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Abstract: We consider finitely presented groups Gmn as follows:

Gmn = ⟨x, y|xm = yn = 1, [x, y]x = [x, y], [x, y]y = [x, y]⟩ m, n ≥ 2.

In this paper, we first study the groups Gmn. Then by using the properties of Gmm and t−Fibonacci
sequences in finitely generated groups, we show that the period of t−Fibonacci sequences in Gmm are
a multiple of K(t,m). In particular for t ≥ 3 and p = 2, we prove LEN t(Gpp) = 2K(t, p).
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1. Introduction

Fibonacci numbers and their generalizations have many applications in every field of science and
art; see for example, [1–3]. Fibonacci numbers Fn are defined by the recurrence relation F0 = 0, F1 =

1; Fn = Fn−2 + Fn−1, n ≥ 2. For any given integer t ≥ 2, the t−step Fibonacci sequence Fn(t) is
defined [4] by the following recurrence formula:

Fn(t) = Fn−1(t) + Fn−2(t) + · · · + Fn−t(t),

with initial conditions F0(t) = 0, F1(t) = 0, . . . , Ft−2(t) = 0 and Ft−1(t) = 1. For m ≥ 2, we consider
Fn(t,m) = Fn(t) (mod m). Following Wall [5] one may also prove that Fn(t,m) is periodic sequences.
We use K(t,m) to denote the minimal length of the period of the sequence Fn(t,m) and call it Wall
number of m with respect to t−step Fibonacci sequence. For example, for

{Fn(4)}n=∞n=0 = {0, 0, 0, 1, 1, 2, 4, 8, 15, 29, . . .},

by considering
{Fn(4) mod 2}n=∞n=0 = {0, 0, 0, 1, 1, 0, 0, 0, 1, 1, . . .},

we get K(4, 2) = 5.
The Fibonacci sequences in finite groups have been studied by many authors; see for example, [6–

11]. We now introduce a generalization of Fibonacci sequences in finite groups which first presented
in [4] by Knox.

Definition 1. Let j ≤ t. A t−Fibonacci sequence in a finite group is a sequence of group elements
x1, x2, . . . , xn, . . . for which, given an initial set {x1, x2, . . . , x j}, each element is defined by

xn =

{
x1x2 . . . xn−1, j < n ≤ t,
xn−t xn−t+1 . . . xn−1, n > t.
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Note that the initial elements x1, x2, . . . , x j, generate the group. The t−Fibonacci sequence of G
with seed in X = {x1, x2, . . . , x j} is denoted by Ft(G; X) and its period is denoted by LEN t(G; X)
(see [7, 12]). When it is clear which generating set is being investigated, we will write LEN t(G) for
LEN t(G; X).

Now, we consider

Gm = Gmm = ⟨x, y|xm = ym = 1, [x, y]x = [x, y], [x, y]y = [x, y]⟩ m ≥ 2.

For every t ≥ 3, to study the t−Fibonacci sequences of Gm, we define the sequence {gn(t)}∞0 of numbers
as follows:

g0(3) =g1(3) = g2(3) = g3(3) = 0, g4(3) = 1, g5(3) = 6;
gn(3) =gn−3(3) + gn−2(3) + gn−1(3) + (Fn−3(3))(Fn−1(3) − Fn−2(3))

+ (Fn−3(3) + Fn−2(3))(Fn(3) − Fn−1(3))
g0(t) =g1(t) = g2(t) = 0, g3(t) = g3(t − 1), . . . , gt+1(t) = gt+1(t − 1);
gn(t) =gn−t(t) + gn−t+1(t) + gn−t+2(t) + · · · + gn−1(t)

+ Fn−3(t)(Fn−1(t) − Fn−2(t))
+ (Fn−3(t) + Fn−2(t))(Fn(t) − Fn−1(t))
+ (Fn−3(t) + Fn−2(t) + Fn−1(t))(Fn+1(t) − Fn(t))
+ (Fn−3(t) + Fn−2(t) + Fn−1(t) + Fn(t))(Fn+2(t) − Fn+1(t))
...

