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A decomposition into boxes that determine the Kernel of a

staircase starshaped set in Rd
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abstract

Let S be a connected union of �nitely many d-dimensional boxes in Rd and let B represent the family

of boxes determined by facet hyperplanes for S, with F the associated family of faces (including

members of B). For set F in F , point x relatively interior to F , and point y in S, x sees y via

staricase paths in S if and only if every point of F sees y via such paths. Thus the visibility set of

x is a union of members of F , as is the staircase kernel of S. A similar result holds for k-staircase

paths in S and the k-staircase kernel of S.
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1. Introduction

We begin with a brief overview of the problem. Precise de�nitions for our terms appear in Section

2. Many results in convexity that involve the usual notion of visibility via straight line segments

have interesting analogues that instead use the concept of visibility via staircase paths. Using a

familiar example, the Krasnosel'skii theorem [10] says that, for S a nonempty compact set in R2, S

is starshaped via segments if and only if every three points of S see via segments in S a common

point. In the staircase analogue [2], for S a nonempty simply connected orthogonal polygon in

R2, S is staircase starshaped if and only if every two of its points see via staircase paths in S a

common point. Moreover, an interesting study by Chepoi [7] generalizes the planar result to any

�nite union of boxes in Rd whose corresponding intersection graph is a tree. As he observes, every

simply connected orthogonal polygon may be expressed as such a union. (Similarly, non simply

connected orthogonal polygons cannot satisfy Chepoi's requirement.) Appropriately, the staircase
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kernel for a simply connected orthogonal polygon will be staircase convex [1]. In [6], the results are

extended to k-staircase paths.

Unfortunately, there are not too many satisfying results for an orthogonal polytope S whose boxes

are not so well arranged. (That is, when the boxes for S cannot be selected to satisfy Chepoi's

restriction.) We do know that the staircase kernel of an orthogonal polygon in R2 need not be

connected, although its components will be staircase convex [5]. In addition, results by Pape and

Vassilev [13] produce an algorithm for computing the staircase kernel of an orthogonal polygon with

holes. In Rd, d ≥ 3, an example reveals that even a connected staircase kernel for an orthogonal

polytope need not be staircase convex [1]. Some results in [4] concern the staircase kernel for an

orthogonal polytope whose complement contains open boxes. And results in [3] investigate the

staircase kernel of an orthogonal polytope S, using a suitable family of boxes whose union is S and

the vertices of these boxes.

In this paper, we use a smaller family F of boxes to recognize the staircase kernel of an orthogonal

polytope S. For a box F in F , the visibility set for any relative interior point x of F will determine

the visibility set for every point of F , providing a convenient tool to examine the staircase kernel

and the staircase k-kernel for our set. The results have potential applications to computing problems

concerning visibility and visibility graphs as well.

2. De�nitions and notation

This section includes some de�nitions and notation from [4] and [6]. A set B in Rd is called a box if

and only if B is a convex polytope (possibly degenerate) whose edges are parallel to the coordinate

axes. A nonempty set S in Rd is an orthogonal polytope if and only if S is a connected union of

�nitely many boxes. An orthogonal polytope in the plane is an orthogonal polygon. Let λ be a

simple polygonal path in Rd whose edges are parallel to the coordinate axes. That is, let λ be a

simple rectilinear path in Rd. For points x and y in S, the path λ is called an x − y path in S if

and only if λ lies in S and has endpoints x and y. The x− y path λ is a staircase path (or simply a

staircase) if and only if, as we travel along λ from x to y, no two edges of λ have opposite directions.

That is, for each standard basis vector ei, 1 ≤ i ≤ d, either each edge of λ parallel to ei is a positive

multiple of ei or each edge of λ parallel to ei is a negative multiple of ei. Staircase paths λ and µ are

compatible if and only if no two of their edges have opposite directions.

For points x and y in a set S, we say that x sees y (x is visible from y) via staircase paths if and

only if S contains an x− y staircase path. For x �xed in S, the collection {y : x sees y via staircase

paths in S} is called the visibility set of x in S. A set S is staircase convex (orthogonally convex)

if and only if, for every pair of points x, y in S, x sees y via staircase paths. Similarly, a set S is

staircase starshaped (orthogonally starshaped) if and only if, for some point p in S, p sees each point

of S via staircase paths. The set of all such p is the staircase kernel of S, Ker S.

