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Abstract: A graph G is said to arrow the graphs F and H, written G → (F, H), if every red-
blue coloring of G results in a red F or a blue H. The primary question has been determining
graphs G for which G → (F, H). If we consider the version for which F = H, then we can ask
a different question: Given a graph G, can we determine all graphs F such that G → (F, F ),
or simply G → F? We call this set of graphs the down-arrow Ramsey set of G, or ↓ G. The
down-arrow Ramsey set of cycles, paths, and small complete graphs are determined. Graph
ideals and graph intersections are introduced and a method for computing down-arrow Ramsey
sets is described.
Keywords: Graph, Ramsey set

1. Introduction

In this paper we are only concerned with simple undirected graphs with finite number of
vertices. We follow [1] for all notation not described here. As usual, the complete graph on
n vertices is denoted Kn, and the complete bipartite graph whose partite sets have order s
and t is denoted Ks,t. We use the notation K2,t + uv to mean the graph obtained from K2,t

by adding an edge between the vertices in the partite set of order 2. For two graphs G and
H, the union of G and H, denoted G ∪ H, is the graph with V (G ∪ H) = V (G) ∪ V (H) and
E(G ∪ H) = E(G) ∪ E(H). For some k ≥ 2, the union of k copies of a graph G is denoted kG.
The join of two graphs G and H, written G ∨ H, is the graph obtained from G ∪ H by adding
all edges between vertices of G and vertices of H.

We are mostly concerned with colorings of the edges of a graph using two colors. We follow
the convention that the two colors used are red and blue and refer to such colorings as red-blue
colorings of G. Given a red-blue coloring C of G, the graphs induced by the red and blue edges
are denoted Gr and Gb, respectively.

A graph G is said to arrow the graphs F and H, denoted G → (F, H) if every red-blue
coloring of G has the property that either F is isomorphic to a subgraph of Gr or H is isomorphic
to a subgraph of Gb. The Ramsey number of F and H, denoted R(F, H), is the smallest positive
integer n for which Kn → (F, H). The existence of such a number is guaranteed by the classical
result of Frank Ramsey [2]. The Ramsey number just described is referred to as a Classical

http://dx.doi.org/10.61091/jcmcc121-01
http://www.combinatorialpress.com/jcmcc


Alexis Byers and Drake Olejniczak 4
Ramsey Number and has been extensively studied. As well, a number of variations of the topic
have been introduced (see [3] for a dynamic survey of Ramsey theory by Radzisowski).

Of particular interest in Ramsey theory are the diagonal Ramsey numbers, that is, Ramsey
numbers of the form R(F, F ) for a graph F . It is well known that R(K3, K3) = 6, and
Greenwood and Gleason proved R(K4, K4) = 18 in 1955 [4]. The Ramsey number R(K5, K5)
is, at the date of this writing, still unknown. However, it is known that 43 ≤ R(K5, K5) ≤ 48
(see [5] and [6] for the lower and upper bounds respectively). While we offer no new bounds on
this Ramsey number, we introduce a concept in order to approach diagonal Ramsey numbers
from a new perspective.

Here, rather than find the smallest integer n for which Kn → (H, H), we instead fix a graph
G and find all graphs H for which G → (H, H), or simply G → H. For example, it is known
that R(C4, C4) = 6 [7]. It follows that every red-blue coloring of K7 contains a monochromatic
C4. As well, R(K3, K3) = 6. So, every red-blue coloring of K7 contains a monochromatic K3.
Of course, all subgraphs of K3 and C4 must also appear in either the red or blue subgraph in
any coloring of K7. We ask the question: Is this a complete list? What graphs, that do not
fit into common families of graphs covered by the Radzisowski survey, are missing when we
consider every red-blue coloring of K7? We approach this problem through the lens of order
theory by first considering the partially ordered set (poset) of graphs which are subgraphs of
some graph G. This generalizes the work of Steinbach [8] who determined the poset of graphs
for Kn when n ≤ 8. See also [9] for this poset when n = 9.

We determine the down-arrow Ramsey set for several classes of graphs G, in particular,
when G is a cycle or a path of any order and when G is a complete graph of order n ≤ 7. As
a consequence of our results for complete graphs, we have determined all graphs with Ramsey
number at most n for all n ≤ 7.

2. The Down-Arrow Ramsey Set of a Graph

For a fixed graph G, we define the down-arrow Ramsey set of G, denoted ↓ G, as the set of
graphs H for which G → H. that is,

↓ G = {H ⊆ G : G → H}.

From this definition, the connection to traditional Ramsey theory is immediate.

Observation 1. Let G be a graph without isolated vertices. Then, R(G, G) = n if and only if
n is the smallest positive integer for which G ∈ ↓ Kn.

Additionally, some properties of inclusion follow from the definition of the down-arrow Ramsey
set.

Observation 2. If H ⊆ G, then ↓ H ⊆ ↓ G.

Observation 3. If H ∈ ↓ G, then F ∈ ↓ G for all F ⊆ H.