+ (Fn−3(t) + · · · + Fn+t−5(t))(Fn+t−3(t) − Fn+t−4(t)); n > t + 1, t ≥ 4.

The 2−Fibonacci length and 3−Fibonacci length of Gm were investigated in [8, 12]. In this paper,
we study the t−Fibonacci sequence of Gm. Section 2 is devoted to the proofs of some preliminary
results that are needed for the main results of this paper. In Section 3, we generalize 3−Fibonacci
sequences idea to t−Fibonacci sequences (t ≥ 4). Also, we prove the Theorem 3, which show that for
every t ≥ 3 and p = 2, LEN t(Gp) = 2K(t, p).

2. Some Preliminaries

The aim of this section is to collect several facts and basic results that will be used in the rest of
this paper. First for given integers m ≥ 2 and t ≥ 4, let Fi = Fi(t,m),K(m) = K(t,m) then we prove
the following results:

Lemma 1. For integers n, i and m with m ≥ 2, we have

1.
FK(m)+i ≡ Fi(mod m),

2.
FnK(m)+i ≡ Fi(mod m).

Proof. Using of the definition of the Wall number of the t−step Fibonacci sequence one has:

FK(m)+i ≡ Fi(mod m).

To prove (ii), according to the above relations, we have
FnK(m)+i ≡ FK(m)+((n−1)K(m)+i) ≡ F(n−1)K(m)+i ≡ · · · ≡ Fi(mod m). □
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Corollary 1. For integers n and m ≥ 2, if
Fn ≡ 0 (mod m),
...

...
...

Fn+t−2 ≡ 0 (mod m),
Fn+t−1 ≡ 1 (mod m).

Then K(m) |n.

Proof. Let n = aK(m) + i, 0 ≤ i < K(m). Then by Lemma 1, we get
Fi ≡ 0 (mod m),
...

...
...

Fi+t−2 ≡ 0 (mod m),
Fi+t−1 ≡ 1 (mod m).

Now, since K(m) is the least integer such that the assumption holds, the proof is completed immedi-
ately. □

We need some results concerning the groups presented by

Gmn = ⟨x, y|xm = yn = 1, [x, y]x = [x, y], [x, y]y = [x, y]⟩ m, n ≥ 2.

First, we state a Lemma without proof that establishes some properties of groups of nilpotency class
two.

Lemma 2. If G is a group and G′ ⊆ Z(G), then the following hold for every integer k and u, v,w ∈ G

1. [uv,w] = [u,w][v,w] and [u, vw] = [u, v][u,w],
2. [uk, v] = [u, vk] = [u, v]k,

3. (uv)k = ukvk[v, u]
k(k−1)

2 .

Lemma 3. Let m, n be positive integer numbers and d = g.c.d(m, n). Then |Gmn| = d × mn.

Proof. Consider the subgroup H = ⟨a, [a, b]⟩ of Gmn. Obviously H is abelian and a simple coset
enumeration by defining n coset as 1 = H and ib = i + 1, 1 ≤ i ≤ n − 1 shows that |G : H| = n. Using
the modified Todd-coxeter coset enumeration algorithm, yields the following presentation for H:

H = ⟨h1, h2|hm
1 = hm

2 = hn
1 = hn

2 = 1, [h1, h2] = 1⟩.

So that H � Zm × Zd and |Gmn| = |G : H| × |H| = d × mn. □

The following proposition is of interest to consider and one may see the proof in [8].

Proposition 1. Let G = Gmn. Then

1. G′ = ⟨[a, b]⟩.
2. Every element of G is in the form xiy jg where 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1 and g ∈ G′.
3. Z(G) = ⟨x, y, z|xm/d = yn/d = zd = [x, y] = [x, z] = [y, z] = 1⟩.

For the particular case, consider m = n then for m ≥ 2 we get

Gm = Gmm = ⟨x, y|xm = ym = 1, [x, y]x = [x, y], [x, y]y = [x, y]⟩ .