We may extend the notion of a staircase path to a k-staircase path: For points x and y in a set S

and for an x − y path λ in S, we say that λ is a k-staircase path in S if and only if λ is a union of

k (or possibly fewer) staircase paths, k ≥ 1. When λ is a k-staircase path and k ≥ 2, we may write

λ = λ1 ∪ · · · ∪ λk, where each λi is a staircase path, 1 ≤ i ≤ k. We assume that consecutive paths λi

and λi+1 share a unique point for 1 ≤ i ≤ k− 1 and that nonconsecutive paths are disjoint. Then in

a natural way, we may adapt each of the earlier de�nitions concerning visibility via staircase paths

to visibility via k-staircase paths. (See [6] for details.)

Throughout the paper, we use the following notation and terminology. For S any set in Rd, int S,
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rel int S, bdry S, and a� S will represent the interior, the relative interior, the boundary, and the

a�ne hull, respectively, of set S. For convenience, any vector parallel to a standard basis vector for Rd

is called a coordinate vector. Similarly, for every i, 1 ≤ i ≤ d, the hyperplane J(i) = {(x1, . . . , xd) :

xi = 0} as well as any hyperplane parallel to J(i) is called a coordinate hyperplane. Any projection

from Rd into a coordinate hyperplane will be a coordinate projection, or an orthogonal projection.

Finally, if λ is a simple path containing points a and b, then λ(a, b) will denote the subpath of λ

from a to b. Readers may refer to Valentine [12], to Lay [11], to Danzer, Grünbaum, Klee [8], to

Eckho� [8], and to Hansen, Herburt, Martini, and Moszy«ska [9] for discussions concerning straight

line segments, starshaped sets, and their applications.

3. The results

The following de�nitions will be useful.

De�nition 3.1. Let S be a connected union of �nitely many boxes in Rd, each of which is fully

d-dimensional. A hyperplane H is called a facet hyperplane for S if and only if H∩(bdry S) contains

a fully (d− 1)-dimensional box F . If F is maximal, we call F a facet of S.

De�nition 3.2. Let H represent the collection of facet hyperplanes for S. In a natural way, H
determines a collection B of fully d-dimensional boxes B whose union is S such that, for every box B

in B and every hyperplane H in H, H ∩ (int B) = ∅. Hence distinct boxes share no interior points.

For each box B in B, we de�ne d distinct tubes at B. Let Fi, F
′
i represent a pair of parallel facets

of B, 1 ≤ i ≤ d, with coordinate vector ei orthogonal to these facets. The translates of B through

multiples of ei will generate a tube at B. Precisely, the set Ti = ∪{sei + b : s a scalar, b a vector in

B}, is a tube at B, and there are exactly d such tubes, one for each i, 1 ≤ i ≤ d.

We establish two helpful lemmas for the orthogonal polytope S above.

Lemma 3.3. Let the orthogonal polytope S be a union of fully d-dimensional boxes in Rd, with B
the corresponding family of boxes determined by facet hyperplanes in our de�nitions above. Let B be

any box in B, T any tube at B, with x in int B and y in int T . If x sees y via staircase paths in S,

then for every point w in B, w also sees y via staircase paths in S. Clearly these paths lie in tube T .

Proof. Since the visibility set of y in set S is closed, it su�ces to consider the case for w in int

B. If y ∈ B, the result is immediate, so assume that y lies strictly beyond facet F of B and in the

corresponding tube T . Let F ′ be the translate of F parallel to F at y and in this tube. Observe that

the interior of the box C with facets F and F ′ cannot contain points from any facet of S: Certainly

no facet hyperplane can meet int B (by the de�nition of box B). Hence any facet of S meeting int

C would be parallel to F and F ′ and would necessarily extend across the box, separating x from y

and making it impossible for x to see y via staircases in S. Hence int C and C itself must lie in S.

