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abstract

Forecasting the volatility of the stock market price is indispensable for managing the risks associated

with market dynamics and provides valuable insights for �nancial decision in trading strategies.

This study aims to enhance the accuracy of volatility prediction for stock market price using hybrid

models combining econometric and deep learning approaches. Speci�cally, it introduces a novel

GARCH-CNN-LSTM hybrid model for more precise volatility forecasting of stock market price.

The GARCH model is e�cient at capturing volatility clusters and kurtosis features, while the CNN

excels in extracting spatial patterns from time series data, and LSTM e�ectively preserves essential

information over extended periods. GARCH(1,1) model is selected based on AIC, maximum log-

likelihood, and parameter signi�cance. Subsequently, CNN and LSTM models are chosen for their

complementary capabilities in volatility prediction. We evaluated the forecasting performance of the

hybrid models from out-sample test data, employing Mean Square Error, Root Mean Square Error

and Mean Absolute Error. The result indicates that the new model outperforms the existing models

with an improvement of 8% to 13% accuracy. Furthermore, we conduct the Diebold-Mariano test to

con�rm signi�cant di�erences in performance.

Keywords: Heteroskedasticity, long and short term memory, deep learning, forecasting performance

1. Introduction

Price volatility is the quantity of variability prices from the central price values of the security. It

is the price swing of the security from the mean. Volatility is the amount of price �uctuation over

speci�c period of time. Thus, volatility is often de�ned as high deviations from a global tendency [14].
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Stock market volatility is one of the major challenges in �nancial markets, especially for portfolio

managers, investors, traders and policy makers.

Volatility prediction is one of the crucial aspect of �nancial Mathematics, as it plays a key role in

risk management, option pricing, investment decision, maximize return and portfolio optimization.

All paricipants in the trading of S&P 500 stock price need to have better information about future

price variation. Having this information is a challenging task that needs a demanding task.

The approach of machine learning algorithms has been growing to enhance the accuracy and

reliability of stock market volatility forecasting [33].

Numerous models have been used in the prediction of stock price volatilities. They can be catago-

rized as parametric econometric, machine learning for time series and hybrid models. From the

econometric models autoregressive conditional heteroskedasticity (ARCH) introduced by [9] describes

the volatility at time t is correlated with the square of previous noise terms and generalized autore-

gressive conditional heteroskedasticity(GARCH) proposed by [4] explores that volatility at time t is

obtained from the combination of the square of previous noise terms and the previous variance. Both

ARCH and GARCH are symmetric to the sign of the noise. Exponential generalized autoregressive

conditional heteroskedasticity (EGARCH) introduced by [26] and threhold generalized autoregressive

conditional heteroskedasticity (TGARCH) proposed by [32] are the other asymmetric most common

models. These econometric models have less volatility predictive powers.

Many researchers have made lot of e�orts on forecasting volatility of securities by deep learning

models for paramount information to optimal decision in �nancial markets.

Among the machine learning models recurrent neural network(RNN) especially Long Short term

memory(LSTM) [11], convolutional neural networks (CNN) [6], Extreme gradient boosting(XGBoost)

[7] and support vector machine(SVM) [30] are most frequently applied in the prediction of time series.

Some studies have shown that the performance of arti�cial neural network (ANN) is better than

GARCH family models in volatility predictions since they can capture the non-linearity of the series

and do not require the series to be stationary for modeling [28]. The combination of generalized

autoregressive conditional heteroskedasticity family combined with deep learning hybrid models are

the other price volatility forecasting models.

The hybrid model CNN-LSTM predicted the direction of stock market �uctuation better than

many other models. This is, as CNN is good for extracting special local pattern features from the

time series data and LSTM layers are good to capture long-term temporal dependencies, and hence

CNN-LSTM can leverage the strength of both architectures for better performance [31, 25, 13, 8,

19].

