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abstract

Let p be a prime number, and let k and m be positive integers with k ≥ 2. This paper studies

the algebraic structure of λ-constacyclic codes of arbitrary length over the �nite commutative ring

R =
Fpm [u,v]

⟨uk,v2,uv−vu⟩ , where λ is a unit in R given by λ =
k−1∑
i=0

λiu
i + v

k−1∑
i=0

λ′iu
i, with λi, λ

′
i ∈ Fpm and

λ0, λ1 ̸= 0. We provide a complete classi�cation of these constacyclic codes, determine their dual

structures, and compute their Hamming distances when the code length is ps.
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1. Introduction

Constacyclic codes play a crucial role in the theory of error-correcting codes, serving as a natural

extension of cyclic codes, which are among the most extensively studied code types. Let R be a

�nite commutative ring, and let λ be a unit in R. A λ-constacyclic code of length n over the ring

R can be represented as an ideal in the quotient ring R[x]
⟨xn−λ⟩ . This representation underscores the

signi�cance of constacyclic codes over rings as an important class of linear codes due to their rich

algebraic structure.

In recent years, there has been a growing research interest in the study of constacyclic codes.

However, the general classi�cation of constacyclic codes remains a challenging task. To date, only

a limited number of cases with speci�c lengths and de�ned over certain rings have been classi�ed.

Let R be a commutative ring. Dinh and López-Permouth [18] studied the structures of cyclic and

negacyclic codes of length n when n is not divisible by the characteristic of the residue �eld R̄.

Moreover, Cao [4] investigated the algebraic structure of (1 + wγ)-constacyclic codes of arbitrary
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length over a �nite commutative chain ring R, where w ∈ R×.

An important example of a �nite ring is R =
Fpm [u]

⟨uk⟩ = Fpm + uFpm + · · ·+ uk−1Fpm . The structure
of constacyclic codes over

Fpm [u]

⟨uk⟩ has been extensively studied in the literature. For k = 2, signi�cant

research has been devoted to cyclic and constacyclic codes of length n over the ring Fpm + uFpm for

various prime numbers p and positive integers n (cf. [10, 11, 15, 8, 14, 2]). For k ≥ 3, Kai et al. [20]

investigated (1 + λu)-constacyclic codes of arbitrary length over Fp[u]

⟨uk⟩ , where λ ∈ F×
p . Subsequently,

Cao et al. [6, 5] studied (δ + αu2)-constacyclic codes of arbitrary length over
Fpm [u]

⟨uk⟩ , focusing on the

case where k is an even integer and δ, α ∈ F×
pm . Sobhani [23] determined the structure of (δ + αu2)-

constacyclic codes of length ps over
Fpm [u]

⟨u3⟩ , where δ, α ∈ F×
pm . Moreover, Mahmoodi and Sobhani

[21] provided a complete classi�cation of (1 + αu2)-constacyclic codes of length ps over
Fpm [u]

⟨u4⟩ , where

α ∈ F×
pm .

Another important ring is R =
Fpm [u,v]

⟨u2,v2,uv−vu⟩ , which is local but not a chain ring, with units of the

form

λ1 = α, λ2 = α + δ1uv, λ3 = α + γv + δuv, λ4 = α + βu+ δuv, λ5 = α + βu+ γv + δuv,

where α, β, γ, δ1 ∈ F∗
pm and δ ∈ Fpm .

Dinh et al. [16] determined the algebraic structures of all constacyclic codes of length ps over R,

except for the λ2-constacyclic codes, later studied in [12]. For p = 2, Dinh et al. [17] classi�ed all

self-dual λ-constacyclic codes of length 2s over R corresponding to the units λ3, λ4, and λ5. In our

recent paper [1], we investigated the structure and duals of λ-constacyclic codes of length 2ps over R

for the units λ3, λ4, and λ5. Motivated by this, we aim to extend our previous results by classifying

λ-constacyclic codes of arbitrary length over

Ru,v =
Fpm [u, v]

⟨uk, v2, uv − vu⟩
,

with k ≥ 2, and λ given by

λ =
k−1∑
i=0

λiu
i + v

k−1∑
i=0

λ′iu
i,

where λi, λ
′
i ∈ Fpm and λ0, λ1 ̸= 0.

The paper is structured as follows. Section 2 introduces essential preliminaries on �nite rings

and fundamental concepts in constacyclic codes. Section 3 establishes a decomposition of each λ-

constacyclic code of arbitrary length over Ru,v as a direct sum of ideals over certain rings. These

rings are further examined in Section 4, where their ideals are classi�ed into four types. Section 5

investigates the structure of dual λ-constacyclic codes of arbitrary length over over Ru,v. Finally,

Section 6 determines their Hamming distance when the code length is ps.

2. Preliminaries

In this paper, all rings considered are associative and commutative. An ideal I of a ring R is called

principal if it is generated by a single element. A ring R is a principal ideal ring if each of its ideals

is principal. A ring R is called local if it has a unique maximal ideal. A chain ring is a ring whose

ideals are totally ordered by inclusion. A ring R is said to be Frobenius if R
J(R)

is isomorphic (as an

R-module) to soc(R), where J(R) denotes the Jacobson radical of R and soc(R) its socle.
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Let R be a �nite local commutative ring with maximal ideal M and residue �eld R = R
M
. For

any polynomial f(x) ∈ R[x], we denote by f(x) the polynomial in R[x] obtained by reducing each

coe�cient of f(x) modulo M . Two polynomials f1(x), f2(x) ∈ R[x] are said to be coprime if there

exist polynomials g1(x), g2(x) ∈ R[x] such that

f1(x)g1(x) + f2(x)g2(x) = 1.