We conclude that the box B ∪C lies in S, and w sees y via staircases in S. Clearly this staircase lies

in tube T , �nishing the proof.

Lemma 3.4. Let the orthogonal polytope S be a union of fully d-dimensional boxes in Rd, with B the

corresponding family of boxes determined by facet hyperplanes in our de�nitions above. For B any



740 m. breen

box in B, let J and J ′ represent distinct hyperplanes orthogonal to coordinate vector e and supporting

box B, and let hyperplane J0 be parallel to J and J ′ and between them. (That is, in the region A

whose boundary is J ∪ J ′.) For x and u interior to A, let λ(x, u) be a staircase path. If λ(x, u) lies

in S, then the orthogonal projection of λ(x, u) onto J0 will lie in S also.

Proof. For the moment assume that J0 is interior to A. By our de�nition of box B, no facet

hyperplane for S and parallel to J may lie in int A. Thus facets of S either are disjoint from int A or

extend across it, intersecting both J and J ′. Since λ(x, u) avoids such facets, so must translates of

λ(x, u) in the direction of e or −e and in int A. A similar statement holds for translates of subpaths

of λ(x, u) and for the orthogonal projection of λ(x, u) onto hyperplane J0. Since S is closed, the

result extends to J and J ′ as well, �nishing the proof of Lemma 3.4.

Theorem 3.5. Let the orthogonal polytope S be a union of fully d-dimensional boxes in Rd, with B
the corresponding family of boxes determined by facet hyperplanes in our de�nitions above. Let B be

any box in B, with x in int B and y in S. If x sees y via staircase paths in S, then for every point

w in B, w also sees y via staircase paths in S.

Proof. As in the proof of Lemma 3.3, it su�ces to consider the case for w in int B. If y belongs

to the interior of a tube at B, then the result follows from Lemma 3.3. Hence we assume that y is

not interior to any tube at B. Let λ(x, y) represent any x − y staircase in S. Then λ(x, y) has a

subpath at x that lies in some tube T at B. By Lemma 1, w sees via staircase paths in S each point

of λ(x, y) ∩ (int T ). Furthermore, since the visibility set of w in S is closed, w sees via staircase

paths the �rst point of λ(x, y) in bdry T . Of course, such staircases from w lie in T . For any point z

in λ(x, y) ∩ T seen by w and for a corresponding staircase µ(w, z) in S ∩ T , if µ(w, z) is compatible

with λ(z, y), then their union will produce a w − y staircase in S, the desired result. Hence from

all x− y staircases in S, we assume that staircase λ(x, y) has been selected so that, for a particular

point z in λ(x, y)∩ T seen by w, the staircases µ(w, z) and λ(z, y) have fewest opposing directions k

(from the d such directions available). Observe that, if we select z in (bdry T ) \B, then µ(w, z) and

λ(x, z) must agree in at least two directions, one to reach a facet of B that determines the tube T ,

one to reach the boundary of T (not necessarily in this order). Therefore, 0 ≤ k ≤ d − 2. If k ≥ 1,

then d ≥ 3.

We will show that k = 0. Assume on the contrary that k ≥ 1 to obtain a contradiction. Recall

that the w − z staircase µ(w, z) lies in tube T . Since k ≥ 1, it follows that µ(w, z) must introduce

a direction di�erent from those in λ(x, z) and opposing a direction in λ(z, y). For convenience, say

that µ(w, z) employs such a direction −e. Let J and J ′ represent distinct coordinate hyperplanes

orthogonal to e and supporting box B. There are two cases to consider, depending on the location

of y. Either y lies strictly beyond one of J or J ′, say beyond J , or y lies in the closed parallel strip

having boundary J ∪ J ′. We consider each possibility.

Case 1. Assume that y is strictly beyond hyperplane J , and let u denote the last point of λ(x, y)

in J . Since µ(w, z) uses the direction −e while λ(x, z) does not, observe that w is closer to J than

x and z are to J . (See Figure 1.)