Observation 3 offers a method for describing the down-arrow Ramsey set. that is, we identify
the maximal elements of ↓ G so that all elements of the set are guaranteed to be subgraphs of
one of the maximal elements. Hence, we borrow language from order theory in order to formalize
this idea. Given a graph G, let ⟨G⟩ be the set of all isomorphism classes of graphs which are
subgraphs of G. This set forms a partially ordered set under the relation “is isomorphic to a
subgraph of”, which we denote “⊆”. Now, if G is a graph of order n, then G ⊆ Kn, and hence
⟨G⟩ ⊆ ⟨Kn⟩. Noting Observation 3, we see that ⟨G⟩ is downwardly closed. Further, any two
graphs F and H in ⟨G⟩ have a common supergraph in ⟨G⟩, namely G. This establishes the
following observation.
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Observation 4. The partially ordered set ⟨G⟩ is an order ideal of the partially ordered set
⟨Kn⟩.

Being the smallest poset that contains G, ⟨G⟩ is called the principle ideal generated G, which
we refer to as a graph ideal. So, we can describe ↓ G as a union of graph ideals. However, the
use of order theory here is not superficial. Our main method for determining the down-arrow
Ramsey set relies on viewing red-blue colorings of a graph as unions of graph ideals.

Observation 5. If C is a red-blue coloring of a graph G, with red subgraph GR and blue subgraph
GB, then ↓ G ⊆ ⟨GR⟩ ∪ ⟨GB⟩.

In determining ↓ G, it is necessary to consider multiple red-blue colorings of a graph G. The
following observation comes from applying Observation 5 to more than one red-blue coloring
of G. Notice here that we can think of a coloring C as the union of ideals generated by its red
and blue subgraphs, i.e. C = ⟨Gr⟩ ∪ ⟨Gb⟩.

Observation 6. Suppose C1, C2, . . . Ck are k red-blue colorings of the graph G, in which each Ci

decomposes G into GRi
and GBi

. Then

↓ G ⊆
k⋂

i=1
Ci =

k⋂
i=1

(⟨Gri
⟩ ∪ ⟨Gbi

⟩)

In fact, even more can be said. If we take as our collection of colorings the set of all red-blue
colorings of G, then this intersection is exactly ↓ G. Indeed, if a graph H is not in ↓ G, then
there must be some coloring C for which H < ⟨Gr⟩ and H < ⟨Gb⟩. This establishes the following
proposition.

Proposition 1. Given a nonempty graph G on n ≥ 2 vertices, there exists a finite set set of
colorings {Ci}k

i=1 of G for which

↓ G =
k⋂

i=1
Ci =

k⋂
i=1

(⟨Gri
⟩ ∪ ⟨Gbi

⟩) .

Proposition 1 reveals that we need only develop an efficient method for reducing intersections
of graph ideals as unions of graph ideals. However, the set of all red-blue colorings can be quite
large, even for small order graphs, and so it would be computationally difficult to consider all
of them. Instead, for a given graph G we seek to determine a small number of colorings of
G for which an application of Proposition 1 reveals exactly ↓ G. However, this implies that
we must first find the maximal elements of ↓ G through traditional means. The main use for
Proposition 1 is then to show that we have actually identified the maximal elements, that is,
that there are no other elements in ↓ G.

With these considerations, it was necessary to develop a rigorous method for determining
graph ideal intersections by hand. Some ideal intersections are obvious, while others require
more work. Most intersections used in this paper can be approached by drawing Hasse diagrams,
an example of which is shown below. In more general situations, such as ↓ Cn, explanations
are given for the non-trivial intersections used and are presented as lemmas. The following
observation is useful for simplifying graph ideal intersections.

Proposition 2. Let G and H be graphs with H ⊆ G. Then ⟨H⟩ ∩ ⟨G⟩ = ⟨H⟩

Next, we see an example of how Hasse diagrams may be used to compute intersections of
specific graphs. This is a convenient point to mention that in the determination of graph ideal
intersections we do not write the isolated vertices in any ideal intersection. Since all red-blue
colorings are of a particular graph, in the next example K6, it may be assumed that all graphs
have the same number of vertices as the host graph.
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Example 1. We determine the graph ideal intersections below.

1. ⟨K2,4 + uv⟩ ∩ ⟨K5⟩ = ⟨K2,3 + uv⟩
2. ⟨K3,3⟩ ∩ ⟨K2,3 + uv⟩ = ⟨K2,3⟩
3. ⟨K3,3⟩ ∩ ⟨K4⟩ = ⟨K1,3⟩ ∪ ⟨K2,2⟩
4. ⟨K3 ∪ K3⟩ ∩ ⟨K2,3 + uv⟩ = ⟨K3⟩ ∪ ⟨2K2⟩
5. ⟨K3 ∪ K3⟩ ∩ ⟨K4⟩ = ⟨K3⟩ ∪ ⟨2K2⟩
6. ⟨K2,3⟩ ∩ ⟨f5⟩ = ⟨K2,3 − e⟩

Here, f5 is the fan graph on 6 vertices obtained by joining a vertex to a P5. Equivalently,
f5 � P5 ∨ K1.

In each of the following diagrams, let double arrows represent vertex-deleted subgraphs,
single arrows represent edge-deleted subgraphs, and dashed lines indicate a graph in the Hasse
diagram where a subgraph of the arrow’s tail appears.

