pm, and
José Juan Carreño et al. [2] established non-trivial lower bounds. For n ≡ 0 (mod 5) the bounds
agree, so the domination number is known exactly. In [3], we improved the lower bounds, except
of course in the case that n ≡ 0 (mod 5). Using the same techniques, we improve the lower bound
slightly when n ≡ 2 (mod 5), and we show that this value is the true domination number by also
slightly improving the known upper bound.

2. Lower Bound

We summarize the technique for computing a lower bound; details are in [3]. A vertex in Cn□Pm

dominates at most five vertices, including itself, so certainly γ(Cn□Pm) ≥ nm/5. If we could keep
the sets dominated by individual vertices from overlapping, we could get a dominating set with ap-
proximately nm/5 vertices, and indeed we can arrange this for much of the graph, with the exception
of the “edges”, that is, the two copies of Cn in which the vertices have only 3 neighbors, and except
when n ≡ 0 (mod 5), we run into some trouble where the edge paths of Pn□Pm are connected to form
Cn□Pm.
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Suppose S is a subset of the vertices of Cn□Pm. Let N[S ] be the set of vertices that are either in
S or adjacent to a member of S , that is, the vertices dominated by S . Define the wasted domination
of S as w(S ) = 5|S | − |N[S ]|, that is, the number of vertices we could dominate with |S | vertices in
the best case, less the number actually dominated. When S is a dominating set, |N[S ]| = mn, and if
w(S ) ≥ L then |S | ≥ (L + mn)/5. Our goal now is to find a lower bound L for w(S ).

Figure 1. Partitioned Cylinder

Suppose a cylinder Cn□Pm is partitioned into subgraphs as indicated in Figure 1, where each Gi

is a subgraph Cn□Pmi . (We will refer to G1 and Gt as edge subgraphs, and the others as interior
subgraphs.) Let S be a dominating set for G and S i = S ∩ V(Gi). Then

w(S ) ≥
t∑

i=1

w(S i). (1)

Note that in computing w(S i) we consider S i to be a subset of V(G), not of V(Gi) (this affects the
computation of N[S i]). To verify the inequality, note that the following inequalities are equivalent:

w(S ) ≥
t∑

i=1

w(S i)

5|S | − |N[S ]| ≥
t∑

i=1

(5|S i| − |N[S i]|)

5|S | − |N[S ]| ≥
t∑

i=1

5|S i| −

t∑
i=1

|N[S i]|

|N[S ]| ≤
t∑

i=1

|N[S i]|.

The last inequality is satisfied, since each vertex in N[S ] is counted at least once by the expression on
the right.

Note that S i is a set that dominates all the vertices of Gi except possibly some vertices in the top
or bottom row of Gi (or in the cases of G1 and Gt, in the bottom row and top row, respectively). Let
us say that a set that dominates a cylinder G, with the exception of some vertices on the top or bottom
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edges, almost dominates G. Given a cylinder H = Cn□Pmi (namely, one of the Gi), What we want to
know is the value of

min
A

w(A), (2)

taking the minimum over sets A that almost dominate H and computing w(A) as if A were a subset of
a larger graph Cn□Pmi+2 in which H occupies the middle mi rows, or in the case of G1 or Gt, A is a
subset of Cn□Pmi+1 in which H occupies the top mi rows. If we can compute this minimum for (small)
fixed mi and any n, we can choose G1 through Gt with a small number of rows and get lower bounds
on w(S i) for any dominating set S of the original Cn□Pm.

