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ABSTRACT

Let p be a prime number, and let £ and m be positive integers with & > 2. This paper studies

the algebraic structure of A\-constacyclic codes of arbitrary length over the finite commutative ring
k—1

R = (uv;"%, where A is a unit in R given by \ = Z Au' + v Z N, with A\, A} € Fym and

Ao, A1 # 0. We provide a complete classification of these constacychc codes, determine their dual

structures, and compute their Hamming distances when the code length is p®.
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1. Introduction

Constacyclic codes play a crucial role in the theory of error-correcting codes, serving as a natural
extension of cyclic codes, which are among the most extensively studied code types. Let R be a
finite commutative ring, and let A be a unit in R. A A-constacyclic code of length n over the ring
<£’[f])\>. This representation underscores the
significance of constacyclic codes over rings as an important class of linear codes due to their rich

R can be represented as an ideal in the quotient ring

algebraic structure.

In recent years, there has been a growing research interest in the study of constacyclic codes.
However, the general classification of constacyclic codes remains a challenging task. To date, only
a limited number of cases with specific lengths and defined over certain rings have been classified.
Let R be a commutative ring. Dinh and Lépez-Permouth [18]| studied the structures of cyclic and
negacyclic codes of length n when n is not divisible by the characteristic of the residue field R.
Moreover, Cao [1] investigated the algebraic structure of (1 4+ w+y)-constacyclic codes of arbitrary
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length over a finite commutative chain ring R, where w € R*.
Epmlul Fpm + uFym + -+ - + u*~1Fym. The structure

(uk)
ey has been extensively studied in the literature. For £ = 2, significant
research has been devoted to cyclic and constacyclic codes of length n over the ring Fym + ulF,m for

An important example of a finite ring is R =

Fpm [u]

of constacyclic codes over

various prime numbers p and positive integers n (cf. [10, 11, 15, 8, 14, 2]). For k > 3, Kai et al. [20]
investigated (1 4+ Au)-constacyclic codes of arbitrary length over %L EL)], where A € F)'. Subsequently,

]F’ZZ’,;[;L L focusing on the

Cao et al. [6, 5] studied (§ + au?)-constacyclic codes of arbitrary length over

case where k is an even integer and 0, € F .. Sobhani [23] determined the structure of (0 4 au?)-

constacyclic codes of length p® over F’gz;[)u}, where 6, € F,m. Moreover, Mahmoodi and Sobhani

[21] provided a complete classification of (1 + au?)-constacyclic codes of length p* over F’ZZL[)"], where

X
aEIFpm.

Fpm [u,v]

Another important ring is R = i which is local but not a chain ring, with units of the

u2 v2 yv—vu)’
form

AM=a, M=a+duw, M=a+yv+ouv, M\ =a+ Pu+duv, Is=a-+ pu+yv+ duv,

where a, ,7,01 € F}n and 0 € Fym.

Dinh et al. [16] determined the algebraic structures of all constacyclic codes of length p® over R,
except for the Ag-constacyclic codes, later studied in [12]. For p = 2, Dinh et al. [17] classified all
self-dual A-constacyclic codes of length 2° over R corresponding to the units A3, Ay, and 5. In our
recent paper [1|, we investigated the structure and duals of A-constacyclic codes of length 2p® over R
for the units A3, A4, and A5. Motivated by this, we aim to extend our previous results by classifying
A-constacyclic codes of arbitrary length over

Fym[u, v]

Ruv:

)

(uF, 02, uv — vu)’

with £ > 2, and \ given by
k-1 k—1
A=) Nul vy N
i=0 i=0

where \;, \; € Fym and Mg, Ay # 0.

The paper is structured as follows. Section 2 introduces essential preliminaries on finite rings
and fundamental concepts in constacyclic codes. Section 3 establishes a decomposition of each \-
constacyclic code of arbitrary length over R, , as a direct sum of ideals over certain rings. These
rings are further examined in Section 4, where their ideals are classified into four types. Section 5
investigates the structure of dual A-constacyclic codes of arbitrary length over over R, ,. Finally,
Section 6 determines their Hamming distance when the code length is p°.