A polynomial f(x) ∈ R[x] is said to be regular if it is not a zero divisor; equivalently, f(x) ̸= 0 in

R[x] (see [22]).

The following result is a well-known property of �nite commutative chain rings.

Proposition 2.1. [18] Let R be a �nite commutative ring. The following conditions are equivalent:

(a) R is a local ring whose maximal ideal M is principal (i.e., M = ⟨Γ⟩ for some element Γ ∈ R).

(b) R is a local principal ideal ring.

(c) R is a chain ring whose ideals are ⟨Γi⟩ for 0 ≤ i ≤ t, where t is the nilpotency index of Γ.

Moreover, for each 0 ≤ i ≤ t, the cardinality of the ideal ⟨Γi⟩ is given by

|⟨Γi⟩| =

∣∣∣∣ RM
∣∣∣∣ t−i .

A linear code C of length n over a ring R is an R-submodule of Rn. Let λ be a unit in R. A linear

code C of length n over R is called a λ-constacyclic code if it satis�es the following condition:

(c0, c1, . . . , cn−1) ∈ C =⇒ (λcn−1, c0, . . . , cn−2) ∈ C.

Each codeword c = (c0, c1, . . . , cn−1) ∈ C can be represented as a polynomial c(x) = c0 + c1x +

· · ·+ cn−1x
n−1. This identi�cation leads us to the following proposition.

Proposition 2.2. [19] A code C of length n over R is a λ-constacyclic code if and only if C is an

ideal of R[x]
⟨xn−λ⟩ .

For n-tuples a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1) in R
n, their inner product is de�ned

as

a · b = a0b0 + a1b1 + · · ·+ an−1bn−1.

Two n-tuples a and b are considered orthogonal if a · b = 0. The dual code C⊥ of a linear code C of

length n over a ring R is de�ned as

C⊥ = {a ∈ Rn | a · b = 0 for all b ∈ C} .

The following proposition is well known.

Proposition 2.3. [24] Consider a linear code C of length n over a �nite Frobenius ring R. Then,

|C|·|C⊥|= |R|n.

In general, the dual of a λ-constacyclic code satis�es the following proposition.

Proposition 2.4. [10] The dual of a λ-constacyclic code is a λ−1-constacyclic code.
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The annihilator of an ideal I in a ring R, denoted as A(I), is de�ned as

A(I) = {a ∈ R | ab = 0 for all b ∈ I}.

For any polynomial f(x) = a0 + a1x + . . . + alx
l ∈ R[x] with al ̸= 0, the reciprocal polynomial

f ∗(x) is de�ned as

f ∗(x) = xlf(x−1) = al + al−1x+ . . .+ a0x
l.

The following proposition establishes a relationship between the dual and the annihilator of a

λ-constacyclic code.

Proposition 2.5. [13] Let C be a λ-constacyclic code of length n over R, i.e., an ideal of R[x]
⟨xn−λ⟩ .

Then,

C⊥ = A(C)∗ := {f ∗(x) | f(x) ∈ A(C)}.

Throughout this paper, we consider the rings:

Ru,v =
Fpm [u, v]

⟨uk, v2, uv − vu⟩
, Tu =

Fpm [u]
⟨uk⟩

,

where p is a prime number, and m, k are positive integers. The Jacobson radical and the socle of

Ru,v are given by:

J(Ru,v) = ⟨u, v⟩, soc(Ru,v) = ⟨uv⟩.
Moreover, the quotient ring Ru,v

J(Ru,v)
is isomorphic to soc(Ru,v) as an Ru,v-module via the natural

isomorphism:

r + J(Ru,v) 7 −→ ruv,

for any r ∈ Ru,v. Thus, Ru,v is a Frobenius ring.

Each unit in Ru,v has the form:

λ =
k−1∑
i=0

λiu
i + v

k−1∑
i=0

λ′iu
i,

which can be rewritten as:

λ = λ0 + γu+ µv,

where λi, λ
′
i ∈ Fpm and λ0, λ1 ̸= 0, with:

γ = λ1 + λ2u+ · · ·+ λk−1u
k−2, µ = λ′0 + λ′1u+ · · ·+ λ′k−1u

k−1.

Throughout this article, we assume λ1 ̸= 0, which ensures that γ is a unit in Tu.

Let s be a positive integer. Using the division algorithm, we write s = qsm+ rs with 0 ≤ rs < m.

Since λp
m

0 = λ0, we de�ne:

θ = λp
m−rs

0 = λp
(qs+1)m−s

0 .

It follows that θp
s
= λ0.

Our objective is to study λ-constacyclic codes of length ηps over Ru,v, where η is an integer coprime

to p. By Proposition 2.2, these codes correspond to the ideals of the ring:

Rλ :=
Ru,v[x]

⟨xηps − λ⟩
.

The following ring homomorphisms will be used in subsequent sections:

Φ : Ru,v[x] → Tu[x], f(x) 7→ f(x) mod v,

· : Ru,v[x] → Fpm [x], f(x) 7→ f(x) mod (u, v).
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3. Direct sum decomposition of λ-constacyclic codes over Ru,v

Since η is coprime with p, the polynomial xη − θ has a unique factorization in Fpm [x]:

xη − θ = z1(x)z2(x) . . . zr(x),

where the factors are monic, irreducible, and pairwise coprime. Raising both sides to ps gives:

xηp
s − λ0 = z1(x)

psz2(x)
ps . . . zr(x)

ps .

Since Ru,v is a �nite local ring and xηp
s − λ is a regular element in Ru,v[x], Hensel's Lemma [22]

ensures the existence of a unique factorization

xηp
s − λ = ω1(x)ω2(x) . . . ωr(x),

where ω1(x), . . . , ωr(x) are monic and pairwise coprime polynomials in Ru,v[x]. Moreover, for each

i = 1, . . . , r,

ωi(x) = zi(x)
ps .

