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Martin Bača1, Mirka Miller2,4,5, Oudone Phanalasy2,6, Joe Ryan3, Andrea
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Abstract: The total labeling of a graph G = (V, E) is a bijection from the union of the vertex set
and the edge set of G to the set {1, 2, . . . , |V(G)| + |E(G)|}. The edge-weight of an edge under a total
labeling is the sum of the label of the edge and the labels of the end vertices of that edge. The vertex-
weight of a vertex under a total labeling is the sum of the label of the vertex and the labels of all the
edges incident with that vertex. A total labeling is called edge-magic or vertex-magic when all the
edge-weights or all the vertex-weights are the same, respectively. When all the edge-weights or all the
vertex-weights are different then a total labeling is called edge-antimagic or vertex-antimagic total,
respectively. In this paper we deal with the problem of finding a total labeling of some classes of
graphs that is simultaneously vertex-magic and edge-antimagic or simultaneously vertex-antimagic
and edge-magic, respectively. We show several results for stars, paths and cycles.

Keywords: Edge-magic total labeling, Vertex-magic total labeling, Edge-antimagic total labeling,
Vertex-antimagic total labeling

1. Introduction

In this paper we consider finite, simple and undirected graphs. For a graph G = (V, E) we denote
the set of vertices V(G) and the set of edges E(G).

A labeling of a graph G is any mapping that sends certain set of graph elements to a certain set of
positive integers or colors. If the domain is the vertex-set, or the edge-set, respectively, the labeling
is called a vertex labeling, or an edge labeling, respectively. If the domain is V(G) ∪ E(G) then the
labeling is called a total labeling. More precisely, for a graph G a bijection f : V(G) ∪ E(G) →
{1, 2, . . . , |V(G)| + |E(G)|} is a total labeling of G.

Under the labeling f , the associated edge-weight of an edge uv, uv ∈ E(G), is defined by

wt f (uv) = f (u) + f (uv) + f (v).
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The associated vertex-weight of a vertex v, v ∈ V(G), is defined by

wt f (v) = f (v) +
∑

u∈N(v)

f (uv),

where N(v) is the set of the neighbors of v.
A labeling f is a called edge-magic total (vertex-magic total) if the edge-weights (vertex-weights)

are all the same. If the edge-weights (vertex-weights) are pairwise distinct then the total labeling
is called edge-antimagic total (vertex-antimagic total). A graph that admits edge-magic total (edge-
antimagic total) labeling or vertex-magic total (vertex-antimagic total) labeling is called edge-magic
total (edge-antimagic total) graph or vertex-magic total (vertex-antimagic total) graph, respectively.

In this paper we will use acronyms EMT, VMT, EAT and VAT instead of edge-magic total, vertex-
magic total, edge-antimagic total and vertex-antimagic total, respectively.

The subject of EMT graph has its origins in the work of Kotzig and Rosa [1] and VMT graphs
were introduced by MacDougall, Miller, Slamin and Wallis in [2], see also [3]. The notion of EAT
labeling was introduced by Simanjuntak, Bertault and Miller in [4] as a natural extension of magic
valuation defined by Kotzig and Rosa in [1], and VAT labelings of graphs were introduced in [5], see
also [6].

There are known characterizations of all EAT and VAT graphs. In [7] Miller, Phanalasy and Ryan
proved

Proposition 1 ( [7]). All graphs are (super) EAT.

Proposition 2 ( [7]). All graphs are (super) VAT.

Since all graphs are EAT and VAT, naturally we can ask whether there exist graphs possessing
a labeling that is simultaneously EAT and VAT. Such a labeling is called a totally antimagic total
labeling and a graph that admits such a labeling a totally antimagic total graph, for short TAT graph.
If, moreover, the vertices are labelled with the smallest possible labels then, as is customary, the
labeling is referred to as super. The concept of TAT labeling was given by Bača, Miller, Phanalasy,
Ryan, Semaničová-Feňovčı́ková and Sillasen [8]. In [8] it was proved that complete graphs, paths,
cycles, stars, double-stars and wheels are TAT.

The definition of TAT labeling is a natural extension of the concept of totally magic labeling
defined by Exoo, Ling, McSorley, Phillips and Wallis in [9]. They showed that such graphs appear
to be rare. They proved that the only connected totally magic graph containing a vertex of degree 1
is P3, the only totally magic trees are K1 and P3, the only totally magic cycle is C3, the only totally
magic complete graphs are K1 and K3, and the only totally magic complete bipartite graph is K1,2.

In [8] Bača, Miller, Phanalasy, Ryan, Semaničová-Feňovčı́ková and Sillasen proposed the follow-
ing open problems.