2. Preliminaries

In this paper, all rings considered are associative and commutative. An ideal I of a ring R is called
principal if it is generated by a single element. A ring R is a principal ideal ring if each of its ideals

is principal. A ring R is called local if it has a unique maximal ideal. A chain ring is a ring whose

ideals are totally ordered by inclusion. A ring R is said to be Frobenius if % is isomorphic (as an

R-module) to soc(R), where J(R) denotes the Jacobson radical of R and soc(R) its socle.
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Let R be a finite local commutative ring with maximal ideal M and residue field R = ﬁ. For
any polynomial f(x) € R[z], we denote by f(z) the polynomial in R[z] obtained by reducing each
coeflicient of f(x) modulo M. Two polynomials fi(z), fo(x) € R[z] are said to be coprime if there

exist polynomials ¢;(x), go(z) € R[z] such that

fi(x)g1(x) + fa(z)g2(z) = 1.
A polynomial f(x) € R[z] is said to be regular if it is not a zero divisor; equivalently, f(x) # 0 in
R[z] (see [22]).
The following result is a well-known property of finite commutative chain rings.

Proposition 2.1. [18] Let R be a finite commutative ring. The following conditions are equivalent:
(a) R is a local ring whose mazimal ideal M is principal (i.e., M = (') for some element I € R).

(b) R is a local principal ideal ring.

(¢) R is a chain ring whose ideals are (I') for 0 < i < t, where t is the nilpotency index of T.
Moreover, for each 0 < i < t, the cardinality of the ideal (') is given by

t—1

) = |

A linear code C' of length n over a ring R is an R-submodule of R". Let A be a unit in R. A linear
code C' of length n over R is called a A-constacyclic code if it satisfies the following condition:

(co,c1,-. . Cn1) €C = (Acpo1, €0, .., Cn2) € C.

Each codeword ¢ = (¢, c1,...,¢,-1) € C can be represented as a polynomial ¢(x) = ¢y + 1z +
-+« 4 cy_12™ L. This identification leads us to the following proposition.

Proposition 2.2. [19] A code C of length n over R is a \-constacyclic code if and only if C' is an

wdeal of (xfs[‘f}/w .

For n-tuples a = (ag, a1, ...,a,-1) and b = (bg, by, ...,b,_1) in R™, their inner product is defined
as
a-b= aobo + a1b1 +---+ anflbn—l-

Two n-tuples a and b are considered orthogonal if @ - b = 0. The dual code C* of a linear code C of
length n over a ring R is defined as

Ct={acR"|a-b=0forallbe C}.
The following proposition is well known.
Proposition 2.3. [24] Consider a linear code C of length n over a finite Frobenius ring R. Then,
C|-|C = | R
In general, the dual of a A-constacyclic code satisfies the following proposition.

Proposition 2.4. [10] The dual of a A\-constacyclic code is a A\~ '-constacyclic code.
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The annihilator of an ideal I in a ring R, denoted as A(I), is defined as
A(l)={a€ R|ab=0forallbe I}.
For any polynomial f(x) = ag + a1 + ... + qyz' € R[x] with a; # 0, the reciprocal polynomial
f*(z) is defined as
ffa)=2"fa™) =a + a1z + ... + o,
The following proposition establishes a relationship between the dual and the annihilator of a
A-constacyclic code.

R|[z]
(zn=A)"

Proposition 2.5. [13| Let C be a A-constacyclic code of length n over R, i.e., an ideal of
Then,
C = AC) = {f*(z) | f(z) € A(C)}.

Throughout this paper, we consider the rings:
Fym [u, ] _ Fym [u]
(uk 02 uv —ou)” " (uk)

Ru,v =

where p is a prime number, and m, k are positive integers. The Jacobson radical and the socle of
R, , are given by:
J(Ryp) = (u,v), soc(Ry,) = (uv).

Ru,v
J(Ru,v)

Moreover, the quotient ring is isomorphic to soc(R,,) as an R, ,-module via the natural
isomorphism:

r+ J(Ryy) +— ruv,
for any r € R, ,. Thus, R, , is a Frobenius ring.

Each unit in R, , has the form:

k—1 k—1
A=) Nul vy N
1=0 1=0

which can be rewritten as:
A= Ao +yu+ po,
where A\;, A, € Fm and A\g, Ay # 0, with:
Y= du At N = N A Nu N e
Throughout this article, we assume A\; # 0, which ensures that v is a unit in 7,.
Let s be a positive integer. Using the division algorithm, we write s = gsm + rs with 0 < ry; < m.
Since X0 = )y, we define:
m—rs (as+1)m—s
6=\ = A\
It follows that 67" = \,.
Our objective is to study A-constacyclic codes of length np° over R, ,,, where 7 is an integer coprime
to p. By Proposition 2.2, these codes correspond to the ideals of the ring:
R, ,[7]
v — N
The following ring homomorphisms will be used in subsequent sections:
®: Ryplz] = Tulz],  f(z) = f(z) mod v,

i Ryplzr] = Fymlz],  f(z) — f(z) mod (u,v).