3. The Algorithm

We use a dynamic programming algorithm to compute these lower bounds on w(S i). This is done
by computing smallest almost-dominating sets for Ci□P j, i = 1, 2, 3 . . ., until periodicity is detected.
That is, we test for a point after which the minimum wasted domination of Ci□P j is that of Ci−p□Pi

plus a constant q. (Livingston and Stout [4] and Fisher [5] independently thought of looking for this
sort of periodicity.) In [3], we found that the minimum wasted domination for G1 = Cn□P10 is n. For
an interior Gi = Cn□P10, the minimum wasted domination is 0, 6, 5, 9, or 6 as n is 0, 1, 2, 3, or 4
(mod 5). For n ≡ 2 (mod 5), this means that for a dominating set S of Cn□Pm, we have

5|S | − mn = w(S ) ≥ 2n + 5
⌊
m − 20

10

⌋
,

so that

|S | ≥
(m + 2)n

5
+

⌊
m − 20

10

⌋
.

Since m need not be a multiple of 10, this calculation effectively ignores one of the Gi, namely, one
in which the number of rows is less than 10. When the number of rows is too small (less than 5,
as it turns out), the resulting lower bound is too small to be useful, namely, 0. So we computed the
corresponding minimum wasted domination for an interior Gi = Cn□P j, for 5 ≤ j ≤ 9. We find that
the minima are 2, 3, 3, 4, and 4, respectively. This means, for example, that if m ≡ 8 (mod 10),

5|S | − mn ≥ 2n + 5
⌊
m − 20

10

⌋
+ 4

|S | ≥
(m + 2)n

5
+

⌊
m − 20

10

⌋
+

4
5
.

To handle m ≡ j (mod 10), 1 ≤ j ≤ 4, we eliminate one interior Gi with 10 rows, and insert two new
subgraphs, with 5 and 6 rows, 6 and 6 rows, 6 and 7 rows, or 6 and 8 rows, respectively. For example,
for m ≡ 2 (mod 10), we get

|S | ≥
(m + 2)n

5
+

⌊
m − 20

10

⌋
− 1 +

3
5
+

3
5

When we complete this task, the resulting lower bounds still turn out to be a bit too low for some
values of m. To improve the bounds, we compute the minimum wasted domination for edge subgraphs
G1 and Gt with 11 rows, instead of 10. We find that the minimum wasted domination for Cn□P11 is
n+2, when n ≡ 2 (mod 5). The resulting lower bound on the domination number of Cn□Pm becomes

|S | ≥
(m + 2)n + 4

5
+

⌊
m − 22

10

⌋
+ c,
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where c is the necessary addition as described above when m−22 is not divisible by 10. For example,
when m ≡ 0 (mod 10), we get

|S | ≥
(m + 2)n + 4

5
+

⌊
m − 22

10

⌋
− 1 + 2 ·

3
5
,

since now m − 22 ≡ 8 (mod 10).
The resulting lower bounds for m = 10i + j and n = 5k + 2 are:

j = 0: 10ik + 5i + 2k

j = 1: 10ki + 5i + 3k

j = 2: 10ik + 5i + 4k + 1
j = 3: 10ik + 5i + 5k + 1
j = 4: 10ik + 5i + 6k + 2
j = 5: 10ik + 5i + 7k + 2
j = 6: 10ik + 5i + 8k + 3
j = 7: 10ik + 5i + 9k + 3
j = 8: 10ik + 5i + 10k + 4
j = 9: 10ik + 5i + 11k + 4

(3)

With a little bit of algebraic manipulation, we find that all of these bounds can be expressed as
4n+2

10 m + 4n−13
5

2

 .
These bounds apply when n ≥ 32, n ≡ 2 (mod 5); and when m ≥ 27. The first restriction is due to
when the periodicity described earlier first appears; the second because the bounds are based on two
edge subgraphs with 11 rows and at least one interior subgraph with at least 5 rows.

Crevals [6] computes exact values for m ≤ 22 and all n ≥ m, and also for n ≤ 30 and all m ≥ n.
Our bounds agree with Crevals’ exact values for 16 ≤ m ≤ 22, and for n ≤ 30 (remember that our
bounds are for n ≡ 2 (mod 5) only). Note well that our bounds agree with the Crevals values when
n < 32 and when 16 ≤ m < 22, even though our derivation of the lower bounds does not apply to
these values.