On the other hand, hybrid of deep learning and GARCH-type models are usually found to have

better prediction performances compared to single deep learning models or single econometric time

series models [22]. The hybrid of convolutional neural network and Long Short term memory has

a better forecast of volatility than the econometric GARCH models [29]. Their hybrid model im-

proved the forecast of gold price volatility obtained by benchmark methods such as GARCH, support

vector regression (SVR), ANN, ANN-GARCH, LSTM and CNN. Apart from the gold market, the

e�ectiveness of hybrid models in forecasting the volatility of Copper was proved in the study of [12].

The combination of multi GARCH type models and the LSTM has better prediction performance

in the stock price index volatility of COSPI 200 [18]. The hybrid model of EGARH and the feed

forward arti�cial neural network demonstrated better volatility forecast in S&P500 return index [10].

The hybrid model of ARIMA GARCH and LSTM model outperformes the single alone models in

the prediction of stock market time serie data [5].
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The main focus of this paper is to analyze and compare the performance of econometric GARCH

family models integrated with machine learning CNN and LSTM algorithms in the prediction of

S&P 500 stock price volatility. To the best of our knowledge , this is the �rst idea to develop

GARCH-CNN-LSTM in stock market volatility forecasting to improve the accuracy of the models.

Furthermore, our investigation serves as a basis for further research in GARCH-deep learning hybrid

models for volatility forecasting.

The remainder of this paper is organized as follows. Section 2 presents data description and

methods on stock market volatility of S&P 500 using GARCH, CNN and LSTM hybrid models.

Section 3 describes result and discussion. Finally, we provide conclusion of the study in Section 4.

2. Data description and methods

2.1. Source and description of the data

The historical stock price data of S&P 500 used in this study is extracted from Yahoo �nance (GSPC)

database that covers from 6 May 2019 to 6 May 2024 trading days. The time series plots of S&P 500

stock price is not stationary but its logarithmic return is stationary which are depicted in Figure 1

& Figure 2. Furthermore this is justi�ed using unit root test.

Fig. 1. Daily S&P 500 stock price

Fig. 2. S&P 500 stock daily return
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Table 1. Unit root tests for S&P 500 return

ADF test critical values

Variables t-statistics 1% 5 % 10 % p-value

S&P500 -24.6854 -3.4353 -2.8636 -2.5694 0.0000

From, Table 1 clearly shows that the magnitude of S&P 500 stock return in t-statistics is greater

than the magnitude at 5 % level which indicates that the return is stationary; thus, it is mean

reverting.

Table 2. descriptive statistics of S&P 500 log-return

Mean Max. Min Std.Dev Skewness Kurtosis Jarque-Bera P-value

0.0005 0.08968 -0.12765 0.01343 -0.839736 17.501 11170.50 0.00000

From the descriptive statistics in Table 2, S&P 500 stock return has maximum and minimum

values 0.089 and -0.1276 respectively which are highly deviated from the mean 0.0005. Moreover,

the skewness and kurtosis of S&P 500 stock price return distiribution indicates negatively skewed

and leptokurtic.

The value of Jarque-Bera in Table 2 is 11170 signi�cantly greater than the p-value 0. Therefore,

reject the null hypothesis(normality) and the distribution is not normally distributed.

Table 3. Heteroskedasticity test of S&P 500 return

F-statistic P-value Obs*R-squared P-value

46.0142 0.0000 38.6794 0.0000

From Table 3 the LM - statistics of S&P 500 stock price return is 46.014 which is statistically sig-

ni�cant. This shows that the null hypothesis (homoskedasticity) is rejected and reveals the presence

of heteroskedasticity (time varying volatility). Therefore, GARCH family models are better �tting

for forecasting the volatility of S&P 500 stock price .

2.2. Methods

2.2.1. GARCH extension models.

1) Generalized autoregressive conditional heteroskedasticity (GARCH) model. The most frequently

used model for forecasting the time varying variance is generalized autoregressive conditional het-

eroskedasticity model in which the variance of a time series is expressed as the combination of previous

square shocks and the previous conditional variance. Mathematically:

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j, α0 > 0, αi > 0, q > 0, p ≥ 0, (1)

when p=1 and q=1 ,it is called GARCH(1,1) and the conditional volatility of Eq. (1) becomes:

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1. (2)
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The order of p and q is determined by partial autocorrelation function(PACF) in the square return.