'R,)\ =
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3. Direct sum decomposition of \-constacyclic codes over R, ,
Since 7 is coprime with p, the polynomial 27 — 6 has a unique factorization in Fym [z]:
T — 0 = z1(x)z(x) ... 2. (),
where the factors are monic, irreducible, and pairwise coprime. Raising both sides to p® gives:
27— Ng = 21(2)7 2 (2)" ... 2 (2)P .

Since R, is a finite local ring and =" — X is a regular element in R, ,[z], Hensel’s Lemma [22]
ensures the existence of a unique factorization

" — N = w(2)wa () ... w(2),

where wy(x),...,w,(z) are monic and pairwise coprime polynomials in R, ,[z]. Moreover, for each
1=1,...,7,
wi(z) = zi(2)".

Defining &;(x) = "”lp(;))‘, it follows that @;(x) and w;(x) are coprime. Hence, there exist polynomials

li(z),li(x) € R[] such that:

Li(x)wi(x) + L(x)wi(x) = 1.
Setting e;(x) = l;(x)w;(x), it follows from |7, Theorem 3.2| that the following properties hold:

e Theset {e1(x),ex(x),. .., e.(x)} forms a complete system of primitive pairwise orthogonal idem-
potents, meaning that

T

Zei(ﬂf) =1, ef)ej(x) =0 fori#j, e(x)®=e(a). (1)

=1

e The ring R, decomposes as

e For each ¢, the mapping

o Ry,.,[7]
N {wil@))

— e;(z)Ry, milc(z)) = ei(x)e(x),

is a ring isomorphism.

As a consequence, we obtain the following theorem.

Theorem 3.1. A subset C' of R is an ideal if and only if

C= é ei(x)li,
=1

where I; is an ideal of %

Thus, to classify all A\-constacyclic codes over R, ,, we need only to study the ideals of Z—(i‘g To

this end, for each 1 <17 <t, we define:
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o Yi(x) = B(wi(2)),
) Ry v |z]
¢ Ri= ey
] T[]
* S = mir
* 4(2) = 55
Since ¥;(x) = ®(w;(z)), the universal property of quotient rings guarantees that ® induces a unique
homomorphism
R, — S,
satisfying

O;(f(x) + (wi(2))) = @(f(x)) + (i(x)), Vf(2) € Ruolz]-

The following pairs of propositions will be used in the subsequent sections.
Proposition 3.2. The polynomial Z;(z) is a unit in S; and R;.

Proof. It suffices to prove that Z;(z) is coprime to w;(z) in R, ,[z] and to ¢;(x) in T,[z].
Since Z;(x) and z;(x)P" are coprime in F,m[z], there exist polynomials fi(z),g;(z) € Fpm|[z] such
that
fi(z)zi(@)P + gi(z)2(x) = 1.
Given that w;(z) = z;(z)P", we can write in R, ,[z]:
wi(7) = 2(2)"" + uhi(z) + vh)(2),

for some h;(z), hi(z) € R, [z]. Substituting this into the previous relation, we obtain in R, ,[z]:

fim)wi(z) + gi(x)2i(x) = 1+ uhi(z) fi(x) + vhi(2) fi(z). (2)

Since v and v are nilpotent in R, ,[z], the element 1+uh;(z)f;(x)+vhi(x) fi(x) is a unit in R, ,[z].
Consequently, w;(z) and Z;(x) are coprime in R, ,[z].
Now, applying ® to Eq. (2), we get:

O(fi(2))®(wi(x)) + (gi(2))@(2i(2)) = 1+ u®(h(x) fi(x))-
By definition of ®, we have ®(w;(x)) = ¢;(z) and ®(Z;(x)) = Z;(z), leading to:
O(fi(2))ilw) + B(g:(2))2:(x) = 1+ ub(h(z) fi(x)).

Since u is nilpotent in T, [z], the element 1 + u®(h}(z) f;(x)) is a unit in T,[z]. We conclude that
Yi(x) and Z;(x) are coprime in Ty, [x]. This proves that Z;(z) is a unit in both S; and R;, completing
the proof. n

Proposition 3.3. [3] In S;, we have the following properties:
o (zi(x)P") = (u), and thus z;(x) is nilpotent with nilpotency index kp®.

e The ring S; is a chain ring with the following ideal chain:

S = (1) 2 (zi(@)) 2+ 2 (zal@)™" ") 2 (zi(2)™") = (0). (3)

e Each ideal (z;(z)?) contains pe=m*»°=0) elements, for all 0 < j < kp®.
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4. The ring R; and its ideals

In this section, we classify the ideals of the ring R; and determine their cardinalities. We start with
the following proposition.