De�ning ω̂i(x) =
xηp

s−λ
ωi(x)

, it follows that ω̂i(x) and ωi(x) are coprime. Hence, there exist polynomials

li(x), l
′
i(x) ∈ Ru,v[x] such that:

li(x)ω̂i(x) + l′i(x)ωi(x) = 1.

Setting ei(x) = li(x)ω̂i(x), it follows from [7, Theorem 3.2] that the following properties hold:

� The set {e1(x), e2(x), . . . , er(x)} forms a complete system of primitive pairwise orthogonal idem-

potents, meaning that

r∑
i=1

ei(x) = 1, ei(x)ej(x) = 0 for i ̸= j, ei(x)
2 = ei(x). (1)

� The ring Rλ decomposes as

Rλ =
r⊕
i=1

ei(x)Rλ.

� For each i, the mapping

πi :
Ru,v[x]

⟨ωi(x)⟩
→ ei(x)Rλ, πi(c(x)) = ei(x)c(x),

is a ring isomorphism.

As a consequence, we obtain the following theorem.

Theorem 3.1. A subset C of Rλ is an ideal if and only if

C =
r⊕
i=1

ei(x)Ii,

where Ii is an ideal of Ru,v [x]

⟨ωi(x)⟩ .

Thus, to classify all λ-constacyclic codes over Ru,v, we need only to study the ideals of Ru,v [x]

⟨ωi(x)⟩ . To

this end, for each 1 ≤ i ≤ t, we de�ne:
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� ψi(x) = Φ(ωi(x)),

� Ri =
Ru,v [x]

⟨ωi(x)⟩ ,

� Si = Tu[x]
⟨ψi(x)⟩ ,

� ẑi(x) =
xη−θ
zi(x)

.

Since ψi(x) = Φ(ωi(x)), the universal property of quotient rings guarantees that Φ induces a unique

homomorphism

Φi : Ri → Si,

satisfying

Φi(f(x) + ⟨ωi(x)⟩) = Φ(f(x)) + ⟨ψi(x)⟩, ∀f(x) ∈ Ru,v[x].

The following pairs of propositions will be used in the subsequent sections.

Proposition 3.2. The polynomial ẑi(x) is a unit in Si and Ri.

Proof. It su�ces to prove that ẑi(x) is coprime to ωi(x) in Ru,v[x] and to ψi(x) in Tu[x].

Since ẑi(x) and zi(x)
ps are coprime in Fpm [x], there exist polynomials fi(x), gi(x) ∈ Fpm [x] such

that

fi(x)zi(x)
ps + gi(x)ẑi(x) = 1.

Given that ωi(x) = zi(x)
ps , we can write in Ru,v[x]:

ωi(x) = zi(x)
ps + uhi(x) + vh′i(x),

for some hi(x), h
′
i(x) ∈ Ru,v[x]. Substituting this into the previous relation, we obtain in Ru,v[x]:

fi(x)ωi(x) + gi(x)ẑi(x) = 1 + uhi(x)fi(x) + vh′i(x)fi(x). (2)

Since u and v are nilpotent in Ru,v[x], the element 1+uhi(x)fi(x)+vh
′
i(x)fi(x) is a unit in Ru,v[x].

Consequently, ωi(x) and ẑi(x) are coprime in Ru,v[x].

Now, applying Φ to Eq. (2), we get:

Φ(fi(x))Φ(ωi(x)) + Φ(gi(x))Φ(ẑi(x)) = 1 + uΦ(h(x)fi(x)).

By de�nition of Φ, we have Φ(ωi(x)) = ψi(x) and Φ(ẑi(x)) = ẑi(x), leading to:

Φ(fi(x))ψi(x) + Φ(gi(x))ẑi(x) = 1 + uΦ(h(x)fi(x)).

Since u is nilpotent in Tu[x], the element 1 + uΦ(h′i(x)fi(x)) is a unit in Tu[x]. We conclude that

ψi(x) and ẑi(x) are coprime in Tu[x]. This proves that ẑi(x) is a unit in both Si and Ri, completing

the proof.

Proposition 3.3. [3] In Si, we have the following properties:

� ⟨zi(x)p
s⟩ = ⟨u⟩, and thus zi(x) is nilpotent with nilpotency index kps.

� The ring Si is a chain ring with the following ideal chain:

Si = ⟨1⟩ ⊋ ⟨zi(x)⟩ ⊋ · · · ⊋ ⟨zi(x)kp
s−1⟩ ⊋ ⟨zi(x)kp

s⟩ = ⟨0⟩. (3)

� Each ideal ⟨zi(x)j⟩ contains pdeg zim(kps−j) elements, for all 0 ≤ j ≤ kps.
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4. The ring Ri and its ideals

In this section, we classify the ideals of the ring Ri and determine their cardinalities. We start with

the following proposition.

Proposition 4.1. Let I be an ideal of the ring Ri. Then, it can be expressed as

I = ⟨zi(x)α + vf(x)⟩+ vJ, (4)

where 0 ≤ α ≤ kps, Φi(I) = ⟨zi(x)α⟩, and f(x) is a polynomial satisfying zi(x)
α + vf(x) ∈ I.

Moreover, the ideal J is de�ned as

J = {a(x) ∈ Ri | va(x) ∈ I}.

Proof. Let 0 ≤ α ≤ kps and f(x) ∈ Ri such that Φi(I) = ⟨zi(x)α⟩ and zi(x)α + vf(x) ∈ I. Then,

applying Φi,

Φi(zi(x)
α + vf(x)) = zi(x)

α.