Figure 1. Diagrams Demonstrating (1) − (6)

As depicted in the diagram (a), we can determine intersection (1) by first writing K2,4 + uv.
Since K5 has only 5 vertices while K2,4 + uv has 6, we are able to consider vertex-deleted
subgraphs of K2,4 + uv and be sure that no intermediate graphs will be subgraphs of K5. Up
to isomorphism, there are only two options for these vertex-deleted subgraphs. Both resulting
subgraphs are subgraphs of K5. Since K1,4 is also a subgraph of K2,3 + uv, it is clear that this
intersection is generated by K2,3 + uv. In diagrams (b) and (c) and (d), we follow a similar
process. Diagrams (b) and (c) show that we can determine multiple intersections with the
same diagram. Care must be taken in diagram (c) since we use both vertex- and edge-deleted
subgraphs. Generally, we consider vertex-deleted subgraphs until the order of the subgraphs
match the order of the graph with which we are intersecting. We then consider edge-deleted
subgraphs.
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3. The Down-Arrow Ramsey Sets of Paths and Cycles

In this section, we determine the down-arrow Ramsey sets of cycles and paths. First we
consider cycles of even order.

Theorem 7. The down-arrow Ramsey set ↓ Cn = ⟨⌈n
4 ⌉K2⟩ for all even n ≥ 4.

Proof. First, consider the red-blue coloring of Cn for which the red and blue subgraphs are
both Pn

2 +1. Thus, if G ∈ ↓ Cn, then G ⊆ Pn
2 +1. Additionally, consider the red-blue coloring of

the edges of Cn such that both the red and blue subgraphs are n
2 disjoint copies of K2. This

implies that if G ∈↓ Cn, then G ⊆ (n
2 )K2. Therefore, if G ∈↓ Cn, then these two requirements

imply that in fact G ⊆ ⌈n
4 ⌉K2.

Now, we show that ⌈n
4 ⌉K2 ∈ ↓ Cn. Let there be any red-blue coloring of Cn. Then, there

must be at least n
2 edges of the same color. Say there are k ≥ n

2 blue edges. Then at least ⌈k
2⌉

of these edges are independent, which implies that there are at least ⌈k
2⌉ ≥ ⌈n

4 ⌉ independent
blue edges. Therefore, we have a monochromatic ⌈n

4 ⌉K2. □

Next, we determine ↓ Cn for odd n, which proves more difficult than even n. We consider
the case when n = 3 separately.

Proposition 3. The down-arrow Ramsey set ↓ C3 = ⟨P3⟩.

Proof. Suppose there is a red-blue coloring of C3 whose color classes are Gr and Gb. Since C3
has 3 edges, it follows that some color class has at least two edges. Without loss of generality,
assume that Gr has two edges. Then we have two adjacent red edges, hence a red P3. This
shows ⟨P3⟩ ⊆ ↓ C3. For the reverse inclusion, let G ∈ ↓ K3. The red-blue coloring of C3 with
P3 as the red subgraph and K2 as the blue subgraph shows that either G ⊆ P3 or G ⊆ K2.
Hence, G ⊆ ⟨P3⟩. □

Now, we show that P3 ∪ ⌊n−3
4 ⌋K2 and ⌈n

4 ⌉K2 are in the down-arrow Ramsey set of all odd
cycles of order n ≥ 5.

Lemma 1. For all odd n ≥ 5, ⟨P3 ∪ ⌊n−3
4 ⌋K2⟩ ∪ ⟨⌈n

4 ⌉K2⟩ ⊆ ↓ Cn.

Proof. It follows from a similar argument from above that ⟨⌈n
4 ⌉K2⟩ ∈ ↓ Cn for odd n as well.

To show that P3 ∪ ⌊n−3
4 ⌋K2 must be in ↓ Cn, we consider two cases, depending on the order

of Cn modulo 4.
Case 1: Suppose n = 4k + 1, for k ≥ 1. Note that ⌊n−3

4 ⌋ = k − 1 in this case, so we are
aiming to show that P3 ∪ (k − 1)K2 ∈ ↓ Cn. Let there be a red-blue coloring of Cn. We know
that there are at least ⌈n

2 ⌉ = 2k + 1 edges of one color. Without loss of generality, say there
are at least 2k + 1 blue edges. Of these blue edges, at least k + 1 of them are independent. Let
S = {e1, e2, . . . ek, ek+1} be a set of k + 1 independent blue edges.

Since the independence number of Cn is ⌊n
2 ⌋ = 2k, then we know there are at most 2k

independent blue edges. Hence, there are at least two blue edges that are adjacent to each
other. Label these edges as a and b, and label the other edges adjacent to a and b to be c
and d respectively. Notice that at most two of the four edges a, b, c, d are in the set S of
independent blue edges. Thus, if k > 1, then there are still at least k − 1 independent blue
edges that are not a, b, c, or d. Therefore these independent edges together with a and b form
a blue P3 ∪ (k − 1)K2. If k = 1, then we have formed a blue P3 with edges a and b, which
follows the statement of the lemma.

Case 2: Suppose n = 4k + 3, for k ≥ 1. Here we have ⌊n−3
4 ⌋ = k in this case, so we need

to show that P3 ∪ kK2 ∈ ↓ Cn. Let there be a red-blue coloring of Cn. We must have at least
⌈n

2 ⌉ = 2k + 2 edges of one color, say blue. Of these blue edges, we have that at least k + 1 of
them are independent and at most ⌊n

2 ⌋ = 2k + 1 of them are independent.
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Notice that if there are at least k + 2 independent blue edges, then we could use the same

argument in the previous case to show that there must be a blue P3 ∪ kK2. Assume that there
are exactly k + 1 independent blue edges, and let S = {e1, e2, . . . , ek, ek+1} be the set of all
independent blue edges. Since there are at least 2k + 2 blue edges, this means that there are
at least k + 1 blue edges that are adjacent to one or more blue edges in S. It follows that there
must be at least one blue edge that is adjacent to exactly one edge in S. Call this edge f , and
suppose it is adjacent to ej, 1 ≤ j ≤ k + 1. Thus, the set of edges S − ej forms a blue kK2 and
f and ej together form a blue P3. Therefore, we have a blue P3 ∪ kK2. □

Using three red-blue colorings of an odd cycle and intersections of the ideals generated by
their red and blue subgraphs, we show that any graph in the down-arrow Ramsey set of an
odd cycle Cn must be a subgraph of P3 ∪ ⌊n−3

4 ⌋K2 or ⌈n
4 ⌉K2 to finish the following theorem. In

order to justify the graph ideal intersection used in the proof of the theorem, we present the
following two lemmas.