Proposition 4.1. Let I be an ideal of the ring R;. Then, it can be expressed as
I'=(zi(2)* +vf(z)) + v, (4)

where 0 < o < kp®, ®;(I) = (zi(x)*), and f(x) is a polynomial satisfying z;(x)* + vf(x) € I.
Moreover, the ideal J is defined as

J ={a(zx) € R; | va(x) € I}.

Proof. Let 0 < o < kp® and f(z) € R; such that ®;(I) = (z;(x)*) and z;(z)* + vf(z) € I. Then,
applying ®@;,
Qi(zi(2) +vf(x)) = z(x)".

For any g(x) € I, there exists h(z) € S; such that ®;(g(z)) = h(x)z;(x)*. By surjectivity of ®;,
there exists h'(x) € R; satisfying ®;(h'(x)) = h(z). Thus, we obtain ®;(g(z)) = ®;(h'(x))P;(z(z)* +
vf(x)), which implies that

g(z) — W (z)(zi(x)* +vf(z)) € ker(®;) N 1.

Consequently, we deduce
I C (zi(x)*+vf(x)) + ker(®;) N I.

Finally, since ker(®;) = vR;, it follows that

I ={z(x)*+vf(x)) + vl

The following theorem provides a complete classification of the distinct ideals of the ring R;.

Theorem 4.2. The distinct ideals of R; are classified as follows:
e Type 1: The trivial ideals (0) and (1).
o Type 2: Ideals of the form (vz;(z)*), where 0 < o < kp® — 1.
o Type 3: Ideals of the form (z;(z)* +vz;i(z)Pg(x)), where 1 < a <kp*—1,0< 3 < T, and g(x)

s either O or a unit in S;. The parameter Y is given by:

T = min {t | vz (2)" € (z:(2)* + vz(2) g(x)) } . (5)

e Type 4: Ideals of the form (zi(x)* + vz (x)Pg(x), vz:(x)°), where 0 < B < 6 < Y, and g(z) is
either 0 or a unit in S;. The parameter Y is the same as given in (5).

Proof. The Type 1 ideals are trivial. Let I be a non-trivial ideal of R;. We consider two cases:
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o If &,(I) = {0}, then by Proposition 4.1, I can be expressed as I = v.J, where

J ={a(z) € R; | va(x) € I}.

The set ®;(J) forms an ideal of S;, implying that ®;(J) = (z;(x)®) for some 0 < a < kp® — 1.
Applying Proposition 4.1 again, we obtain:

T = ()" 4 of (@) oK,
where K = {a(x) € R; | va(z) € J} and f(x) € R;. Given that v? = 0, it follows that
I = (vz;(2)").

This classifies I as Type 2.

If ®;(I) # {0}, we note that ®;(I) is a non-trivial ideal of S;, then ®;(I) = (z;(z)*), for some
1 < a < kp® —1. By Proposition 4.1, the ideal I satisfies

I={z(x)*+vf(z)) +vJ,

where f(z) € R; and
J ={a(z) € R; | va(zx) € I}.

Since vJ C (v), it follows that ®;(vJ) = {0}. As in the previous case, we have
v = (vzi(x)°),
for some 0 < § < kp®. Then I = (z;(2)* + vf(z),vz(z)?).
Considering ®;(f(z)) € S;, if ®;(f(x)) # 0, there exists a maximal 3 such that
Oi(f(2)) € (zi(2)7),  @ilf(@)) ¢ (z(x)™).

Thus, we write
Oi(f(2)) = zi(2) d(w),

where d(z) € S; is a unit. In R,;, we have
f(z) =vh(z) or f(zx)=2z(2)"d(z)+vh(),
for some h(x) € R;. Since v? = 0, we deduce

vf(z) =0 or wvf(xr)=vz(x)’d(z).

Consequently,

I = (z(2)" + vzi(2) g(2), vai(2)’),
where g(z) is either 0 or a unit in §;. Let T be as defined in Eq. (5). If 6 > Y, then [/
simplifies to (z;(x)® + vz;(x)?g(z)), corresponding to Type 3. Otherwise, if § < T, it remains
I = {z;(2)® +vzi(7)?g(z),vz(x)°), corresponding to Type 4.
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Before computing the value of T, we first establish the following lemma.