Problem 1. Find total labeling of some classes of graphs that is simultaneously vertex-magic and
edge-antimagic.

Problem 2. Find total labeling of some classes of graphs that is simultaneously vertex-antimagic and
edge-magic.

In this paper we will deal with these problems and we will try to find the answers for some classes
of graphs, especially for stars, paths and cycles.

2. Stars, Paths and Cycles

As all graphs are (super) EAT, see Proposition 1, and all graphs are (super) VAT, see Proposition
2, we trivially get, that a graph that is simultaneously VMT and EAT, must be VMT. Analogously, the
necessary condition for a graph to be simultaneously VAT and EMT is that the graph must be EMT.
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The star S n is a graph isomorphic to the complete bipartite graph K1,n. In [9] it was proved that the
star S n is totally magic if and only if n = 2. Bača, Miller, Phanalasy, Ryan, Semaničová-Feňovčı́ková
and Sillasen in [8] proved that the star S n is TAT for n ≥ 1.

Kotzig and Rosa [1] proved that the complete bipartite graph Km,n is EMT for all integers m, n.
Immediately from this result we get that all stars S n are EMT. We now prove the following result.

Theorem 1. The star S n is simultaneously EMT and VAT if and only if n = 1.

Proof. We denote the vertices of S n by the symbols v, vi, i = 1, 2, . . . , n, such that

E(S n) = {vv1, vv2, . . . , vvn}.

Let f be a total labeling of S n that is simultaneously EMT and VAT. It means that the edges vv1

and vvi, i = 2, 3, . . . , n, have the same weights, i.e.,

wt f (vv1) =wt f (vvi)
f (v) + f (vv1) + f (v1) = f (v) + f (vvi) + f (vi)

f (v1) + f (vv1) = f (vvi) + f (vi)
wt f (v1) =wt f (vi).

The labeling f must be also a VAT labeling of S n, thus the vertex-weights must be pairwise different.
But this is possible if and only if n = 1. □

In [2] it was proved that the complete bipartite graph Km,n is VMT if and only if |m − n| ≤ 1.
Note that S 1 is isomorphic to a path on 2 vertices and S 2 is isomorphic to a path on 3 vertices.
In [2] MacDougall, Miller, Slamin and Wallis proved that the path on n vertices is VMT for n > 2.
According to these facts the star S n is VMT if and only if n = 2.

Theorem 2. No star S n is simultaneously VMT and EAT.

Proof. We only need to show that the star S 2 in not simultaneously VMT and EAT. It is easy to check
that there are only two non-isomorphic VMT labelings of P3, both are illustrated in Figure 1. But
both of these labelings are simultaneously EMT.

3 1 5
4 2

4 3 5
2 1

Figure 1. The Only Two Non-Isomorphic VMT Labelings of Star P3. Both Are Simultane-
ously EMT

□

MacDougall, Miller, Slamin and Wallis [2] proved that the path Pn on n vertices and a cycle Cn

are VMT for n ≥ 3. In [9] it was proved that Pn is totally magic if and only if n = 3. Bača, Miller,
Phanalasy, Ryan, Semaničová-Feňovčı́ková and Sillasen in [8] proved that Pn is TAT for every n ≥ 2.

Theorem 3. The path Pn is simultaneously EMT and VAT if and only if n , 3.

Proof. We denote the vertices of Pn by the symbols vi, i = 1, 2, . . . , n, such that

E(Pn) = {v1v2, v2v3, . . . , vn−1vn}.

First we prove that the path P3 is not simultaneously EMT and VAT. We prove it by contradiction.
Let us consider that g is a labeling of P3 that is simultaneously EMT and VAT. It means that the edges
v1v2 and v2v3 have the same weights, i.e.,

wtg(v1v2) =wtg(v2v3)
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g(v1) + g(v1v2) + g(v2) =g(v2) + g(v2v3) + g(v3)
g(v1) + g(v1v2) =g(v2v3) + g(v3)

wtg(v1) =wtg(v3).

But this is a contradiction to the fact that g is a VAT labeling of P3.

For n , 3, let us consider the labeling f , f : V(Pn) ∪ E(Pn) → {1, 2, . . . , 2n − 1} defined in the
following way

f (vi) =

 i
2 , i ≡ 0 (mod 2), i ≤ n,⌊

n
2

⌋
+ i+1

2 , i ≡ 1 (mod 2), i ≤ n,

f (vivi+1) = 2n − i, i = 1, 2, 3, . . . , n − 1.