Corollary 2. With the above facts, we have

1. |Gm| = m3,Z(Gm) = G′m, |Z(Gm)| = m.
2. Every element of Gm can be written uniquely in the form xrys[y, x]t where 0 ≤ r, s, t ≤ m − 1.
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3. The t−Fibonacci Sequences of Gm

In this section, we examine the t−Fibonacci sequence of Gm with respect to the ordered generating
set X = {x, y}. First, we show that every element of F4(Gm; X) has a standard form.

Lemma 4. For every n, (n ≥ 3) every element xn of the 4−Fibonacci sequences of group Gm can be
written in the form xFn+2−Fn+1yFn+1[y, x]gn .

Proof. Let xr = xr(4), Fr = Fr(4) and gr = gr(4). We proceed by induction on n, for n = 3, 4 we have
x3 = x1x2 = xy[y, x]0 = xF5−F4yF4[y, x]g3

x4 = x1x2x3 = x2y2[y, x] = xF6−F5yF5[y, x]g4

and if xk = xFk+2−Fk+1yFk+1[y, x]gk (4 ≤ k ≤ n − 1), then by the relation xn = xn−4xn−3xn−2xn−1 we get

xn =xn−4 xn−3 xn−2 xn−1

=xFn−2−Fn−3yFn−3
[
y, x
]gn−4 xFn−1−Fn−2yFn−2

[
y, x
]gn−3

× xFn−Fn−1yFn−1
[
x, y
]gn−2 xFn+1−FnyFn

[
y, x
]gn−1

=xFn−1−Fn−3 yFn−3+Fn−2
[
y, x
]gn−4+gn−3+Fn−3(Fn−1−Fn−2)xFn−Fn−1yFn−1

×
[
y, x
]gn−2 xFn+1−FnyFn

[
y, x
]gn−1

=xFn−Fn−3 yFn−3+Fn−2+Fn−1

×
[
y, x
]gn−4+gn−3+gn−2+Fn−3(Fn−1−Fn−2)+(Fn−3+Fn−2)(Fn−Fn−1)

× xFn+1−FnyFn
[
y, x
]gn−1

=xFn+1−Fn−3yFn−3+Fn−2+Fn−1+Fn

×
[
y, x
]gn−4+gn−3+gn−2+gn−1+Fn−3(Fn−1−Fn−2)+(Fn−3+Fn−2)(Fn−Fn−1)

×
[
y, x
](Fn−3+Fn−2+Fn−1)(Fn+1−Fn)

=xFn+2−Fn+1yFn+1
[
y, x
]gn .

Thus the assertion holds. □

Now, we are ready to generalize the idea of 4−Fibonacci sequence of Gm to t−Fibonacci sequence
of these groups.

Theorem 1. For every t ≥ 4 and n ≥ 3, each element xn of the t−Fibonacci sequences of group Gm

can be written in the form
xn(t) = xFn+t−2(t)−Fn+t−3(t)yFn+t−3(t)[y, x]gn(t).

Proof. Use an induction method on t. We have for t = 4:

xn(4) = xFn+2(4)−Fn+1(4)yFn+1(4)[y, x]gn(4)

and if for every k, (5 ≤ k ≤ t), we have

xn(k) = xFn+2(k)−Fn+1(k)yFn+1(k)[y, x]gn(k).

It is sufficient to show that

xn(t + 1) = xFn+t−1(t+1)−Fn+t−2(t+1)yFn+t−2(t+1)[y, x]gn(t+1).

For this, we use an induction method on n:
If 3 ≤ s ≤ t, by definitions of Fn and gn we get Fs(t + 1) = Fs(t) and gs(t + 1) = gs(t), then
xs(t + 1) = xs(t). By this and the inductive hypothesis t we have

xs(t + 1) = xFs+t−1(t+1)−Fs+t−2(t+1)yFs+t−2(t+1)[y, x]gs(t+1).
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Now we suppose that the hypothesis of induction holds for all s ≤ n − 1. By definition of xn(t + 1)
and Corollary 2-(ii), we get;

xn(t + 1) =xn−(t+1)(t + 1)xn−(t+1)+1(t + 1) × · · · × xn−1(t + 1)
=xFn−2(t+1)−Fn−3(t+1) yFn−3(t+1)[y, x]gn−t−1(t+1)