Lemma 4.3. In 'R;, we have
2i(2)"" = kp (E(x)ps)_l ()PP,
Proof. In R,,[z], with all computations carried out modulo 2" — X, we obtain:

(@) 2@) = (2 = A)"

= (yu+ )"

—Z<) yu)* ™ ()

= (yu)* +k (yu)" " ()
= kp (yu)*™!
=ku (x”ps — Ao)(kil) v.

(Y

The last step is justified by the fact that the v-terms in (:c’”’s — )\0)(1@—1)

by v, since v?> = 0. On the other hand, by Proposition 3.2, Z(x) is a unit in R;. Thus, in R;, we

vanish after multiplication

obtain:
(@) =y (3)) " (@ = 20) 0 = ke (B ),
0
Theorem 4.4. Let I = (z;(x)* + vzi(z)’g(x)) and define T = min {t | vz;(z)* € I}. Then,
a, if h(z) =
T= (6)
min{a, e}, if h(xz) #0.
where
£ = max {O <1< kp' | zi(2) TP g(2) + ku (E(I)ps)fl zi(z) B~V € <zz(x)l>} :
Thus, we can write
2@ g (@) 4k (B@)”) T (@) = zi(2)*h(w), (7)
where h(x) € S; is either 0 or a unit in S;.
Proof. Consider vz;(z)" € I, which is equivalent to
vai(a)' = f(2) (2i(2) +vzi(2) g(2)) (8)

for some f(z) € R;, applying ®; yields

O,(f(x)z(x)*=0 in S;.
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Since §; is a chain ring with maximal ideal (z;(x)) and nilpotency index kp®, we obtain
0i(f(2)) = zi(x)*" 7 f'(2),
with f'(z) € S;. Consequently, in R,
fla) = zi(@)" 7 f'(2) + v f" (@),
where f”(x) € R;. Substituting this into Eq. (8), we obtain:
vzi()' = (zi(@)" 70 (2) + 0 f"(2)) (2:(2)" +vzi(2) g (@) -
Expanding and using v? = 0, we get:
vai(w)' = z(2)" f'(2) + v f"(@)zi(2) + vzi(@)TTO0 f (2)g(2). (9)

Using Lemma 4.3,

zi(2)"" = kp (Z(2)P") ()P,

Replacing this in Eq. (9), we get:

vzi(@)' = v (5(@)" f(2) + (2:(0)" Py (@) + bp (o))

-1

5(@)" ) ().
Using Eq. (7), we obtain:
vzi(r)' = v (zi(2)" () + 2i(2) h(2) f'(2))

We now consider two cases:
e If h(x) =0, then T > a. Since

vzi(2)* = v (2(2)" + vz(z)g(2)) € 1,

it follows that T = a.
o If h(x) # 0, then T > min{a, e}. Conversely, we have:

vzi(2)* = v (2(2)" + vz(z)g(z)) € 1,

and
vzi(x)° = h(z) 2 () (zi(2)* 4 vzi(2)g(x)) € I

Therefore, T = min {a, €}.
[

We now count the number of codewords in each ideal of R;. For this, we introduce two notions:
the residue and the torsion of I.

Res(I) = ®;(I), Tor(I) ={c(z) € S; | ve(x) € T}.

Clearly, Res(I) and Tor(I) are ideals of S;. By Proposition 3.3, they can be expressed as (z;(z)'),
where 0 < [ < kp®. Now, consider the ring homomorphism

c(x) +— Pi(c(x)).
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Since ImT" = Res([) and ker T" = v Tor([), the first isomorphism theorem yields
1] = [Res(1)] - [Tor(I)]. (10)

The following lemma, whose proof is straightforward, provides explicit expressions for Res(I) and
Tor(I) for any ideal I in R,.

Lemma 4.5. With the notation of Theorem 4.2 :
o If I =(0), then Tor(l) = Res(I) = (0).
o If I = (1), then Tor(l) = Res(I) = (1).
If I = (vzi(x)*) is of type 2, then Tor(I) = (z;(x)*) and Res(I) = (0).
If I = (zi(2)* + vzi(2)Pg(x)) is of type 3, then Tor(I) = (z;(x)Y) and Res(I) = (z;(x)®).
If I = (zi(

zi()*+vzi(2)Pg(x), vzi(1)?) is of type 4, then Tor(I) = (z;(x)°) and Res(I) = (z;(z)?).

By determining Res(I) and Tor(/) in each case, we can compute the cardinalities of all ideals in
R; using Eq. (10) and Proposition 3.3.

5. Dual codes of A\-constacyclic codes over R,,

In this section, we focus on the dual codes of A-constacyclic codes of length np® over the ring R, ,.