Lemma 2. Let n ≥ 5 be an odd positive integer, then

⟨
(

n−3
2

)
K2 ∪ P3⟩ ∩ ⟨Pn−1

2
∪ P3⟩ = ⟨⌊n−1

4 ⌋K2 ∪ P3⟩.

Proof. Let G1 =
(

n−3
2

)
K2 ∪ P3 and G2 = Pn−1

2
∪ P3. It is clear that the reverse inclusion holds.

For the forward inclusion, let H ∈ ⟨G1⟩ ∩ ⟨G2⟩ and notice that the edge independence number
of G2 is ⌊n−1

4 ⌋ + 1 = ⌊n+3
4 ⌋. Hence, the edge independence number of H is at most ⌊n+3

4 ⌋.
Since H is also a subgraph of G1 it follows that H is a subgraph of ⌊n+3

4 ⌋K2 or a subgraph of
⌊n−1

4 ⌋K2 ∪ P3. Since ⌊n+3
4 ⌋K2 is a subgraph of the latter graph, the result holds. □

Lemma 3. Let n ≥ 5 be an odd positive integer, then

⟨Pn+3
2

⟩ ∩ ⟨⌊n−1
4 ⌋K2 ∪ P3⟩ = ⟨⌊n+3

4 ⌋K2⟩ ∪ ⟨⌊n−3
4 ⌋K2 ∪ P3⟩.

Proof. Let G1 = Pn+3
2

and G2 = ⌊n−1
4 ⌋K2 ∪ P3. It is clear that the reverse inclusion holds. For

the forward inclusion, we consider two cases depending on whether n ≡ 1 (mod 4) or n ≡ 3
(mod 4).

Case 1: Suppose n = 4k + 1, for k ≥ 1. In this case G1 = P2k+2 and G2 = kK2 ∪ P3. Notice
that deleting any edge of G2 yields either (k + 1)K2 or (k − 1)K2 ∪ P3 and that each of these
is a subgraph of P2k+2, while G2 itself is not. Finally, notice that k − 1 = n−5

4 = ⌊n−3
4 ⌋ and

k + 1 = ⌊n+3
4 ⌋ when n = 4k + 1.

Case 2: Suppose n = 4k + 3, for k ≥ 1. In this case G1 = P2k+3 and G2 = kK2 ∪ P3. Hence,
G2 ⊆ G1 and so ⟨G2⟩ ∩ ⟨G1⟩ = ⟨G2⟩. However, ⌊n+3

4 ⌋K2 = (k + 1)K2 and ⌊n−3
4 ⌋K2 ∪ P3 =

kK2 ∪ P3. Since (k + 1)K2 ⊆ kK2 ∪ P3 = G2, the result holds here as well. □

Theorem 8. The down-arrow Ramsey set ↓ Cn = ⟨P3 ∪ ⌊n−3
4 ⌋K2⟩ ∪ ⟨⌈n

4 ⌉K2⟩ for all odd n ≥ 5.

Proof. Due to Lemma 1, it suffices to show that ↓ Cn ⊆ ⟨P3 ∪ ⌊n−3
4 ⌋K2⟩ ∪ ⟨⌈n

4 ⌉K2⟩.
Consider the following three red-blue colorings of Cn:

• C1: Gr1 � Pn+1
2

, Gb1 � Pn+3
2

• C2: Gr2 �
(

n−1
2

)
K2, Gb2 �

(
n−3

2

)
K2 ∪ P3

• C3: Gr3 � Pn−3
2

∪ P3, Gb3 � Pn−1
2

∪ P3

Notice first that Gr1 ⊆ Gb1 , Gr2 ⊆ Gb2 , and Gr3 ⊆ Gb3 . Hence, for odd n,

↓ Cn ⊆ C1 ∩ C2 ∩ C3 = ⟨Gb1⟩ ∩ ⟨Gb2⟩ ∩ ⟨Gb3⟩

=
〈
Pn+3

2

〉
∩

(〈(
n − 3

2

)
K2 ∪ P3

〉
∩

〈
Pn−1

2
∪ P3

〉)
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=
〈
Pn+3

2

〉
∩

〈⌊
n − 1

4

⌋
K2 ∪ P3

〉
=

〈⌊
n + 3

4

⌋
K2

〉
∪

〈⌊
n − 3

4

⌋
K2 ∪ P3

〉

Finally, notice that when n is odd,
⌊

n+3
4

⌋
=

⌈
n
4

⌉
. □

By using a similar argument as was used for cycles, we can see that there must be a monochro-
matic ⌈n−1

4 ⌉K2 in every red-blue coloring of Pn. This tells us that ⟨⌈n−1
4 ⌉K2⟩ ⊆ ↓ Pn. In fact,

we can also show that anything in the down-arrow Ramsey set of Pn must be in ⟨⌈n−1
4 ⌉K2⟩,

giving us the following result.