× xFn−1(t+1)−Fn−2(t+1)yFn−2(t+1)[y, x]gn−t(t+1)

× xFn(t+1)−Fn−1(t+1) yFn−1(t+1)[y, x]gn−t+1(t+1)

× · · · × xFn+t−2(t+1)−Fn+t−3(t+1) yFn+t−3(t+1)[y, x]gn−1(t+1)

=xFn−1(t+1)−Fn−3(t+1) yFn−3(t+1)+Fn−2(t+1)

× [y, x]gn−t−1(t+1)+gn−t(t+1)+Fn−3(t+1)(Fn−1(t+1)−Fn−2(t+1))

× xFn(t+1)−Fn−1(t+1) yFn−1(t+1)[y, x]gn−t+1(t+1)

× · · · × xFn+t−2(t+1)−Fn+t−3(t+1)yFn+t−3(t+1)[y, x]gn−1(t+1)

=xFn(t+1)−Fn−3(t+1) yFn−3(t+1)+Fn−2(t+1)+Fn−1(t+1)

× [y, x]gn−t−1(t+1)+gn−t(t+1)+gn−t+1(t+1)

× [y, x]Fn−3(t+1)((Fn−1(t+1)−Fn−2(t+1))

× [y, x](Fn−3(t+1)+Fn−2(t+1))(Fn(t+1)−Fn−1(t+1))

× · · · × xFn+t−2(t+1)−Fn+t−3(t+1) yFn+t−3(t+1)[y, x]gn−1(t+1).

We continue this process and find that

xn(t + 1) =xFn+t−1(t+1)−Fn+t−2(t+1)yFn−3(t+1)+···+Fn+t−3(t+1)

× [y, x]gn−t−1(t+1)+···+gn−1(t+1)+Fn−3(t+1)(Fn−1(t+1)−Fn−2(t+1))

× [y, x](Fn−3(t+1)+Fn−2(t+1))(Fn(t+1)−Fn−1(t+1))

× [y, x](Fn−3(t+1)+···+Fn+t−4(t+1))(Fn+t−2(t+1)−Fn+t−3(t+1))

=xFn+t−1(t+1)−Fn+t−2(t+1)yFn+t−2(t+1)[y, x]gn(t+1).

The theorem is proved. □

Example 1. For integer m = 2, by using above Theorem and relations of Gm, we obtain the
4−Fibonacci sequence of Gm (i.e.F4(Gm; X)) as follows:

x1 =x, x2 = y, x3 = xF5−F4yF4[y, x]g3 = x3y = xy,

x4 =xF6−F5yF5[y, x]g4 = x2y2[y, x] = [y, x],
x5 =xF7−F6yF6[y, x]g5 = x4y4[y, x]6 = e,

x6 =xF8−F7yF7[y, x]g6 = x7y8[y, x]28 = x,

x7 =x14y15[y, x]98 = y, x8 = x27y29[y, x]379 = yx,

x9 =x52y56[y, x]1436 = e, x10 = x100y108[y, x]5378 = e,

x11 =x193y208[y, x]19984 = x, x12 = x372y401[y, x]74434 = y,

x13 =x717y773[y, x]276868 = xy, x14 = x1382y1490[y, x]1029149 = [y, x], . . .

Consequently

x11 =x10+1 = x = x1, x12 = x10+2 = y = x2, x13 = x10+3 = xy = x3,

x14 =x10+4 = [y, x] = x4.

Then LEN4(Gm) = 10 = 2K(4, 2).
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Theorem 2. If LEN t(Gm; X) = P then the equations
FP ≡ 0 (mod m),
...

...
...

FP+t−2 ≡ 0 (mod m),
FP+t−1 ≡ 1 (mod m).

hold. Moreover, K(t,m) divides P.