By Theorem 3.1,
C = @ ei(z)l
i=1

where [; is an ideal of R; for 1 <i <r. By Eq. (1), we have

d(z) = ; ei(x) - d(z) € AC) & Ve(@) €O, (S ela)- d@:)) - (z ei(z) c(a:)) _ 0

=1

Ve(z) € C, ZT: ei(x)-d(z)-c(zx ) =0

=
i=1

& Ve(x) e CVie{l, .. r},e(x)-d(z)-c(z) =0

& Ve(x) e CVie{l,...,r},d(z)-c(r) =0in R;

& VYie{l,..r},dx) e A(lL).
Therefore,

A(C) = @) eul) A(L). (1)
i=1
Thus, by Proposition 2.5,
C+ = AC)" = er(z)A(L)”
=1

We aim to determine A(7)*, where [ is an ideal of R;. To this end, we first establish the following
three lemmas.

Lemma 5.1. Let I be an ideal of R;. Then, |I|-|A(I)|= |R|.
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Proof. Let C' = @’_, ¢;()I; be an ideal of Ry, where
I;=1 iftj=i, and I; = (1) otherwise.

Then, by Eq. (11), we obtain

r

AC) = Pes()J;

j=1
where

Ji=A(I) ifj=i, and J;=(0) otherwise.
According to Propositions 2.3 and 2.5, we have |C|-|A(C)|= |R,,|™ . Therefore,

( I IR - 1A= | Ro|™ .

1<5<r
J#i
It follows that
1A = e i
N
1<5<r
JF#i

Lemma 5.2. Let I be an ideal of R; and a,b two integers such that
Res(I) = (zi(z)*) and Tor(I) = (z(x)").

Then, we have:

Res(A(I)) = (zi(2)"" "),  Tor(A(I)) = (z(2)" ).

Proof. Let

Res(A(I)) = (z:(2)7), Tor(A(I)) = (z(2)),

where a’ and 0’ are two integers.
Since vz;(z)? € I and vz;(x)” € A(I), there exist two polynomials g(z) and f(z) in R; such that

a(@) +og(e) €1, z(2)" +vf(x) € A,
By the definition of A(I), we obtain:

0 =vz(x)" <z,~(x)“/ + vf(x)) = vz(z)" (12)

Similarly, we have:

0 = vzi(2)” (zi(2)* + vg(z)) = vag(x) o (13)
Therefore, we necessarily have:
a>kp’—b, V>kp®—a.

By Lemma 5.1, |I]-|A(I)|= |R;|, and by Proposition 3.3, we obtain
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m2kdegz; _deg z;m(kp*—(a+b+a’+b’ m2k deg z;
P gz_‘RZ‘_p g zim(kp®—( ))Sp g Zi

It follows that:
bV =kp®—a, d =kp’°—0.

Lemma 5.3. With the previous notation, we have:
AL = (z(2) 7 + o f (), vz (x)? ).

Proof. Firstly, it is clear that vz;(x)" ~* € A(I) and z;(2)* " + v f(z) € A(]).
Now, let ¢(z) € A(I). Then, we have ®;(c(x)) € Res(A([)), which implies that there exists
co(x) € S; such that:

@i(clw)) = o) 2u(2)” " = B (co(x) ((2)* ™ + 0 (2)) .

Therefore, we obtain:
c(z) = co(z) (2:(2)* " + v f(x)) € ker @;.

This implies that:
A(I) 3 e(z) — co() (z:(2) ™ + v f(2)) = ver (z),
where ¢;(x) € S;. Since ¢i(z) € Tor(A(I)) = (z;(x)* =), we deduce that:
c(z) € (zi(2)" P + v f(x), vz (x) ).
This shows that:
A(L) = (z:(2)" 0 4 v f (), vzg(x) 27,
[

We now proceed to determine the annihilator of each type of ideal. For type 1 ideals, this is
straightforward: if I = (0), then A(I) = (1); if I = (1), then A(J) = (0). For other types, we first
identify two integers a and b such that Res(I) = (z;(x)?) and Tor(I) = (z;(x)?), as given in Lemma
4.3. Once these values are determined, we find a polynomial f(x) satisfying z;(z)*" ~°+uv f(x) € A(I).
Finally, applying Lemma 5.3, we obtain A(7).

Proposition 5.4. If [ = (vz;(x)®) is an ideal of type 2, then A(I) = (z;(z)* = v).

Proof. It is clear that z;(x)* = € A(I). Therefore, we have A(I) = (z;(z)* =2, v).