Project λ(x, u) orthogonally onto J , and let λ′(x′, u′) represent the projected image, with z′ the

image of z in J . (Of course, u′ = u.) For µ(w, z) our w−z staircase in tube T , let µ′(w′, z′) denote its

orthogonally projected image in J . Certainly λ′(x′, z′) employs only edges in the direction of edges
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in λ(x, z), although it omits edges in the direction of vector e orthogonal to J . Thus [x, x′]∪λ′(x′, z′)

(ordered from x to z′) is a staircase whose edges use exactly the directions used by λ(x, z). By Lemma

2, this staircase lies in S. Similar statements hold for λ′(z′, u′) and λ(z, u). Of course, λ′(z′, u′) uses

no edge in the direction of e. Clearly [x, x′]∪ λ′(x′, z′)∪ λ′(z′, u′)∪ λ(u′, y) is an x− y staircase in S,

and z′ belongs to the orthogonal hyperplane J .

J

w

y
u = u′

z′

x′

λ

z

x

e

Fig. 1.

Now examine µ′(w′, z′), the orthogonally projected image of µ(w, z) in J . This path uses edges

whose directions appear in µ(w, z) but with one important di�erence: Any edge of direction −e

has been eliminated. The edge [w,w′] (ordered from w to w′) has direction e. Again using Lemma

3.4, [w,w′] ∪ µ′(w′, z′) lies in S. We have in S new staircase paths [w,w′] ∪ µ′(w′, z′) and [x, x′] ∪
λ′(x′, z′) ∪ λ′(z′, u′) ∪ λ(u′, y), with z′ a point in tube T seen by w, such that [w,w′] ∪ µ′(w′, z′)

and λ′(z′, u′)∪ λ(u′, y) use fewer opposing directions then did our original paths µ(w, z) and λ(z, y),

contradicting our choice of λ(x, y) and z. This �nishes Case 1.

Case 2. Assume that y is between J and J ′, and let hyperplane Jy be parallel to J at y. In case w

and z are in the same closed halfspace determined by Jy, then since µ(w, z) employs direction −e, w

must be closer to Jy than x and z are to Jy. Projecting staircases λ(x, y) and µ(w, z) orthogonally

onto Jyand using an argument like the one in Case 1 above, we contradict our choice of λ(x, y) and

corresponding z.

Thus we assume that w and z lie in opposite open halfspaces determined by Jy. (See Figure 2.)

Let λ′(x′, y′) represent the orthogonal projection of λ(x, y) onto Jy, with z′ the image of z in Jy and

y′ = y. Then [x, x′] ∪ λ′(x′, y′) = [x, x′] ∪ λ′(x′, z′) ∪ λ′(z′, y′) is an x − y staircase in S, with z′ in

T . Using Lemma 3.3, we let δ(w, z′) represent a w − z′ staircase in T . Clearly δ(w, z′) uses only

directions from our w − z staircase µ(w, z), including the direction −e. Of course, λ′(z′, y′) lies Jy,

uses directions from λ(z, y), but uses neither direction e nor direction −e. Thus δ(w, z′) and λ′(z′, y)

exhibit fewer opposing directions than did our original paths µ(w, z) and λ(z, y). Again we have

contradicted our choice of λ(x, y) and z, �nishing Case 2.

In each of the two cases above, our assumption that k ≥ 1 has led to a contradiction. Our

assumption that k ≥ 1 must be false, and we conclude that k = 0. Thus µ(w, z) is compatible with

λ(z, y), and their union µ(w, z) ∪ λ(z, y) yields a w− y staircase in S. Hence if one point x of int B
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Fig. 2.

sees y via staircase paths in S, the every point of B sees y via staircase paths in S, �nishing the

proof of the theorem.

Our �rst corollary extends Theorem 3.5 to faces of boxes in family B.

Corollary 3.6. Let the orthogonal polytope S be a union of fully d-dimensional boxes in Rd, with B
the corresponding family of boxes determined by facet hyperplanes. Let B be any box in B, with F a

face of B (possibly B itself), x in rel int F , and y in S. If x sees y via staircase paths in S, then

every point w of F sees y via staircase paths in S.