For any g(x) ∈ I, there exists h(x) ∈ Si such that Φi(g(x)) = h(x)zi(x)
α. By surjectivity of Φi,

there exists h′(x) ∈ Ri satisfying Φi(h
′(x)) = h(x). Thus, we obtain Φi(g(x)) = Φi(h

′(x))Φi(zi(x)
α+

vf(x)), which implies that

g(x)− h′(x)(zi(x)
α + vf(x)) ∈ ker(Φi) ∩ I.

Consequently, we deduce

I ⊆ ⟨zi(x)α + vf(x)⟩+ ker(Φi) ∩ I.

Finally, since ker(Φi) = vRi, it follows that

I = ⟨zi(x)α + vf(x)⟩+ vJ.

The following theorem provides a complete classi�cation of the distinct ideals of the ring Ri.

Theorem 4.2. The distinct ideals of Ri are classi�ed as follows:

� Type 1: The trivial ideals ⟨0⟩ and ⟨1⟩.

� Type 2: Ideals of the form ⟨vzi(x)α⟩, where 0 ≤ α ≤ kps − 1.

� Type 3: Ideals of the form ⟨zi(x)α+ vzi(x)
βg(x)⟩, where 1 ≤ α ≤ kps− 1, 0 ≤ β < Υ, and g(x)

is either 0 or a unit in Si. The parameter Υ is given by:

Υ = min
{
t | vzi(x)t ∈ ⟨zi(x)α + vzi(x)

βg(x)⟩
}
. (5)

� Type 4: Ideals of the form ⟨zi(x)α + vzi(x)
βg(x), vzi(x)

δ⟩, where 0 ≤ β < δ < Υ, and g(x) is

either 0 or a unit in Si. The parameter Υ is the same as given in (5).

Proof. The Type 1 ideals are trivial. Let I be a non-trivial ideal of Ri. We consider two cases:
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� If Φi(I) = {0}, then by Proposition 4.1, I can be expressed as I = vJ , where

J = {a(x) ∈ Ri | va(x) ∈ I}.

The set Φi(J) forms an ideal of Si, implying that Φi(J) = ⟨zi(x)α⟩ for some 0 ≤ α ≤ kps − 1.

Applying Proposition 4.1 again, we obtain:

J = ⟨zi(x)α + vf(x)⟩+ vK,

where K = {a(x) ∈ Ri | va(x) ∈ J} and f(x) ∈ Ri. Given that v2 = 0, it follows that

I = ⟨vzi(x)α⟩.

This classi�es I as Type 2.

� If Φi(I) ̸= {0}, we note that Φi(I) is a non-trivial ideal of Si, then Φi(I) = ⟨zi(x)α⟩, for some

1 ≤ α ≤ kps − 1. By Proposition 4.1, the ideal I satis�es

I = ⟨zi(x)α + vf(x)⟩+ vJ,

where f(x) ∈ Ri and

J = {a(x) ∈ Ri | va(x) ∈ I}.

Since vJ ⊆ ⟨v⟩, it follows that Φi(vJ) = {0}. As in the previous case, we have

vJ = ⟨vzi(x)δ⟩,

for some 0 ≤ δ ≤ kps. Then I = ⟨zi(x)α + vf(x), vzi(x)
δ⟩.

Considering Φi(f(x)) ∈ Si, if Φi(f(x)) ̸= 0, there exists a maximal β such that

Φi(f(x)) ∈ ⟨zi(x)β⟩, Φi(f(x)) /∈ ⟨zi(x)β+1⟩.

Thus, we write

Φi(f(x)) = zi(x)
βd(x),

where d(x) ∈ Si is a unit. In Ri, we have

f(x) = vh(x) or f(x) = zi(x)
βd(x) + vh(x),

for some h(x) ∈ Ri. Since v
2 = 0, we deduce

vf(x) = 0 or vf(x) = vzi(x)
βd(x).

Consequently,

I = ⟨zi(x)α + vzi(x)
βg(x), vzi(x)

δ⟩,

where g(x) is either 0 or a unit in Si. Let Υ be as de�ned in Eq. (5). If δ ≥ Υ, then I

simpli�es to ⟨zi(x)α + vzi(x)
βg(x)⟩, corresponding to Type 3. Otherwise, if δ < Υ, it remains

I = ⟨zi(x)α + vzi(x)
βg(x), vzi(x)

δ⟩, corresponding to Type 4.
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Before computing the value of Υ, we �rst establish the following lemma.

Lemma 4.3. In Ri, we have

zi(x)
kps = kµ

(
ẑ(x)p

s)−1
zi(x)

(k−1)psv.

Proof. In Rv,v[x], with all computations carried out modulo xηp
s − λ, we obtain:

zi(x)
kps ẑ(x)kp

s

=
(
xηp

s − λ0
)k

= (γu+ µv)k

=
k∑
l=0

(
k

l

)
(γu)k−l (µv)l

= (γu)k + k (γu)k−1 (µv)

= kµ (γu)k−1 v

= kµ
(
xηp

s − λ0
)(k−1)

v.

The last step is justi�ed by the fact that the v-terms in
(
xηp

s − λ0
)(k−1)

vanish after multiplication

by v, since v2 = 0. On the other hand, by Proposition 3.2, ẑ(x) is a unit in Ri. Thus, in Ri, we

obtain:

zi(x)
kps = kµ

(
ẑ(x)kp

s)−1 (
xηp

s − λ0
)(k−1)

v = kµ
(
ẑ(x)p

s)−1
zi(x)

(k−1)psv.

Theorem 4.4. Let I = ⟨zi(x)α + vzi(x)
βg(x)⟩ and de�ne Υ = min {t | vzi(x)t ∈ I} . Then,

Υ =

α, if h(x) = 0,

min{α, ε}, if h(x) ̸= 0.
(6)

where

ε = max
{
0 ≤ l ≤ kps | zi(x)kp

s+β−αg(x) + kµ
(
ẑ(x)p

s)−1
zi(x)

(k−1)ps ∈
〈
zi(x)

l
〉}

.