This gave us some confidence that our lower bounds would prove correct in all cases except when
m ≤ 15. To show this, we will need to find upper bounds that match our lower bounds, and we also
need to fill in the gap 22 < m < 27 not covered by either our lower bounds or the Crevals values. So
the first order of business is to provide lower bounds for these missing values.

This we can do in a way similar to what we have already done, but we need to compute minima for
edge subgraphs of the form Cn□P12 and Cn□P13. When we do this, we find that the minimum wasted
domination for both is n + 3, when n ≡ 2 (mod 5). Then we compute lower bounds as before, using
two edge subgraphs and no interior subgraphs. To get bounds for m = 23, 24, 25, 26 we use subgraphs
with 11 and 12 rows; 12 and 12 rows; 12 and 13 rows; and 13 and 13 rows; respectively. We find that
the resulting lower bounds are given by the formulas we already have. For example, for m = 25 and
n = 5k + 2 we have

|S | ≥
25n
5
+

2n + 6
5
= 27k + 12,

which agrees with the j = 5 value in equation 3, 10ik + 5i + 7k + 2, since i = 2.
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4. Upper Bound

The best known upper bound, due to Pavlič and Žerovnik [1], for n ≡ 2 (mod 5) is (m+2)n
5 +

1
10 (m+2).

This is slightly larger than our lower bound. We need to show that Cn□Pm can in fact be dominated
by the number of vertices given by our lower bound. We can easily modify our computer programs
to provide almost-dominating sets of the component subgraphs Gi with the minimum possible wasted
domination. We would then hope that these subgraphs can be pieced together in a way that dominates
the entire cylinder; we can attempt to do this for a particular value of n, say n = 32. To then extend
the upper bound to all values of n, we would need these sample graphs to exhibit a periodicity that
allows them to be extended to any n. With a little bit of trial and error, we succeeded.

We discovered that the sample interior graphs that fit together nicely are the ones with an even
number of rows. So to begin, we need to show that we can get dominating sets of cylinders with m
rows, for all values of m mod 10, using only such graphs. We can potentially get these for all even
m using two edge graphs of 11 rows, for m ≥ 28 (because the graphs with fewer than 6 rows are not
helpful). To get odd values of m ≥ 27, we use one edge graph of 11 rows and one of 10 rows. For
23 ≤ m ≤ 25, we use two edge graphs of 11, 12, or 13 rows as needed, and for m = 26 we use two
edge graphs with 10 rows and one interior graph with 6 rows. It then suffices to provide examples
for m = 33 . . . 42, since for m larger than this it will be clear that any number of additional interior
subgraphs with 10 rows can be added. For m = 27 . . . 32, it will be apparent that some graphs with
m between 33 and 42 can easily be modified (by removing one interior subgraph) to verify the upper
bounds for m between 27 and 32. There was one slight surprise: for m even, m ≥ 28, one of the two
edge graphs with 11 rows must have a single vertex added to form a dominating set.

In Figures 2 to 4 we show the interior graphs used to construct dominating sets. In each we show
a five column portion of the graph that can be repeated as necessary to get a cylinder with larger n.
We have omitted the edges in these graphs as the structure is apparent; the small dots are vertices, the
large dots are vertices in the dominating sets.

Figure 2. Interior Subgraph C32□P6

Figure 3. Interior Subgraph C32□P8

Figure 4. Interior Subgraph C32□P10

In Figures 5 to 8 we show the edge graphs used to construct dominating sets. Again, in each we
show a five column portion of the graph that can be repeated as necessary to get a cylinder with larger
n.
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Figure 5. Edge Subgraph C32□P10

Figure 6. Edge Subgraph C32□P11

Figure 7. Edge Subgraph C32□P12

Figure 8. Edge Subgraph C32□P13

Finally, we show some examples of cylinders put together from these pieces. In the case of even m,
as mentioned above, we need an extra vertex in the dominating set; this vertex is shown as a star. The
extra vertex is always in the bottom row of the top edge graph. Note also that to make the subgraphs
fit together properly, so that we get a dominating set for the whole cylinder, some of the subgraphs
must be rotated so that they line up properly at the boundaries, which are shown with dashed lines.
(We produced in all twenty of these graphs, covering 23 ≤ m ≤ 42.)