Proof. If dim F = d, then F is box B in B, and the result follows from Theorem 3.5. Hence assume

that dim F = m < d, and assume that the result is true for faces of dimension larger than m. As

in the proof of Theorem 1, we may assume that w belongs to rel int F . Let λ(x, y) represent an

x− y staircase in S. If λ(x, y) intersects the relative interior of a face G of B for which F is a proper

subface, then the result is immediate by our choice of m. Similarly, if λ(x, y) ∩B contains points of

B ∖ F , then λ(x, y) ∩ B may be replaced by a staircase path meeting the relative interior of such a

face G, and again the result is immediate. Thus we assume that λ(x, y) ∩B ⊆ F .

Adapting our earlier argument in Theorem 3.5, the result is true if y belongs to a� F . For y /∈ a�

F , observe that λ(x, y)∩ ( a� F ) uses at most m directions, each represented by a coordinate vector

in �at a� F . Let v represent the last point of λ(x, y) in a� F . Since x sees v via staircase λ(x, v) in

S, it follows that w sees v via staircases in S, and we let µ(w, v) represent such a staircase. Clearly

µ(w, v) ⊆ a� F .

In case the staircases µ(w, v) and λ(v, y) are compatible, then the argument is �nished. Otherwise,

as in the proof of Theorem 3.5, assume that our paths have been selected to minimize the pairs of

opposing edges. For appropriate coordinate vectors e and −e, µ(w, v) employs a vector in the

direction of −e while λ(v, y) employs a vector in the direction of e. Let J and J ′ represent distinct

hyperplanes supporting box B and orthogonal to e. Let Jv denote the hyperplane parallel to J at v.

Then w and y must lie in the same open halfspace determined by Jv, while x belongs to the opposite



a decomposition into boxes that determine the kernel of a staircase 743

closed halfspace. (Hence Jv intersects face F of B.)

If w is at least as close to Jv as y is to Jv, let Jw be the hyperplane parallel to J at w. Let u be the

�rst point of λ(x, y) in Jw, and project λ(x, u) orthogonally onto Jw. Using an argument in the proof

of Theorem 3.5, we obtain a new point v′ in (a� F ) ∩ Jw and new paths from w to v′ and from v′

to y such that the new paths have fewer opposing directions than the original paths. If w is farther

from Fv than y is from Fv, let Jy be the hyperplane parallel to J at y. Project λ(x, y) orthogonally

into Jy, obtaining a new point v′ in (a� F ) ∩ Jy and corresponding new paths such that the new

paths have fewer opposing directions than the original paths. Finally, using our argument from the

concluding remarks in Theorem 3.5, this �nishes the proof of Corollary 3.6.

We may use Theorem 3.5 and Corollary 3.6 to recognize the staircase kernel of an orthogonal

polytope.

Corollary 3.7. Let the orthogonal polytope S be a union of fully d-dimensional boxes in Rd, with

B the corresponding family of boxes determined by facet hyperplanes and F the associated family of

faces (including members of B). For F in F , F is a subset of the staircase kernel Ker S if and only

if some point of rel int F belongs to Ker S.

Finally, it is easy to extend our results to k-staircase paths.

Corollary 3.8. Let the orthogonal polytope S be a union of fully d-dimensional boxes in Rd, with

B the corresponding family of boxes determined by facet hyperplanes and F the associated family of

faces (including members of B). For set F in F , point x in rel int F , and y in S, if x sees y via

k-staircase paths in S, then every point w of F sees y via k-staircase paths in S. Thus the k-staircase

kernel of S, if nonempty, is a union of members of F .

Proof. It su�ces to show that, for k ≥ 2, w sees y via k-staircase paths in S. For any k-staircase

path λ(x, y) in S, select y′ in λ(x, y) such that x sees y′ via staircases in S and y′ sees y via (k− 1)-

staircases in S. By Corollary 3.6, w sees y′ via staircases in S and hence sees y via k-staircases,

�nishing the argument.

4. Concluding remarks

1. Using the notation above, notice that distinct boxes in F may induce the same visibility sets. In

particular, this will hold for members of F that contribute to the kernel of our set.

2. Potential applications of these results include the development of algorithms to determine the

staircase kernel or the k-staircase kernel of an orthogonal polytope in Rd.
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