Thus, we can write

zi(x)
kps+β−αg(x) + kµ

(
ẑ(x)p

s)−1
zi(x)

(k−1)ps = zi(x)
εh(x), (7)

where h(x) ∈ Si is either 0 or a unit in Si.

Proof. Consider vzi(x)
t ∈ I, which is equivalent to

vzi(x)
t = f(x)

(
zi(x)

α + vzi(x)
βg(x)

)
, (8)

for some f(x) ∈ Ri, applying Φi yields

Φi(f(x))zi(x)
α = 0 in Si.
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Since Si is a chain ring with maximal ideal ⟨zi(x)⟩ and nilpotency index kps, we obtain

Φi(f(x)) = zi(x)
kps−αf ′(x),

with f ′(x) ∈ Si. Consequently, in Ri,

f(x) = zi(x)
kps−αf ′(x) + vf ′′(x),

where f ′′(x) ∈ Ri. Substituting this into Eq. (8), we obtain:

vzi(x)
t =

(
zi(x)

kps−αf ′(x) + vf ′′(x)
) (
zi(x)

α + vzi(x)
βg(x)

)
.

Expanding and using v2 = 0, we get:

vzi(x)
t = zi(x)

kpsf ′(x) + vf ′′(x)zi(x)
α + vzi(x)

kps−α+βf ′(x)g(x). (9)

Using Lemma 4.3,

zi(x)
kps = kµ

(
ẑ(x)p

s)−1
zi(x)

(k−1)psv.

Replacing this in Eq. (9), we get:

vzi(x)
t = v

(
zi(x)

αf ′′(x) +
(
zi(x)

kps−α+βg(x) + kµ
(
ẑ(x)p

s)−1
zi(x)

(k−1)ps
)
f ′(x)

)
.

Using Eq. (7), we obtain:

vzi(x)
t = v (zi(x)

αf ′′(x) + zi(x)
εh(x)f ′(x)) .

We now consider two cases:

� If h(x) = 0, then Υ ≥ α. Since

vzi(x)
α = v

(
zi(x)

α + vzi(x)
βg(x)

)
∈ I,

it follows that Υ = α.

� If h(x) ̸= 0, then Υ ≥ min{α, ε}. Conversely, we have:

vzi(x)
α = v

(
zi(x)

α + vzi(x)
βg(x)

)
∈ I,

and

vzi(x)
ε = h(x)−1zi(x)

kps−α (zi(x)α + vzi(x)
βg(x)

)
∈ I.

Therefore, Υ = min {α, ε}.

We now count the number of codewords in each ideal of Ri. For this, we introduce two notions:

the residue and the torsion of I.

Res(I) = Φi(I), Tor(I) = {c(x) ∈ Si | vc(x) ∈ I}.

Clearly, Res(I) and Tor(I) are ideals of Si. By Proposition 3.3, they can be expressed as ⟨zi(x)l⟩,
where 0 ≤ l ≤ kps. Now, consider the ring homomorphism

T : I −→ Φi(I),

c(x) 7 −→ Φi(c(x)).
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Since ImT = Res(I) and kerT ∼= vTor(I), the �rst isomorphism theorem yields

|I| = |Res(I)| · |Tor(I)|. (10)

The following lemma, whose proof is straightforward, provides explicit expressions for Res(I) and

Tor(I) for any ideal I in Ri.

Lemma 4.5. With the notation of Theorem 4.2 :

� If I = ⟨0⟩, then Tor(I) = Res(I) = ⟨0⟩.

� If I = ⟨1⟩, then Tor(I) = Res(I) = ⟨1⟩.

� If I = ⟨vzi(x)α⟩ is of type 2, then Tor(I) = ⟨zi(x)α⟩ and Res(I) = ⟨0⟩.

� If I = ⟨zi(x)α + vzi(x)
βg(x)⟩ is of type 3, then Tor(I) = ⟨zi(x)Υ⟩ and Res(I) = ⟨zi(x)α⟩.

� If I = ⟨zi(x)α+vzi(x)βg(x), vzi(x)δ⟩ is of type 4, then Tor(I) = ⟨zi(x)δ⟩ and Res(I) = ⟨zi(x)α⟩.

By determining Res(I) and Tor(I) in each case, we can compute the cardinalities of all ideals in

Ri using Eq. (10) and Proposition 3.3.

5. Dual codes of λ-constacyclic codes over Rv,v

In this section, we focus on the dual codes of λ-constacyclic codes of length ηps over the ring Rv,v.

By Theorem 3.1,

C =
r⊕
i=1

ei(x)Ii,

where Ii is an ideal of Ri for 1 ≤ i ≤ r. By Eq. (1), we have

d(x) =
r∑
i=1

ei(x) · d(x) ∈ A(C) ⇔ ∀c(x) ∈ C,

(
r∑
i=1

ei(x) · d(x)
)
·
(

r∑
i=1

ei(x) · c(x)
)

= 0

⇔ ∀c(x) ∈ C,

(
r∑
i=1

ei(x) · d(x) · c(x)
)

= 0

⇔ ∀c(x) ∈ C, ∀i ∈ {1, ..., r}, ei(x) · d(x) · c(x) = 0

⇔ ∀c(x) ∈ C, ∀i ∈ {1, ..., r}, d(x) · c(x) = 0 in Ri

⇔ ∀i ∈ {1, ..., r}, d(x) ∈ A(Ii).

Therefore,

A(C) =
r⊕
i=1

ei(x)A(Ii). (11)

Thus, by Proposition 2.5,

C⊥ = A(C)∗ =
r⊕
i=1

e∗i (x)A(Ii)
∗.