In most �nancial time-series, the GARCH (1,1) is superior to other higher order values of p and q

[4, 12].

2) Exponential generalized autoregressive conditional heteroscedasticity (EGARCH). This model is

proposed by [26] to take into account the leverage e�ects of price �uctuation on conditional variance.

This means that a negative shock (bad news) can have a greater impact on volatility than a positive

shock(good news) of the same magnitude [21]. The conditional variance in EGARCH is given as:

logσ2
t = α0 +

p∑
i=1

αi | εt−i |
σt−i

+
r∑

i=1

γiεt−i

σt−i

+

q∑
j=1

βjlogσ
2
t−j, (3)

where p, q and r are the ARCH, GARCH and asymmetric orders respectively. As log of the variance

σ2
t makes the leverage e�ect exponential. When γi = 0, regardless of the sign of εt−i the model

is symmetric; thus no leverage e�ect. When εt−1 is positive(good news) the total e�ect of εt−1 is

(αi+ γ1) | εt−1 | on the contrary, εt−1 is negative(bad news) the total e�ect of εt−1 is (αi− γ1) | εt−1 |
for p=q=r=1. Bad news can have a larger impact on volatility, and the value of γ1 would be expected

to be negative. When
∑p

i=1 βj < 1 it indicates stationary and the sum is the persistence measure

[35, 3].

3) Threshold generalized autoregressive conditional heteroskedasticity (TGARCH). The other alter-

native for modeling the conditional variance with leverage e�ect is the TGARCH model which was

proposed by [32] that allows asymmetric shocks to volatility with positive and negative shocks of

equal size to have di�erent impacts on volatility.

σ2
t = α0 +

p∑
i

(αiε
2
t−i + γiε

2
t−iI) +

q∑
j

βjσ
2
t−j, (4)

where

I =

1 if εt−i < 0,

0 otherwise.

In this model, if γ is zero it becomes GARCH, if γ is negative then bad news decrease volatility

which is not likely and it is expected to be positive and good news decrease volatility.

For maximum loglikelihood estimation the log return follows three conditional error distribution

functions, namely normal(N), standardized student-t (ST) and generalized errror distribution (GED),

and their Mathemaical expressions are:

f(x;µ, σ) =
1√
2πσ

e−
(x− µ)2

2σ2
, (5)

for normal distribution

f(x; ν) =
Γ(ν+1

2
)

Γ(ν
2
)
√
νπ

(1 +
x2

ν
)−

ν+1
2 , (6)

where Γ is the usual gamma function and ν > 2 is the number of degree of freedom for student-t

distribution.
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For generalized error distribution, we have

f(x;µ, α, β) =
β

2αΓ( 1
β
)
e−

(
| x− µ |

α

)β

, (7)

where x is the random variable, µ is the location parameter, indicating the mean of the distribution,

α is the scale parameter, controlling the spread of the distribution and β is the shape parameter,

controlling the shape of the tails. When β = 2 the distribution reduces to the normal distribution.

This distribution allows for skewness and heavier or lighter tails than the normal distribution,

making it more �exible for modeling various data distributions [23, 9, 4].

2.2.2. Deep Learning Models.

1) Long Short term memory (LSTM). Long Short term memory is a kind of deep learning recur-

rent neural network which has special feature of the ability in learning long-term dependencies by

remembering information for long periods.

Fig. 3. Architecture of LSTM

Each LSTM has four chain interacting communicative gates.

LSTM networks address the problem of vanishing gradients of RNN by splitting in three inner-cell

gates and build memory cells to store information in a long range context [2]. As it has been seen

from Figure 3, a typical LSTM cell is con�gured mainly by four gates: input gate, input modulation

gate, forget gate and output gate. The input gate takes new input information from outside and

process newly coming information. The Memory cell input gate takes input from the output of LSTM

cell in the last iteration. Forget gate schedules when to forget the output data and thus selects the

optimal time lag for the input sequence. Output gate takes all results and generate the output. The

Cell and the hidden states are two states that are being transferred to the next cell.