Proposition 4. The down-arrow Ramsey set ↓ Pn = ⟨⌈n−1
4 ⌉K2⟩ for all n ≥ 3.

Proof. We can see that ⟨⌈n−1
4 ⌉K2⟩ ⊆ ↓ Pn. Now, let G be a graph in the down-arrow Ramsey

set of Pn. We will use two red-blue colorings of Pn to show G ⊆ ⌈n−1
4 ⌉K2.

For ease of notation, let k = ⌊n−1
2 ⌋ and k′ = ⌈n−1

2 ⌉. Consider the red-blue coloring of the
edges of Pn for which the red subgraph is Pk′+1 and the blue subgraph is Pk+1. This implies
that G ⊆ Pk+1. Additionally, consider the red-blue coloring of the edges of Pn for which the
red subgraph is (k′)K2 and the blue subgraph is kK2. This coloring suggests that we also have
G ⊆ kK2. Hence,

G ⊆ ⟨Pk+1⟩ ∩ ⟨kK2⟩ = ⟨⌈k
2⌉K2⟩ = ⟨⌈n−1

4 ⌉K2⟩.

Therefore we have ↓ Pn = ⟨⌈n−1
4 ⌉K2⟩. □

4. The Down-Arrow Ramsey Sets of Complete Graphs

In this section, we investigate the down-arrow Ramsey sets of complete graphs up to order 8.
This section has the most connection to traditional Ramsey theory. Recall that in calculating
the down-arrow Ramsey set of Kn, we are able to describe all graphs G for which R(G, G) ≤ n
for n ≤ 8.

Since there are no nonempty proper subgraphs of K2, we observe the following:

Observation 9. The down-arrow Ramsey set ↓ K2 = ⟨K2⟩.

Since C3 = K3, we already know that the down-arrow Ramsey set ↓ K3 = ⟨P3⟩ from Lemma
3. Next, we consider the complete graph on four vertices.

Proposition 5. The down-arrow Ramsey set ↓ K4 = ⟨P3⟩.

Proof. By Proposition 3 it follows that ⟨P3⟩ ⊆ ↓ K4. To see the reverse inclusion, consider the
following two red-blue colorings of the edges of K4.

1. Gr1 � Gb1 � P4
2. Gr2 � K3, Gb2 � K1,3

So,

↓ K4 ⊆ (⟨K3⟩ ∪ ⟨K1,3⟩) ∩ ⟨P4⟩
= (⟨K3⟩ ∩ ⟨P4⟩) ∪ (⟨K1,3⟩ ∩ ⟨⟨P4⟩)
= ⟨P3⟩ ∪ ⟨P3⟩
= ⟨P3⟩

Thus, ↓ K4 = ⟨P3⟩, as desired. □
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Proposition 6. The down-arrow Ramsey set ↓ K5 = ⟨P4⟩.

Proof. We first show that P4 ∈ ↓ K5. Assume to the contrary that there is a red-blue coloring
of K5 that avoids a monochromatic P4. Label the vertices of K5 by v1, v2, v3, v4, and v5. By
Proposition 5, we are guaranteed a monochromatic P3. So, we may assume that v1v2 and v2v3
are red edges. If any of the edges v1v4,v1v5, v3v5, or v4v5 are red, then we have a red P4.
Hence, each of these edges is blue. However, then (v4, v1, v5, v3) is a blue P4. So, we have that
P4 ∈ ↓ K5 and hence ⟨P4⟩ ⊆ ↓ K5.

To see the reverse inclusion, consider the following red-blue colorings of the edges of K5:

1. Gr1 � Gb1 � C5
2. Gr2 � K4, Gb2 � K1,4

So,

↓ K5 ⊆ ⟨C5⟩ ∩ (⟨K4⟩ ∪ ⟨K1,4⟩) = (⟨C5⟩ ∩ ⟨K4⟩) ∪ (⟨C5⟩ ∩ ⟨K1,4⟩)
= ⟨P4⟩ ∪ ⟨P3⟩
= ⟨P4⟩

Thus, ↓ K5 = ⟨P4⟩, as desired. □

The determination of the down-arrow Ramsey sets for Kn thus far have been fairly straight-
forward. However, the determination of the next two down-arrow Ramsey sets, ↓ K6 and ↓ K7,
are more involved.

Lemma 4. K2,3 − e ∈ ↓ K6 and K3 ∈ ↓ K6. In other words, ⟨K2,3 − e⟩ ∪ ⟨K3⟩ ⊆ ↓ K6.

Proof. Clearly, K3 ∈ ↓ K6 since the Ramsey number R(K3, K3) = 6. To see that K2,3−e ∈ ↓ K6,
first note that C4 ∈ ↓ K6 since R(C4, C4) = 6 [7].

Now, suppose that there is a red-blue coloring C of K6 that avoids a monochromatic H =
K2,3 − e. We know that there must be a monochromatic C4, so let (v1, v2, v3, v4, v1) be a
red C4. All edges between {v1, v2, v3, v4} and {v5, v6} must be blue, else there would be a
red H. However, now the blue subgraph is isomorphic to K2,4, which contains H. Thus,
H = K2,3 − e ∈ ↓ K6. □

Theorem 10. The down-arrow Ramsey set of ↓ K6 = ⟨K2,3 − e⟩ ∪ ⟨K3⟩.