Proposition 5.5. If [ = (z;(x)* + vz;(z)’g(x)) is an ideal of type 3, then:

(zi(2)7" =), if h(z) =0,
A(I) =
o) {(zi(x)kpsT —vzi(x)* Th(x), vz (2)k° =), if h(z) # 0.
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Proof. Since Tor(/) = (z;(x)T), it suffices to determine a polynomial f(z) € S; satisfying
zi(x)" T o f(x) € A().
By Theorem 4.4, we have
0= (2:(2)" T +of(2) (z:(2)* + vzi(2)’g(2))
)T o (2(2) T P g(2) + 2i(2)° f(2)
= H@) Ta @ v (3@ (@) + 5 (@) () (14)
D) DT L )T () 12 ()" (@)

I
<
—~
N
&

Q
=
+
™
=
Ol
_l’_
KN
—~
&
Q
=
8
=

We now distinguish two cases:
o If h(z) =0, then T = «, and Eq. (14) simplifies to

0 = vzi(w)* f(x).
In this case, choosing () = 0 leads to
A(I) = (z:(2)"" = vz (2)' =) = (z(a)"" ).
o If h(z) # 0, we take f(z) = —z(z)* Th(z), vielding
A(I) = (z(2)"" =" — vz,(2) Th(z), vz,(x) "=,

[
Proposition 5.6. If I = (z;(2)* + vzi(2)’g(x),vz:(x)°), an ideal of type 4, then:
A = | EET va(@)e), S hr) =0
(2(@)P" =0 — vzi(@)"°h(x), vz(x)P" =) . if h(z) # 0.
Proof. Since Tor(I) = (z;(x)°), it suffices to determine a polynomial f(z) € S; satisfying
Zi(x)" 70 o f(z) € AI).
Given that
(Zi(x)kps_‘; +vf(z)) (Uzi(x)kps_a) =0,
it suffices that
(2:(2)"" 0 + 0 f(2)) (2:(2)* + vzi(2)’g(z)) = 0.
By Theorem 4.4, this is equivalent to:
0 = Zz(x)kp St (2i(2) g (@) + i) f (@)
- zz(l“) ( )k” o ( i(@)7 0 g (@) + (@) f(2) (1)

|
/\

)60 ()5 () 24 (2) ()
(SC)O‘ ‘”Eh( )+Zz( ) f (@)
Then, we choose f(x) = —z;(z)*°h(x) if h(z) # 0 and f(x) = 0 if h(z) = 0, resulting in:
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o If h(z) =0,
A(T) = (i) vz =)

o If h(z) #0,
A(I) = (2;(2)"" 0 — vzy(2)" h(x), vz () 7).

]

We now determine A(/)* for any ideal in R;. If I is of type 1, then A(I)* = (0) when I = (0),
and A(I)* = (1) when I = (1). For other types, we introduce the following notation: Let

¥ =max {0 <1 <kp’ | glkp*—e)degzip (1) ¢ (zi(z)")} .

Then, we can write
x(kpsfs)degzih(xfl) — Zi(]f)ﬁh/(,f),

where h/(x) is either 0 or a unit in S;.

Corollary 5.7. If [ = (vz;(x)®) is an ideal of type 2, then A(I)* = (2} (z)"™ 2, v).

(2

Corollary 5.8. If I = (2;(2)* + vz(x)Pg(x)) is an ideal of type 3, then:

ALY = {<z;*<x>’“p:-a>7 - i) =o,
@) T o) TR (@), vz (@) 0) L if () 0.

1

7~
N

Proof. The result is immediate when h(xz) = 0. If h(z) # 0, we have

ALY = (e ()T — D9 T ) ot (0 )
(21T — =921 )T ), 02t (0 )
= <z§‘(a:)kp5*T —vz(2)* TR (2), vzj(x)kpsfa> :

0
Corollary 5.9. If I = (z;(x)* + vzi(7)%g(x),v2(2)°), an ideal of type 4, then:
gy = L@ v, i ) =0,
(2 (@)% —wzi(a) W (@), vz ()" ), if hz) #0.
Proof. It is similar to Corollary 5.8; it suffices to substitute T with 9. O

6. Hamming distance of A-constacyclic codes of length p* over R, ,

The Hamming weight of a codeword ¢, denoted by wtg(c), represents the number of nonzero com-
ponents in the vector c. The Hamming distance between two vectors ¢ and ¢, denoted by dg(c, ),
is defined as wty(c — ).