For the edge-weights we have the following.
If i ≡ 0 (mod 2), 2 ≤ i ≤ n − 1 then

wt f (vivi+1) = f (vi) + f (vivi+1) + f (vi+1)

=
(

i
2

)
+ (2n − i) +

(⌊
n
2

⌋
+

(i+1)+1
2

)
= 2n +

⌊
n
2

⌋
+ 1.

If i ≡ 1 (mod 2), 1 ≤ i ≤ n − 1 then

wt f (vivi+1) = f (vi) + f (vivi+1) + f (vi+1)

=
(⌊

n
2

⌋
+ i+1

2

)
+ (2n − i) +

(
i+1
2

)
= 2n +

⌊
n
2

⌋
+ 1.

Thus the labeling f is EMT.
Let us consider the vertex-weights under the labeling f .

wt f (v1) = f (v1) + f (v1v2) =
(⌊

n
2

⌋
+ 1+1

2

)
+ (2n − 1) = 2n +

⌊
n
2

⌋
,

wt f (vn) = f (vn) + f (vn−1vn)

=


n
2 + (2n − (n − 1)) = 3n

2 + 1,
for n ≡ 0 (mod 2),(⌊

n
2

⌋
+ n+1

2

)
+ (2n − (n − 1)) = 2n + 1,

for n ≡ 1 (mod 2),

wt f (vi) = f (vi−1vi) + f (vi) + f (vivi+1)

=



(2n − (i − 1)) + i
2 + (2n − i) = 4n + 1 − 3i

2 ,

for i ≡ 0 (mod 2), 2 ≤ i < n
(2n − (i − 1)) +

(⌊
n
2

⌋
+ i+1

2

)
+ (2n − i)

= 4n +
⌊

n
2

⌋
−

3(i−1)
2 ,

for i ≡ 1 (mod 2), 3 ≤ i < n.

It is easy to see that the following is true:

1. For n , 3, we have wt f (vn) < wt f (v1).
2. For every positive integer i, 2 ≤ i ≤ n − 1 it holds that

wt f (v1) < wt f (vi).
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3. To prove that f is a VAT labeling of Pn we need to show that for all positive integers i, j,
1 < i, j < n we have

wt f (vi) , wt f (v j). (1)

If i ≡ j (mod 2) then the proof is trivial, as in this case the vertex-weights form an arithmetic
sequence with difference 3.
If i . j (mod 2) then the inequality (1) is true for

⌊
n
2

⌋
. 1 (mod 3).

Thus the labeling f is a simultaneously EMT and VAT labeling of Pn for n , 3 and n . 2 (mod 6)
and n . 3 (mod 6).

For n ≡ 2 (mod 6) let us consider the labeling h of Pn defined by

h(vi) =

 n+i
2 , i ≡ 0 (mod 2), i ≤ n,

i+1
2 , i ≡ 1 (mod 2), i ≤ n − 1,

h(vivi+1) = 2n − i, i = 1, 2, 3, . . . , n − 1.

For the edge-weights under the labeling h we get:
If i ≡ 0 (mod 2), 2 ≤ i ≤ n − 2 then

wth(vivi+1) =h(vi) + h(vivi+1) + h(vi+1)

=
(

n+i
2

)
+ (2n − i) +

(
(i+1)+1

2

)
=

5n
2
+ 1.

If i ≡ 1 (mod 2), 1 ≤ i ≤ n − 1 then

wth(vivi+1) =h(vi) + h(vivi+1) + h(vi+1)

=
(

i+1
2

)
+ (2n − i) +

(
n+(i+1)

2

)
=

5n
2
+ 1.

Thus the labeling h is EMT.
For the vertex-weights under the labeling h we have:

wth(v1) =h(v1) + h(v1v2) =
(

1+1
2

)
+ (2n − 1) = 2n,

wth(vn) =h(vn) + h(vn−1vn) =
(

n+n
2

)
+ (2n − (n − 1)) = 2n + 1,

wth(vi) =h(vi−1vi) + h(vi) + h(vivi+1)

=


(2n − (i − 1)) + n+i

2 + (2n − i) = 9n
2 + 1 − 3i

2 ,

for i ≡ 0 (mod 2), 2 ≤ i ≤ n − 2,
(2n − (i − 1)) +

(
i+1
2

)
+ (2n − i) = 4n − 3(i−1)

2 ,

for i ≡ 1 (mod 2), 3 ≤ i ≤ n − 1.
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Then we get:

1. For every positive integer i, 2 ≤ i ≤ n − 1 it holds that

wth(v1) = 2n < 2n + 1 = wth(vn) < wth(vi).