We aim to determine A(I)∗, where I is an ideal of Ri. To this end, we �rst establish the following

three lemmas.

Lemma 5.1. Let I be an ideal of Ri. Then, |I|·|A(I)|= |Ri|.
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Proof. Let C =
⊕r

j=1 ej(x)Ij be an ideal of Rλ, where

Ij = I if j = i, and Ij = ⟨1⟩ otherwise.

Then, by Eq. (11), we obtain

A(C) =
r⊕
j=1

ej(x)Jj,

where

Jj = A(I) if j = i, and Jj = ⟨0⟩ otherwise.

According to Propositions 2.3 and 2.5, we have |C|·|A(C)|= |Rv,v|ηp
s
. Therefore,

(
∏

1≤j≤r
j ̸=i

|Rj|) · |I|·|A(I)|= |Rv,v|ηp
s

.

It follows that

|I|·|A(I)|= |Rv,v|ηp
s∏

1≤j≤r
j ̸=i

|Rj|
= |Ri|.

Lemma 5.2. Let I be an ideal of Ri and a, b two integers such that

Res(I) = ⟨zi(x)a⟩ and Tor(I) = ⟨zi(x)b⟩.

Then, we have:

Res(A(I)) = ⟨zi(x)kp
s−b⟩, Tor(A(I)) = ⟨zi(x)kp

s−a⟩.

Proof. Let

Res(A(I)) = ⟨zi(x)a
′⟩, Tor(A(I)) = ⟨zi(x)b

′⟩,

where a′ and b′ are two integers.

Since vzi(x)
b ∈ I and vzi(x)

b′ ∈ A(I), there exist two polynomials g(x) and f(x) in Ri such that

zi(x)
a + vg(x) ∈ I, zi(x)

a′ + vf(x) ∈ A(I).

By the de�nition of A(I), we obtain:

0 = vzi(x)
b
(
zi(x)

a′ + vf(x)
)
= vzi(x)

b+a′ . (12)

Similarly, we have:

0 = vzi(x)
b′ (zi(x)

a + vg(x)) = vzi(x)
b′+a. (13)

Therefore, we necessarily have:

a′ ≥ kps − b, b′ ≥ kps − a.

By Lemma 5.1, |I|·|A(I)|= |Ri|, and by Proposition 3.3, we obtain
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pm2k deg zi = |Ri|= pdeg zim(kps−(a+b+a′+b′)) ≤ pm2k deg zi

It follows that:

b′ = kps − a, a′ = kps − b.

Lemma 5.3. With the previous notation, we have:

A(I) = ⟨zi(x)kp
s−b + vf(x), vzi(x)

kps−a⟩.

Proof. Firstly, it is clear that vzi(x)
kps−a ∈ A(I) and zi(x)

kps−b + vf(x) ∈ A(I).

Now, let c(x) ∈ A(I). Then, we have Φi(c(x)) ∈ Res(A(I)), which implies that there exists

c0(x) ∈ Si such that:

Φi(c(x)) = c0(x)zi(x)
kps−b = Φi

(
c0(x)

(
zi(x)

kps−b + vf(x)
))
.

Therefore, we obtain:

c(x)− c0(x)
(
zi(x)

kps−b + vf(x)
)
∈ kerΦi.

This implies that:

A(I) ∋ c(x)− c0(x)
(
zi(x)

kps−a + vf(x)
)
= vc1(x),

where c1(x) ∈ Si. Since c1(x) ∈ Tor(A(I)) = ⟨zi(x)kp
s−a⟩, we deduce that:

c(x) ∈ ⟨zi(x)kp
s−b + vf(x), vzi(x)

kps−a⟩.

This shows that:

A(I) = ⟨zi(x)kp
s−b + vf(x), vzi(x)

kps−a⟩.

We now proceed to determine the annihilator of each type of ideal. For type 1 ideals, this is

straightforward: if I = ⟨0⟩, then A(I) = ⟨1⟩; if I = ⟨1⟩, then A(I) = ⟨0⟩. For other types, we �rst
identify two integers a and b such that Res(I) = ⟨zi(x)a⟩ and Tor(I) = ⟨zi(x)b⟩, as given in Lemma

4.3. Once these values are determined, we �nd a polynomial f(x) satisfying zi(x)
kps−b+vf(x) ∈ A(I).

Finally, applying Lemma 5.3, we obtain A(I).

Proposition 5.4. If I = ⟨vzi(x)α⟩ is an ideal of type 2, then A(I) = ⟨zi(x)kp
s−α, v⟩.

Proof. It is clear that zi(x)
kps−α ∈ A(I). Therefore, we have A(I) = ⟨zi(x)kp

s−α, v⟩.

Proposition 5.5. If I = ⟨zi(x)α + vzi(x)
βg(x)⟩ is an ideal of type 3, then:

A(I) =

{〈
zi(x)

kps−α〉 , if h(x) = 0,

⟨zi(x)kp
s−Υ − vzi(x)

ε−Υh(x), vzi(x)
kps−α⟩, if h(x) ̸= 0.
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Proof. Since Tor(I) = ⟨zi(x)Υ⟩, it su�ces to determine a polynomial f(x) ∈ Si satisfying

zi(x)
kps−Υ + vf(x) ∈ A(I).

By Theorem 4.4, we have

0 =
(
zi(x)

kps−Υ + vf(x)
) (
zi(x)

α + vzi(x)
βg(x)

)
= zi(x)

kps−Υ+α + v
(
zi(x)

kps−Υ+βg(x) + zi(x)
αf(x)

)
= zi(x)

α−Υzi(x)
kps + v

(
zi(x)

kps−Υ+βg(x) + zi(x)
αf(x)

)
= v

(
kµ

(
ẑ(x)p

s)−1
zi(x)

(k−1)ps+α−Υ + zi(x)
kps−Υ+βg(x) + zi(x)

αf(x)
)

= v
(
zi(x)

α−Υ+εh(x) + zi(x)
αf(x)

)
.