For a linear code C, the Hamming distance dg(C') is given by the minimum weight among all
nonzero codewords in C.
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In this section, we compute the Hamming distance of A-constacyclic codes of length p*® over the
ring R,,. We begin by establishing the structure of these codes, which can be derived from Theorem
4.2.

Corollary 6.1. \-constacyclic codes of length p® over the ring R, ,, i.e., ideals of

R, ,[7]
X’

can be classified as follows:
e Type 1: The trivial ideals (0) and (1).
e Type 2: Ideals of the form (v(z — 0)*), where 0 < o < kp® — 1.

e Type 3: Ideals of the form ((x — 0)® +v(z —0)?g(x)), where 1 <a <kp*—1,0< B <Y, and

g(x) is either O or a unit in %,.
e Type 4: Ideals of the form {(z — 0)* +v(x — 0)g(z),v(x — 0)°), where 0 < B < § < T, and

g(x) is either 0 or a unit in Tufz]

(xP® —XNo—yu) *
Moreover,
e if h(z) =0,
min{o, e}, if h(z) #0.
where

e=max {0 <1 <kp’ | (z— 0 B g () + kp(z — ) kD ¢ {((z—0)")}.

The following lemma establishes a relationship between the Hamming distance of a A-constacyclic
code and its torsion Tor(C').

Lemma 6.2. For any A-constacyclic code C' of length p° over R, ,, we have
dy(C) = dy(Tor(C)).

Proof. We first prove that dy(C) < dy(Tor(C)). Let a(xz) be a nonzero polynomial in Tor(C),
so that va(z) € C. Since a(x) does not involve v, both a(z) and va(z) share the same nonzero

coefficients, which implies
wty (va(z)) = wty(a(z)) # 0.

Hence, we obtain

To prove the reverse inequality, let f(z) € C be a nonzero polynomial, and decompose it as
f(x) = a(z) + vb(z),

where a(z), b(z) are polynomials that do not involve v.

e If a(z) =0, then b(x) € Tor(C), leading to

dy(Tor(C)) < wty(f(x)).
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o If a(x) # 0, then va(x) = vf(z) is a nonzero element of C. Hence, a(z) € Tor(C). Moreover,
a(x) and va(z) share the same nonzero components, while v f(x) has more zero components
than f(z). It follows that

du(Tor(C)) < wip(a(r)) = win(va(z)) < wty(f(x)).
Thus, we conclude that dy(Tor(C)) < du(C), completing the proof. O

The previous lemma reduces the computation of the Hamming distance of a A-constacyclic code
C of length p® over R, , to that of its torsion Tor(C'), which corresponds to a (A¢ + yv)-constacyclic
code of the same length over T,,.

Let C; = ((x—0)7) be a nonzero (A\g+7v)-constacyclic code of length p® over T,,, where 0 < 7 < p°k.
We distinguish two cases:

e If 0 <7 <p*(k—1), then the chain of inclusions
Cpsoy C---CCr C---CCy=(1)

implies
dig(Cpsk—1)) = -+ > du(Cr) > 1.

By Proposition 3.3, Cps(r—1) = (u*7!). Then, dy(Cps(x—1y) = 1, which implies that dy(C;) =1
forall 0 < 7 < p*(k —1).

o If ps(k—1)+1<7<pk—1, writing 7 = p*(k — 1) + ¢ with 1 < ¢ < p* — 1, we obtain
Cr = (0" Hx —0)°).

1

Thus, each C, corresponds to the A\g-constacyclic code ((x — 6)°) over F,m, multiplied by v¥~1

leading to

The Hamming distance of constacyclic codes of length p* over F,m is determined by the following
proposition.

Proposition 6.3. [9] Let C. = ((z — 6)°) be a A\o-constacyclic code of length p* over Fym, where
¢€{0,1,...,p°}. The Hamming distance dy(C.) is given by

(1, if ¢ =0,
w + 2, fop 1+1<¢<(@m+1)pt, 0<w<p-2

WCI= @+ 1P, i —p 7+ (- Dy +1<c<p —p 4o,

L0, if ¢ =p°.

Thus, we establish the following theorem.
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Theorem 6.4. Let C' be a A-constacyclic code of length p* over R, ,. Then, its Hamming distance
s given by

(1, fo<7t<pk—1) orc=0,
w + 2, fop '+1<c<(m+1)p*t, 0<w<p-—2,

)= @+ 1P, ifp —p7+ - Dp 7 + 1< <p = p + g

L0, if ¢ =p°,

where 0 < 7 < kp® satisfies Tor(C) = ((x — 0)7), and if 7 > p°(k — 1), then ¢ =7 — p°(k — 1).
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