2. To prove that h is a VAT labeling of Pn we need to show that for all positive integers i, j,
1 < i, j < n we have

wth(vi) , wth(v j). (2)

If i ≡ j (mod 2) then the proof is again trivial, as the vertex-weights form an arithmetic sequence
with difference 3.
If i . j (mod 2) then the inequality (2) is true for n . 4 (mod 6). However, this condition is
satisfied as we considered the case when n ≡ 2 (mod 6).

It means that for n ≡ 2 (mod 6) the labeling h is a simultaneously EMT and VAT labeling of Pn.

For n ≡ 3 (mod 6), n ≥ 9, let us consider the labeling t of Pn defined in the following way:

t(vi) =

 3n−1
2 +

i
2 , i ≡ 0 (mod 2), i ≤ n − 1,

i+1
2 , i ≡ 1 (mod 2), i ≤ n,

t(vivi+1) =
3n + 1

2
− i, i = 1, 2, 3, . . . , n − 1.

Analogously as in the previous cases we can prove that t is simultaneously EMT and VAT labeling
of Pn for n ≡ 3 (mod 6) . □

In Figures 2, 3 and 4 we illustrate simultaneously EMT and VAT labelings of P7, P8 and P9,
respectively.

4 1 5 2 6 3 7
13 12 11 10 9 8

Figure 2. Simultaneously EMT and VAT Labeling of P7
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1 5 2 6 3 7 4 8
15 14 13 12 11 10 9

Figure 3. Simultaneously EMT and VAT Labeling of P8

1 14 2 15 3 16 4 17 5
13 12 11 10 9 8 7 6

Figure 4. Simultaneously EMT and VAT Labeling of P9

Theorem 4. For n = 4 or n ≥ 5, n ≡ 1 (mod 6) or n ≡ 5 (mod 6) the path Pn is simultaneously VMT
and EAT.

Proof. Figure 5 shows a labeling of P4 that is simultaneously VMT and EAT.

4 3 6 7
5 1 2

Figure 5. Simultaneously VMT and EAT Labeling of P4

Let n be a positive integer, n ≥ 5, n ≡ 1 (mod 6) or n ≡ 5 (mod 6). Let us consider the labeling
f , f : V(Pn) ∪ E(Pn)→ {1, 2, . . . , 2n − 1} defined in the following way:

f (vi) =

2n − 1, i = n,

2n − 1 − i, i = 1, 2, . . . , n − 1,

f (vivi+1) =

 i
2 , i ≡ 0 (mod 2), i ≤ n − 1,
n+i
2 , i ≡ 1 (mod 2), i ≤ n − 2.

For the vertex-weights under the labeling f we get:

wt f (v1) = f (v1) + f (v1v2) =
(

n+1
2

)
+ (2n − 2) = 5n−3

2 ,

wt f (vn) = f (vn) + f (vn−1vn) = (2n − 1) +
(

n−1
2

)
= 5n−3

2 ,

wt f (vi) = f (vi−1vi) + f (vi) + f (vivi+1)

=



(
n+(i−1)

2

)
+ (2n − 1 − i) +

(
i
2

)
= 5n−3

2 ,

for i ≡ 0 (mod 2), 2 ≤ i ≤ n − 1,(
i−1
2

)
+ (2n − 1 − i) +

(
n+i
2

)
= 5n−3

2 ,

for i ≡ 1 (mod 2), 3 ≤ i ≤ n − 2.

Thus for i = 1, 2, . . . , n we have wt f (vi) = 5n−3
2 . This means that the labeling f is VMT.

Let us consider the edge-weights under the labeling f . If i ≡ 0 (mod 2), 2 ≤ i ≤ n − 3 then

wt f (vivi+1) = f (vi) + f (vivi+1) + f (vi+1)

=(2n − 1 − i) +
(

i
2

)
+ (2n − 1 − (i + 1)) = 4n − 3 − 3i

2 .

Thus the set of edge-weights for i even is

{wt f (v2v3),wt f (v4v5), . . . ,wt f (vn−3vn−2)} =
{
4n − 6, 4n − 9, . . . , 5n+3

2

}
.

The edge-weights form an arithmetic sequence with a difference 3. For n ≡ 1 (mod 6) the numbers
in the set of edge-weights are congruent to 1 modulo 3. For n ≡ 5 (mod 6) the numbers that form the
set of edge-weights are congruent to 2 modulo 3.
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If i ≡ 1 (mod 2), 1 ≤ i ≤ n − 2 then

wt f (vivi+1) = f (vi) + f (vivi+1) + f (vi+1)

=(2n − 1 − i) +
(

n+i
2

)
+ (2n − 1 − (i + 1)) = 9n−3i

2 − 3.