Proof. Due to Lemma 4, we need only show that ↓ K6 ⊆ ⟨K2,3 − e⟩ ∪ ⟨K3⟩. So, consider the
following four red-blue colorings of the edges of K6:

C1: Gr1 � K2,4 + uv, Gb1 � K4
C2: Gr2 � K1,5, Gb2 � K5
C3: Gr3 � K3,3, Gb3 � K3 ∪ K3
C4: See Figure 2
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Figure 2. The Red and Blue Subgraphs that Arise from C4

We will show that the intersection of these four colorings is ⟨K2,3 − e⟩ ∪ ⟨K3⟩. First, using
Example 1, we take the intersection of C1 and C2 to obtain the following.

(⟨K2,4 + uv⟩ ∪ ⟨K4⟩) ∩ (⟨K1,5⟩ ∪ ⟨K5⟩) = ⟨K2,3 + uv⟩ ∪ ⟨K1,5⟩ ∪ ⟨K4⟩ (1)

Next, we take the intersection of (1) and C3 and use Observation 2 to reduce.

(⟨K2,3 + uv⟩ ∪ ⟨K1,5⟩ ∪ ⟨K4⟩) ∩ (⟨K3,3⟩ ∪ ⟨K3 ∪ K3⟩) = ⟨K2,3⟩ ∪ ⟨K3⟩ (2)

Finally, we find the intersection of (2) and C4 using Example 1 and Observation 2. Notice here
that f5 � Gr4 and that Gb4 ⊆ Gr4 .

(⟨K2,3⟩ ∪ ⟨K3⟩) ∩ (⟨Gr4⟩ ∪ ⟨Gb4⟩) = (⟨K2,3⟩ ∪ ⟨K3⟩) ∩ ⟨Gr4⟩
= ⟨K2,3 − e⟩ ∪ ⟨K3⟩

Hence, ↓ K6 ⊆ ⟨K2,3 − e⟩ ∪ ⟨K3⟩ □

Next, we will show that the ideals generated by the three graphs in Figure 3 make up the
down-arrow Ramsey set of K7.

Figure 3. Graphs that Generate ↓ K7

For ease of notation, we label the vertices of K7 from the set {v1, v2, v3, v4, v5, v6, v7} for each
of the following lemmas. Additionally, we will use solid line segments to represent red edges
and dashed line segments to represent blue edges in the figures that follow.

Lemma 5. Let G1 be the graph obtained by adding two pendent edges to the same vertex of a
four-cycle as in Figure 3. Then G1 ∈ ↓ K7.
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Proof. Assume to the contrary that there exists a red-blue coloring C of K7 that avoids a
monochromatic G1. Since it is impossible to have a 3-regular graph of order 7, we know there
must be a monochromatic K1,4. Say there is a red subgraph isomorphic to K1,4 in the coloring
C. Let the vertices of this subgraph be labeled v1, v2, v3, v6, v7 as shown in Figure 4. Consider
another vertex, v5. Notice that v5 can be adjacent to at most one of the vertices v2, v3, v6, v7
with a red edge, else a red G1 will be formed. Thus, v5 must be connected to at least three of
v2, v3, v6, v7 with blue edges. Without loss of generality, assume edges v5v2, v5v6, v5v7 are blue.
By the same argument, we know that v4 must also be adjacent to at least three of v2, v3, v6, v7
with blue edges as well. We consider two cases.

Case 1. The edges v4v2, v4v6, v4v7 are blue. There is a blue C4 formed, (v4, v6, v5, v7, v4).
Since the edges v2v4 and v2v5 are also blue, then the following edges must be red to avoid a
blue G1: v1v5, v3v5, v1v4, v1v5. However, this produces a red G1.

Figure 4. Forced Red-Blue Colorings in Case 1 of Lemma 5

Case 2: The edges v4v2, v4v3, v4v6 are blue. Again, we have formed a blue C4,
(v2, v4, v6, v5, v2). Since the edges v5v7 and v3v4 are also blue, then the following edges need to
be red: v1v4, v4v7, v1v5, v3v5.

Figure 5. Forced Red-Blue Colorings in Case 2 of Lemma 5

Notice that if either are red, then the edges v4v5 and v3v7 would form a red G1. Thus, they
must both be blue. However, if they are both blue, then there will be a blue G1.

Thus, no red-blue coloring of the edges of K7 that avoids a monochromatic G1 exists. □

Lemma 6. Let G2 be a triangle with a pendent edge as in Figure 3. Then G2 ∈ ↓ K7.

Proof. Assume to the contrary that there exists a red-blue coloring C of the edges of K7 that
avoids a monochromatic G2. Since the Ramsey number R(K3, K3) = 6, we know that there
must be a monochromatic triangle in C. Assume without loss of generality that there is a red
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triangle, with vertices v1, v2, and v3. Since C avoids a red G2, then all edges between {v1, v2, v3}
and {v4, v5, v6, v7} must be blue. Furthermore, all edges between the vertices in {v4, v5, v6, v7}
will be red, else there will be a blue G2. However, this then forms a red K4, which clearly
has a red G2 as a subgraph. Hence, all red-blue colorings of the edges of K7 must have a
monochromatic G2. □

Lemma 7. K3 ∪ K2 ∈ ↓ K7.