Proof. For a constant t, let K(t,m) = K(m) and xn(t) = xn. Since LEN t(Gm; X) = P, for 1 ≤ i ≤ t, we have
xP+i = xi. Then by the Theorem 1 and Corollary 2-(ii), we obtain

FP+t−2 ≡ Ft−2 (mod m),
FP+t−1 ≡ Ft−1 (mod m),
...

...
...

FP+t+t−3 ≡ Ft+t−3 (mod m).

Now by definition of Fn, this equivalent to
FP+t−3 ≡ Ft−3 (mod m),
FP+t−2 ≡ Ft−2 (mod m),
...

...
...

FP+t+t−4 ≡ Ft+t−4 (mod m).

By repeating this process, we obtain
FP ≡ 0 (mod m),
...

...
...

FP+t−2 ≡ 0 (mod m),
FP+t−1 ≡ 1 (mod m).

So, the Corollary 1 yields that K(m)|P. □

Note. Let G be a finite 2-generated group of nilpotent class two. Then G � ⟨a, b|R⟩, where {am =

bn = 1, [a, b]a = [a, b], [a, b]b = [a, b]} ⊆ R. By these facts, we believe that the Theorem 2 holds for a
finite 2-generated group of nilpotent class two.

A list of K(4, n) for all 2 ≤ n ≤ 101 is given in the Table 1.
In [8], for t = 2 and X = {x, y}, the t−Fibonacci length of Gm was studied by H. Doostie and M.

Hashemi. They show that for every prime number p

LEN t(Gp) =
{

2K(t, p), p = 2,
K(t, p), p , 2.

Note that this formula, may be generalized for n = pα1
1 . . . p

αs
s ; i.e. in this case we have LENt(Gn) =

l.c.m{LENt(Gpα1
1

), . . . , LENt(Gpαs
1

)}.
Now, we prove the following important theorem which gives an explicit formula for LEN t(G2).

Theorem 3. For t ≥ 3 and p = 2, LEN t(Gp) = 2K(t, p).

Proof. First, we show that K(t, 2) = t + 1. For any t−Fibonacci recurrence {Un}n≥0, we have

Un =Un−1 + Un−2 + · · · + Un−t = Un−1 + (Un−2 + · · · + Un−t−1) − Un−t−1

=2Un−1 − Un−t−1, (1)
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n K(4, n) n K(4, n) n K(4, n) n K(4, n)
2 5 27 234 52 420 77 6840
3 26 28 1710 53 303480 78 5460
4 10 29 280 54 1170 79 998720
5 312 30 1560 55 1560 80 1560
6 130 31 61568 56 3420 81 702
7 342 32 80 57 89154 82 240
8 20 33 1560 58 280 83 1157520
9 78 34 24560 59 205378 84 22230

10 1560 35 17784 60 1560 85 191568
11 120 36 390 61 226980 86 162800
12 130 37 1368 62 307840 87 3640
13 84 38 34290 63 4446 88 120
14 1710 39 1092 64 160 89 9320
15 312 40 1560 65 2184 90 1560
16 40 41 240 66 1560 91 4788
17 4912 42 22230 67 100254 92 60830
18 390 43 162800 68 24560 93 61568
19 6858 44 120 69 158158 94 519110
20 1560 45 312 70 88920 95 356616
21 4446 46 60830 71 357910 96 1040
22 120 47 103822 72 780 97 368872
23 12166 48 520 73 2664 98 11970
24 260 49 2394 74 6840 99 1560
25 1560 50 1560 75 1560 100 1560
26 420 51 63856 76 34290 101 1030300

Table 1
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and reduce modulo 2 to get that Un ≡ Un−(t+1) (mod 2). Let Fn := Fn(t). Then for {Fn}n≥0, we already
know that F0 = · · · = Ft−2 = 0, Ft−1 = 1 and clearly Ft = Ft−1+ · · ·+F0 = 1. Thus, modulo 2, {Fn}n≥0

is simply the repeating block 0, 0, . . . , 0, 1, 1, where there are t− 1 zeros. The above shows right away
that FaFa+i ≡ 0 (mod 2) if i = 2, 3, . . . , k − 1 and any a (that is the product of any two members of
Fn with indices nonconsecutive but which differ by less than k is zero modulo 2). Now, by the above
remark, the recurrence relation for gn(t) and use the fact that −x ≡ x (mod 2), we see that

Fn−3(Fn−1 − Fn−2) ≡ Fn−3Fn−2 (mod 2);
(Fn−3 + Fn−2)(Fn − Fn−1) ≡ Fn−2Fn−1 (mod 2);

(Fn−3 + Fn−2 + Fn−1)(Fn+1 − Fn) ≡ Fn−1Fn (mod 2);
. . . . . . . . .