The set of edge-weights for i odd form an arithmetic sequence with difference 3, more precisely

{wt f (v1v2),wt f (v3v4), . . . ,wt f (vn−2vn−1)} =
{

9n−9
2 ,

9n−9
2 − 3, . . . , 3n

}
.

Moreover, in this case the edge-weights are congruent to 0 modulo 3.
And

wt f (vn−1vn) = f (vn−1) + f (vn−1vn) + f (vn)

=(2n − 1 − (n − 1)) +
(

n−1
2

)
+ (2n − 1) = 7n−3

2

≡

2 (mod 3), for n ≡ 1 (mod 6),
1 (mod 3), for n ≡ 5 (mod 6).

According to the previous discussions for n ≥ 5, n ≡ 1 (mod 6) or n ≡ 5 (mod 6) edge-weights
are pairwise different.

Thus the labeling f is a simultaneously VMT and EAT labeling of Pn for n ≥ 5, n ≡ 1 (mod 6) or
n ≡ 5 (mod 6). □

Note that P2 and P3 are not simultaneously VMT and EAT. For 6 ≤ n . 1, 5 (mod 6) we are
not able to find the corresponding total labeling that is simultaneously VMT and EAT. However we
assume that such a labeling does exist. The supporting argument for this assumption is the fact that
every VMT labeling of path Pn is derived from VMT labeling of cycle Cn, see [2]. And for cycles
there exist many non-isomorphic VMT labelings, see Table 1 [2].

n 3 4 5 6 7 8 9 10
# 4 6 6 20 118 282 1540 7092

Table 1. Number of Non-Isomorphic VMT Labelings of Cycle Cn [2]

In [9] it was proved that the cycle Cn is totally magic if and only if n = 3. Bača, Miller, Phanalasy,
Ryan, Semaničová-Feňovčı́ková and Sillasen in [8] proved that all cycles Cn are TAT.

We now prove the following result.

Theorem 5. For n = 4 or n ≥ 5, n ≡ 1 (mod 6) or n ≡ 5 (mod 6) the cycle Cn is simultaneously
VMT and EAT.

Proof. As we already mentioned, every VMT labeling of path Pn is derived from VMT labeling of
cycle Cn, see [2]. The idea is to modify the VMT labeling of cycle Cn by subtracting number 1 from
every vertex label and every edge label of a VMT labeling of the cycle Cn and then to delete the edge
with label 0.

Thus, according to the proof of Theorem 4, let us consider the labeling f , f : V(Cn) ∪ E(Cn) →
{1, 2, . . . , 2n} defined in the following way:

f (vi) =

2n, i = n,

2n − i, i = 1, 2, . . . , n − 1,

f (vivi+1) =

 i
2 + 1, i ≡ 0 (mod 2), i ≤ n − 1,
n+i
2 + 1, i ≡ 1 (mod 2), i ≤ n − 2,
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f (v1vn) = 1.

Analogously as in the proof of Theorem 4 we prove that the labeling f is a simultaneously VMT
and EAT labeling of Cn for n ≥ 5, n ≡ 1 (mod 6) or n ≡ 5 (mod 6). □

According to Theorem 5 and the fact that for cycles (and only for cycles) a VMT labeling is
equivalent to EMT labeling, see [3], we have:

Theorem 6. For n = 4 or n ≥ 5, n ≡ 1 (mod 6) or n ≡ 5 (mod 6) the cycle Cn is simultaneously
EMT and VAT.

Note that for the cycle C3 there is neither a simultaneously VMT and EAT labeling nor a simulta-
neously EMT and VAT labeling. The cases when 6 ≤ n . 1, 5 (mod 6) are still unsolved.

3. Conclusion

In this paper we have dealt with the problem of finding a total labeling of some classes of graphs
that is simultaneously vertex-magic and edge-antimagic or simultaneously vertex-antimagic and edge-
magic, respectively. We showed the existence of such labelings for some classes of graphs, such as
stars, paths and cycles.

For n = 4 or n ≥ 5, n ≡ 1 (mod 6) or n ≡ 5 (mod 6) we proved that the cycle Cn is simultaneously
EMT and VAT. For other cases we propose the following open problem.

Problem 3. For the cycle Cn, 6 ≤ n . 1, 5 (mod 6), determine if there is a simultaneously EMT
labeling and VAT labeling.

For further investigation we state the following open problem.

Problem 4. Find other classes of graphs that are simultaneously VMT and EAT or simultaneously
VAT and EMT, respectively.
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