Proof. Again, let’s assume that there exists a red-blue coloring C of the edges of K7 that avoids
a monochromatic K3 ∪ K2. Since there must be a monochromatic triangle, let’s assume that
it is red and it has vertices labeled v1, v2, and v3. This time, all edges between the vertices in
the set {v4, v5, v6, v7} must be blue to avoid a red K3 ∪ K2. This creates several blue triangles,
one of which is formed between v4, v5, and v6. Thus, the edges v1v7, v2v7, and v3v7 must be
red. Similarly, v5, v6, and v7 form a blue triangle, so the edges v1v4, v2v4, and v3v4 must also
be red. However, this forces a red K3 ∪ K2. □

Figure 6. Forced Red-Blue Colorings in the Proofs of Lemmas 6 and 7 respectively

The above lemmas show that ⟨G1⟩ ∪ ⟨G2⟩ ∪ ⟨K3 ∪ K2⟩ ⊆ ↓ K7. Refer to the graphs G3 and
G4 as depicted in Figure 7 in the following proof to show the reverse inclusion.

Figure 7. Two Graphs Used in the Proof of Theorem 11

Theorem 11. The down-arrow Ramsey set ↓ K7 = ⟨G1⟩ ∪ ⟨G2⟩ ∪ ⟨K3 ∪ K2⟩.

Proof. Consider the following five colorings of K7:

C1: Gr1 � K2,5 + uv, Gb1 � K5
C2: Gr2 � K1,6, Gb2 � K6
C3: Gr3 � K3 ∪ K4, Gb3 � K3,4
C4: See Figure 8.
C5: Gr5 � K3,3, Gb5 � K3,3
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Figure 8. The Red and Blue Subgraphs that Arise from C4

We now determine the intersection of these colorings by following Example 1 and Observation 2.
First, we compute the intersection of colorings C1 and C2.

C1 ∩ C2 = ⟨K1,6⟩ ∪ ⟨K5⟩ ∪ ⟨K2,4 + uv⟩ (1)

We now find the intersection of (1) and C3. The relevant intersections are computed below.
1. ⟨K2,4 + uv⟩ ∩ ⟨K3 ∪ K4⟩ = ⟨K4 − e⟩ ∪ ⟨K2 ∪ K1,3⟩
2. ⟨K2,4 + uv⟩ ∩ ⟨K3,4⟩ = ⟨G2⟩ ∪ ⟨K2,4⟩
3. ⟨K1,6⟩ ∩ ⟨K3 ∪ K4⟩ = ⟨K1,3⟩
4. ⟨K1,6⟩ ∩ ⟨K3,4⟩ = ⟨K1,4⟩
5. ⟨K5⟩ ∩ ⟨K3 ∪ K4⟩ = ⟨K4⟩ ∪ ⟨K3 ∪ K2⟩

Hence, we have the following intersection.

(⟨K1,6⟩ ∪ ⟨K5⟩ ∪ ⟨K2,4 + uv⟩) ∩ C3 = ⟨K4⟩ ∪ ⟨K3 ∪ K2⟩ ∪ ⟨G2⟩ ∪ ⟨K2,4⟩ (2)

Now we take (2) and intersect with C4 after noting the following intersections.
1. (⟨K3 ∪ K2⟩ ∪ ⟨G2⟩) ∩ (⟨Gr4⟩ ∪ ⟨Gb4⟩) = ⟨K3 ∪ K2⟩ ∪ ⟨G2⟩
2. ⟨K4⟩ ∩ (⟨Gr4⟩ ∪ ⟨Gb4⟩) = ⟨C4⟩ ∪ ⟨G2⟩
3. ⟨K2,4⟩ ∩ (⟨Gr4⟩ ∪ ⟨Gb4⟩) = ⟨G1⟩ ∪ ⟨G3⟩

The intersection follows.

(⟨K4⟩ ∪ ⟨K3 ∪ K2⟩ ∪ ⟨G2⟩ ∪ ⟨K2,4⟩) ∩ C4 = ⟨G1⟩ ∪ ⟨G3⟩ ∪ ⟨K3 ∪ K2⟩ ∪ ⟨G2⟩ (3)

Finally, we take the intersection of (3) and C5.
1. ⟨K3,3⟩ ∩ ⟨G1⟩ = ⟨K2,3 − e⟩ ∪ ⟨2P3⟩
2. ⟨K3,3⟩ ∩ ⟨G3⟩ = ⟨K2,3 − e⟩ ∪ ⟨2P3⟩
3. ⟨K3,3⟩ ∩ ⟨K3 ∪ K2⟩ = ⟨P3 ∪ K2⟩
4. ⟨K3,3⟩ ∩ ⟨G2⟩ = ⟨K1,3⟩ ∪ ⟨P4⟩
5. ⟨Gb5⟩ ∩ ⟨G2⟩ = ⟨G2⟩
6. ⟨Gb5⟩ ∩ ⟨K3 ∪ K2⟩ = ⟨K3 ∪ K2⟩
7. ⟨Gb5⟩ ∩ ⟨G3⟩ = ⟨K2,3 − e⟩ ∪ ⟨G4⟩
8. ⟨Gb5⟩ ∩ ⟨G1⟩ = ⟨G1⟩

Thus, we have our final intersection.

(⟨G1⟩ ∪ ⟨G3⟩ ∪ ⟨K3 ∪ K2⟩ ∪ ⟨G2⟩) ∩ C5 = ⟨G1⟩ ∪ ⟨G2⟩ ∪ ⟨K3 ∪ K2⟩ (4)

Hence, ↓ K7 ⊆ (4), and we have ↓ K7 = ⟨G1⟩ ∪ ⟨G2⟩ ∪ ⟨K3 ∪ K2⟩. □
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5. Further Research

There are a number of directions that research in this topic can go. The most obvious is to
determine ↓ Kn for larger values of n. Other developments in this area may arise from one of
the following pursuits.