Figure 9. Partitioned Cylinder C32□P25, |S | = 174
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Figure 10. Partitioned Cylinder C32□P26, |S | = 181

Figure 11. Partitioned Cylinder C32□P33, |S | = 226

Figure 12. Partitioned Cylinder C32□P34, |S | = 233
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Figure 13. Partitioned Cylinder C32□P27, |S | = 252

Figure 14. Partitioned Cylinder C32□P38, |S | = 259

To produce a dominated cylinder of arbitrary size, we first determine which of the individual
subgraphs we will need, namely, two edge subgraphs, some number of interior subgraphs with 10
rows, and one or two additional graphs with 6 or 8 rows. Then using the repeatable sections in the
graphs of Figures 2 to 8, we expand each of these graphs to the desired number of columns, and
finally we rotate the graphs as necessary so that they fit together properly.

We can now write down an upper bound for each m and n. For example, for m ≡ 7 (mod 10)
and m ≥ 27, we use edge graphs with 11 and 10 rows, an interior graph with 6 rows, and as many
additional interior subgraphs of 10 rows as needed. Let m = 10i + 7 and n = 5k + 2. The number of
vertices contributed by the edge graph with 11 rows is 77 + n−32

5 12 = 12k + 5, since the repeatable
section, from Figure 6, contributes 12 vertices to the dominating set. Similarly, the edge graph with 10
vertices contributes 71+ n−32

5 11 = 11k+5, an interior graph with 10 rows contributes 65+ (k−6)10 =
10k + 5, and an interior graph with 6 rows contributes 39 + (k − 6)6 = 6k + 3. Then the total number
of vertices in a dominating set is

(12k + 5)+(11k + 5) + (6k + 3) + (10k + 5)
m − 27

10
= (12k + 5) + (11k + 5) + (6k + 3) + (10k + 5)(i − 2) = 10ik + 5i + 9k + 3,
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which matches the corresponding lower bound in equation 3. We repeat this process for all other j in
0, . . . , 9, with m = 10i + j, and in each case we find that the results match the values in equation 3.
We also do 23 ≤ m ≤ 26 as special cases, with no surprises.

5. Summary

For m ≥ 2 and n ≥ 3, the domination number of Cn□Pm is now known when n ≡ 0 (mod 5) (as a
result of P. Pavlič and J. Žerovnik [1] and José Juan Carreño et al. [2]) and n ≡ 2 (mod 5). For the
latter, when m ≥ 16 or m ≥ n, the domination number is

4n+2
10 m + 4n−13

5

2

 ,
as shown here. For m < 16 and n > m, the domination numbers are given by the formulas found in
Crevals [6].

Unfortunately, the technique used here seems unlikely to settle the remaining cases, when n is 1,
3, or 4 (mod 5). The lower bounds we get are below the upper bounds of [1] by a small multiple
of m. When we look at a few sample subgraphs generated by our algorithm, they do not fit together
nicely at the boundaries (that is, some vertices are left undominated), and so do not give upper bounds
matching our lower bounds. Indeed, it seems quite remarkable that for n ≡ 2 (mod 5) the subgraphs
can be combined to dominate the entire graph.

It is possible that our technique might work using somewhat larger subgraphs, though the algorithm
we used would have to be improved or replaced with a substantially faster one. Computing the
minimum wasted domination for fewer than 13 rows was reasonably fast on an Intel Core i7, although
for 12 rows it did take a week or two. The 13 row graphs took considerably longer. We split the
problem into 10 pieces by hand and ran each on a separate Intel Core i5 computer that was otherwise
idle. The division wasn’t perfect, so some finished earlier than others; the whole process took over
three months. The programs were written in C++ and compiled with the Gnu gcc compiler with
optimization.
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