(Fn−3 + · · · + Fn+t−5)(Fn+t−3 − Fn+t−4) ≡ Fn+t−5Fn+t−4 + Fn+t−3Fn+t−2(mod 2).

The last one deserves an explanation. Indeed, note that by periodicity with period t + 1 we have
Fn−3 ≡ Fn+t−2 ( mod 2) and now Fn+t−2 and Fn+t−3 have consecutive indices. However, this is the only
instance when this happens, in all the other relations only the product of the last term from the first
(left) factor with the last term from the second (right) factor survive modulo 2. Thus,

gn ≡ gn−1 + · · · + gn−t + (Fn−3Fn−2 + · · · + Fn+t−5Fn+t−4 + Fn+t−3Fn+t−2) (mod 2).

The last sum is “almost perfect”. A perfect one would be if Fn+t−4Fn+t−3 would also be present in the
above sum. If it were then this sum would be

FmFm+1 + Fm+1Fm+2 + · · · + Fm+tFm+t+1 for m = n − 3 (2)

and one can check easily that this is constant 1 modulo 2 (it is enough to check it for the first t + 1
values of m = 0, 1, . . . , t and then use periodicity). Since 2Fn+t−4Fn+t−3 ≡ 0 (mod 2), by the above,
we have

gn ≡ gn−1 + · · · + gn−t + 1 + Fn+t−4Fn+t−3 (mod 2).

Now use the trick at (1). Namely, we have

gn ≡ gn−1 + (gn−2 + · · · + gn−t + gn−t−1 + 1 + Fn+t−5Fn+t−4)
+ gn−t−1 + Fn+t−4Fn+t−3 + Fn+t−5Fn+t−4 (mod 2)
≡ 2gn−1 + gn−t−1 + Fn+t−4(Fn+t−3 + Fn+t−2) (mod 2)
≡ gn−t−1 + Fn+t−4(Fn+t−3 + Fn+t−2) (mod 2).

The expression Fn+t−4(Fn+t−3 + Fn+t−2) is most times 0 modulo 2 but not always since for n = 3 it
becomes Ft−1(Ft + Ft−2) ≡ 1 (mod 2). This shows that t + 1 is not the period of gn. Well, let’s apply
the above relation again with n replaced by n − t − 1. We get

gn ≡gn−t−1 + Fn+t−4(Fn+t−3 + Fn+t−2)
≡(gn−(2t+1) + Fn−(t+1)+t−4(Fn−(t+1)+t−3 + Fn−(t+1)+t−2))
+ Fn+t−4(Fn+t−3 + Fn+t−2) (mod 2),

and the expression involving the last four t-Fibonacci numbers is 0. Since Fn is periodic modulo 2
with period t + 1 (that is, that last expression is 2Fn+t−4(Fn+t−3 + Fn+t−2) ≡ 0 (mod 2)). Hence,

gn ≡ gn−2(t+1) (mod 2),

which proves the Theorem. □
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m LEN 3(G m) K(3,m) LEN 4(G m) K(4,m)
2 8 4 10 5
3 13 13 26 26
4 16 8 20 10
8 32 16 40 20

Table 2

By using a computer program written in the computational algebra system GAP [13], we checked
that the above formula holds for every t = 3, 4 and 2 ≤ m ≤ 10. Some of these results are shown
below. At the end of this section we state a conjecture about the LEN t(Gp), as follows:
Conjecture. For every t ≥ 3 and prime number p(p > 2)

LEN t(Gp) = K(t, p).
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