1. Develop new computational methods for computing intersections of ideals.
2. Consider multi-color Ramsey numbers.
3. Study minimal sets of colorings needed to determine a down-arrow Ramsey set.

Let’s consider this last suggestion in more detail. By Proposition 1, we know there exists
a finite set of colorings which, when combined properly through graph ideal intersections, give
the down-arrow Ramsey set for any graph G. However, it is not computationally feasible to
compute the graph ideal intersections for all colorings of a graph. Hence, further research will
be devoted to finding small sets of colorings that determine the down-arrow Ramsey set, that
is, collections of colorings that satisfy the conclusion of Proposition 1. To this end, we define
the following terminology. Let G be a nonempty graph of order n ≥ 2. A set of colorings
H satisfying the conclusion of Proposition 1 will be referred to as a Ramsey elimination set.
A Ramsey elimination set of minimum cardinality is called a minimum Ramsey elimination
set. The cardinality of a minimum Ramsey elimination for G is called the Ramsey elimination
number of G and is denoted Re(G).

From this definition, there are several problems one can investigate. We identify perhaps
the most fruitful here.

Problem 1. For a given graph G, find properties that a minimum Ramsey elimination set must
possess. Determine if a set of colorings is a Ramsey elimination set for G without knowing ↓ G
a priori.

A solution or partial solution to the previous problem will be useful in reducing the field
of possible sets of colorings. It may then be computationally feasible to determine the graph
ideal intersections. Some work has been done to attack this problem, in particular, we compute
Re(G) and give a minimum Ramsey elimination set for some of the complete graphs in this
paper.

Proposition 7. The Ramsey elimination number of K3 is 1.

Proof. We know that ↓ K3 = ⟨P3⟩. Take the set of colorings H = {(P3, K2)}, and observe that
⟨P3⟩ ∪ ⟨K2⟩ = ⟨P3⟩. Since Re(G) ≥ 1 for all non-empty graphs G, it follows that Re(K3) = 1,
and a minimum Ramsey elimination set is given by H = {(P3, K2)}. □

Proposition 8. The Ramsey elimination number of K4 is 2.

Proof. We know that ↓ K4 = ⟨P3⟩. In Proposition 5 it is verified that H =
{(K3, K1,3), (C4, 2K2)} is a Ramsey elimination set. It remains to be seen that this is a mini-
mum Ramsey elimination set. Suppose that there exists a graph H for which ↓ K4 = ⟨H⟩∪⟨H⟩,
then we would have that ⟨P3⟩ = ⟨H⟩ ∩ ⟨H⟩. However, since K4 has 6 edges, it must be that
|E(H)| + |E(H)| = 6. Hence, either |E(H)| ≥ 3 or |E(H)| ≥ 3. that is, there exists graphs in
⟨H⟩ ∪ ⟨H⟩ with 3 edges. However, P3 has only two edges, so this is impossible. □

The technique used in the last example can be generalized.

Proposition 9. Let G be a graph of order n and size m. If for each H ∈↓ G we have
|E(H)| < m

2 , then Re(G) ≥ 2.
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Proof. Suppose Re(G) = 1, then there exists H such that ↓ G = ⟨H⟩ ∪ ⟨H⟩. Since |E(H)| +
|E(H)| = m, it must be that either |E(H)| ≥ m

2 or E(H) ≥ m
2 . Hence, there is some graph in

↓ G with at least m
2 edges. □

Proposition 10. The Ramsey elimination number of K5 is 2.

Proof. We know that ↓ K5 = ⟨P4⟩. In Proposition 6 it is verified that H = {(C5, C5), (K4, K1,4)}
is a Ramsey elimination set. Furthermore, since P4 generates ↓ K5 and has only 3 edges, it
follows by Proposition 9 that Re(K5) = 2 and H is a minimum Ramsey elimination set. □

In addition to investigating the problems posed above in relation to Ramsey elimination sets,
further work can be done on finding specific down-arrow Ramsey sets that are not included
or finished in this paper. For example, we will continue to work on describing the down-
arrow Ramsey set for all complete bipartite graphs Ks,t for t ≥ 1 and s ≥ 3. Additionally,
determining the down-arrow Ramsey sets for larger complete graphs is an alluring topic due to
its connection to traditional Ramsey Theory. In this case, we believe that further research into
Ramsey elimination sets and intersections of graph ideals will prove crucial in this effort.
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7. Chvátal, V. and Harary, F., 1972. Generalized Ramsey theory for graphs, II. Small diagonal

numbers. Proceedings of the American Mathematical Society, 32 (2), pp.389-394.
8. Steinbach, P., 1999. Field guide to simple graphs (2nd corrected ed.). Design Lab.
9. Adams, P., Eggleton, R. and MacDougall, J., 2004. Structure of graph posets for orders 4

to 8. Congressus Numerantium, 166, pp.63-81.

© 2024 the Author(s), licensee Combinatorial Press.
This is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 121, 3–16

http://creativecommons.org/licenses/by/4.0

	Introduction
	The Down-Arrow Ramsey Set of a Graph
	The Down-Arrow Ramsey Sets of Paths and Cycles
	The Down-Arrow Ramsey Sets of Complete Graphs
	Further Research