(14)

We now distinguish two cases:

� If h(x) = 0, then Υ = α, and Eq. (14) simpli�es to

0 = vzi(x)
αf(x).

In this case, choosing f(x) = 0 leads to

A(I) = ⟨zi(x)kp
s−α, vzi(x)

kps−α⟩ = ⟨zi(x)kp
s−α⟩.

� If h(x) ̸= 0, we take f(x) = −zi(x)ε−Υh(x), yielding

A(I) = ⟨zi(x)kp
s−Υ − vzi(x)

ε−Υh(x), vzi(x)
kps−α⟩.

Proposition 5.6. If I = ⟨zi(x)α + vzi(x)
βg(x), vzi(x)

δ⟩, an ideal of type 4, then:

A(I) =

{〈
zi(x)

kps−δ, vzi(x)
kps−α〉 , if h(x) = 0,〈

zi(x)
kps−δ − vzi(x)

ε−δh(x), vzi(x)
kps−α〉 , if h(x) ̸= 0.

Proof. Since Tor(I) = ⟨zi(x)δ⟩, it su�ces to determine a polynomial f(x) ∈ Si satisfying

zi(x)
kps−δ + vf(x) ∈ A(I).

Given that (
zi(x)

kps−δ + vf(x)
) (
vzi(x)

kps−α) = 0,

it su�ces that (
zi(x)

kps−δ + vf(x)
) (
zi(x)

α + vzi(x)
βg(x)

)
= 0.

By Theorem 4.4, this is equivalent to:

0 = zi(x)
kps−δ+α + v

(
zi(x)

kps−δ+βg(x) + zi(x)
αf(x)

)
= zi(x)

α−δzi(x)
kps + v

(
zi(x)

kps−δ+βg(x) + zi(x)
αf(x)

)
= v

(
kµ

(
ẑ(x)p

s)−1
zi(x)

(k−1)ps+α−δ + zi(x)
kps−δ+βg(x) + zi(x)

αf(x)
)

= v
(
zi(x)

α−δ+εh(x) + zi(x)
αf(x)

)
.

(15)

Then, we choose f(x) = −zi(x)ε−δh(x) if h(x) ̸= 0 and f(x) = 0 if h(x) = 0, resulting in:
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� If h(x) = 0,

A(I) =
〈
zi(x)

kps−δ, vzi(x)
kps−α〉 .

� If h(x) ̸= 0,

A(I) =
〈
zi(x)

kps−δ − vzi(x)
ε−δh(x), vzi(x)

kps−α〉 .
We now determine A(I)∗ for any ideal in Ri. If I is of type 1, then A(I)∗ = ⟨0⟩ when I = ⟨0⟩,

and A(I)∗ = ⟨1⟩ when I = ⟨1⟩. For other types, we introduce the following notation: Let

ϑ = max
{
0 ≤ l ≤ kps | x(kps−ε) deg zih(x−1) ∈

〈
zi(x)

l
〉}
.

Then, we can write

x(kp
s−ε) deg zih(x−1) = zi(x)

ϑh′(x),

where h′(x) is either 0 or a unit in Si.

Corollary 5.7. If I = ⟨vzi(x)α⟩ is an ideal of type 2, then A(I)∗ = ⟨z∗i (x)kp
s−α, v⟩.

Corollary 5.8. If I = ⟨zi(x)α + vzi(x)
βg(x)⟩ is an ideal of type 3, then:

A(I)∗ =

{〈
z∗i (x)

kps−α〉 , if h(x) = 0,〈
z∗i (x)

kps−Υ − vzi(x)
ε−Υ+ϑh′(x), vz∗i (x)

kps−α〉 , if h(x) ̸= 0.

Proof. The result is immediate when h(x) = 0. If h(x) ̸= 0, we have

A(I)∗ =
〈
z∗i (x)

kps−Υ − vx(kp
s−Υ)deg ziz(x−1)ε−Υh(x−1), vz∗i (x)

kps−α〉
=

〈
z∗i (x)

kps−Υ − vx(kp
s−ε) deg ziz∗i (x)

ε−Υh(x−1), vz∗i (x)
kps−α〉

=
〈
z∗i (x)

kps−Υ − vzi(x)
ε−Υ+ϑh′(x), vz∗i (x)

kps−α〉 .

Corollary 5.9. If I = ⟨zi(x)α + vzi(x)
βg(x), vzi(x)

δ⟩, an ideal of type 4, then:

A(I)∗ =

{〈
z∗i (x)

kps−δ, vz∗i (x)
kps−α〉 , if h(x) = 0,〈

z∗i (x)
kps−δ − vzi(x)

ε−δ+ϑh′(x), vz∗i (x)
kps−α〉 , if h(x) ̸= 0.

Proof. It is similar to Corollary 5.8; it su�ces to substitute Υ with δ.

6. Hamming distance of λ-constacyclic codes of length ps over Ru,v

The Hamming weight of a codeword c, denoted by wtH(c), represents the number of nonzero com-

ponents in the vector c. The Hamming distance between two vectors c and c′, denoted by dH(c, c
′),

is de�ned as wtH(c− c′).

For a linear code C, the Hamming distance dH(C) is given by the minimum weight among all

nonzero codewords in C.
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In this section, we compute the Hamming distance of λ-constacyclic codes of length ps over the

ring Ru,v. We begin by establishing the structure of these codes, which can be derived from Theorem

4.2.

Corollary 6.1. λ-constacyclic codes of length ps over the ring Ru,v, i.e., ideals of

Ru,v[x]

⟨xps − λ⟩
,

can be classi�ed as follows:

� Type 1: The trivial ideals ⟨0⟩ and ⟨1⟩.

� Type 2: Ideals of the form ⟨v(x− θ)α⟩, where 0 ≤ α ≤ kps − 1.

� Type 3: Ideals of the form ⟨(x− θ)α + v(x− θ)βg(x)⟩, where 1 ≤ α ≤ kps − 1, 0 ≤ β < Υ, and

g(x) is either 0 or a unit in Tu[x]

⟨xps−λ0−γu⟩ ,.

� Type 4: Ideals of the form ⟨(x − θ)α + v(x − θ)βg(x), v(x − θ)δ⟩, where 0 ≤ β < δ < Υ, and

g(x) is either 0 or a unit in Tu[x]

⟨xps−λ0−γu⟩ .

Moreover,

Υ =

{
α, if h(x) = 0,

min{α, ε}, if h(x) ̸= 0.

where

ε = max
{
0 ≤ l ≤ kps | (x− θ)kp

s+β−αg(x) + kµ(x− θ)(k−1)ps ∈
〈
(x− θ)l

〉}
.

The following lemma establishes a relationship between the Hamming distance of a λ-constacyclic

code and its torsion Tor(C).

Lemma 6.2. For any λ-constacyclic code C of length ps over Ru,v, we have

dH(C) = dH(Tor(C)).

Proof. We �rst prove that dH(C) ≤ dH(Tor(C)). Let a(x) be a nonzero polynomial in Tor(C),

so that va(x) ∈ C. Since a(x) does not involve v, both a(x) and va(x) share the same nonzero

coe�cients, which implies

wtH(va(x)) = wtH(a(x)) ̸= 0.

Hence, we obtain

dH(C) ≤ dH(Tor(C)).

To prove the reverse inequality, let f(x) ∈ C be a nonzero polynomial, and decompose it as

f(x) = a(x) + vb(x),

where a(x), b(x) are polynomials that do not involve v.

� If a(x) = 0, then b(x) ∈ Tor(C), leading to

dH(Tor(C)) ≤ wtH(f(x)).
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� If a(x) ̸= 0, then va(x) = vf(x) is a nonzero element of C. Hence, a(x) ∈ Tor(C). Moreover,

a(x) and va(x) share the same nonzero components, while vf(x) has more zero components

than f(x). It follows that

dH(Tor(C)) ≤ wtH(a(x)) = wtH(va(x)) ≤ wtH(f(x)).

Thus, we conclude that dH(Tor(C)) ≤ dH(C), completing the proof.

The previous lemma reduces the computation of the Hamming distance of a λ-constacyclic code

C of length ps over Ru,v to that of its torsion Tor(C), which corresponds to a (λ0 + γv)-constacyclic

code of the same length over Tu.

Let Cτ = ⟨(x−θ)τ ⟩ be a nonzero (λ0+γv)-constacyclic code of length ps over Tu, where 0 ≤ τ ≤ psk.

We distinguish two cases:

� If 0 ≤ τ ≤ ps(k − 1), then the chain of inclusions

Cps(k−1) ⊂ · · · ⊂ Cτ ⊂ · · · ⊂ C0 = ⟨1⟩

implies

dH(Cps(k−1)) ≥ · · · ≥ dH(Cτ ) ≥ 1.

By Proposition 3.3, Cps(k−1) = ⟨uk−1⟩. Then, dH(Cps(k−1)) = 1, which implies that dH(Cτ ) = 1

for all 0 ≤ τ ≤ ps(k − 1).

� If ps(k − 1) + 1 ≤ τ ≤ psk − 1, writing τ = ps(k − 1) + ς with 1 ≤ ς ≤ ps − 1, we obtain

Cτ = ⟨vk−1(x− θ)ς⟩.

Thus, each Cτ corresponds to the λ0-constacyclic code ⟨(x− θ)ς⟩ over Fpm , multiplied by vk−1,

leading to

dH(Cτ ) = dH(⟨(x− θ)ς⟩).

The Hamming distance of constacyclic codes of length ps over Fpm is determined by the following

proposition.

Proposition 6.3. [9] Let Cς = ⟨(x − θ)ς⟩ be a λ0-constacyclic code of length ps over Fpm, where
ς ∈ {0, 1, . . . , ps}. The Hamming distance dH(Cς) is given by

dH(Cς) =



1, if ς = 0,

ϖ + 2, if ϖps−1 + 1 ≤ ς ≤ (ϖ + 1)ps−1, 0 ≤ ϖ ≤ p− 2,

(q + 1)pj, if ps − ps−j + (q − 1)ps−j−1 + 1 ≤ ς ≤ ps − ps−j + qps−j−1,

1 ≤ q ≤ p− 1, 1 ≤ j ≤ s− 1,

0, if ς = ps.

Thus, we establish the following theorem.
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Theorem 6.4. Let C be a λ-constacyclic code of length ps over Ru,v. Then, its Hamming distance

is given by

dH(C) =



1, if 0 ≤ τ ≤ ps(k − 1) or ς = 0,

ϖ + 2, if ϖps−1 + 1 ≤ ς ≤ (ϖ + 1)ps−1, 0 ≤ ϖ ≤ p− 2,

(q + 1)pj, if ps − ps−j + (q − 1)ps−j−1 + 1 ≤ ς ≤ ps − ps−j + qps−j−1,

1 ≤ q ≤ p− 1, 1 ≤ j ≤ s− 1,

0, if ς = ps,

where 0 ≤ τ ≤ kps satis�es Tor(C) = ⟨(x− θ)τ ⟩, and if τ ≥ ps(k − 1), then ς = τ − ps(k − 1).
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