The forget gate ft deletes unimportant information from the previous time step and has an equa-

tion:

ft = σ(wfht−1 + ufxt + bf ). (8)

The input gate determines which information is signi�cant through logistic and tanh activation

functions. This gate has an equations:

īt = σ(wiht−1 + uixt + bi), (9)
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c̄t = tanh(wcht−1 + ucxt + bc), (10)

it = īt ∗ c̄t, (11)

ct = ct−1 ∗ ft + it. (12)

The operation addition and multiplication are point operations. Finally in this unit the information

to out put gate has an equation:

ot = σ(woht−1 + uoxt + bo), (13)

ht = ot ∗ tanh(ct), (14)

where wf ,uf , wi, ui,wc, uc,wo,uo are weights of the forget, input, input modulation and out put gets

respectively. b the bias term. σ and tanh are the sigmoid(logistic) and hyperbolic tangent activation

functions respectively and ht is the hidden state.

2) Convolutional Neural Network (CNN). CNN is a sub class of deep learning algorithms that exhibits

spatial structures to extract relevant features from pattern of time series and serves for volatility

prediction [34]. The structure of CNN has input layer which accepts the inputs, convolutional layers

that are kernels of the CNN which works in convolution operation(Hadmard's product), pooling layers

which reduce the dimension by retaining the important imformation, fully connected layers(Dense)

and �atten layers which changes into one dimension to the data and out put layers.

Fig. 4. Architecture of CNN

As it has been seen from Figure 4 at convolutional layer the input data operates the hadmard

product with the kernel or �lter and gives several results and these sent to ReLU activation function

and mathematically these expressed as:

fi = gi ∗ t =
k∑

j=1

gi[j] ∗ t[i+ j], (15)

where, fi is the output of convolution operation at position i, gi the kernel convolutioned, gi[j] is the

jth element of the kernel gi, k is the kernel size, ti[i + j] is the (i + j)th element of the input t and

∗ is element wise matrix multiplication(hadmard operation). The operation of ReLU(σ) activation

function as:

zi = σ(fi + b), (16)

where zi is the out put and b is the bias term. The next process of the ReLU out put value goes to

the maximum pooling or average pooling and �nally changed to �atten data at fully connected layer.
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2.2.3. The Hybrid Models. The purpose of hybrid models is to improve the volatility prediction

performance of the traditional GARCH family models. The features of volatility like clusters makes

the inputs of deep learning models increase the prediction accuracy on result and estimated param-

eters [15, 27, 20, 17, 16, 18]. As the result of this we design GARCH and CNN-LSTM, GARCH

and LSTM, CNN and LSTM & GARCH and LSTM-CNN hybrid models. Therefore, GARCH-CNN-

LSTM, GARCH-LSTM, CNN-LSTM and GARCH-LSTM-CNN hybrid models are utilized in the

volatility prediction of S&P500 stock price.

Fig. 5. Architecture of sequential CNN-LSTM model

As shown in Figure 5 the conditional volatility result from GARCH (1,1) as a sequential data

enters into convolutional layer and after convolutional operations passes to �atten layer and this out

put as an input of the gets in LSTM.

In GARCH-LSTM-CNN model the conditional volatility obtained fron GARCH (1,1) serve as an

input to the LSTM and out put of this sequencial data goes to the convolutional operations in CNN.

2.3. Forecasting performance measures

Since volatility is not directly observable (measurable quantity), we use the proxy for volatility in

quantitatve way. To measure the forecasting performance of the designed model we consider the

realized volatility interms of log return and the mathematical expression for log return and realized

volatility respectively are:

Rt = ln

(
Pt

Pt−1

)
, (17)

where Pt is the daily closed price of S&P 500 stock.

V =

√√√√ 1

T

t+T−1∑
n=t

(Rt − µ)2, (18)

where Rt is the log return at time t and µ is the mean of the out sample return. Eq. (18) is the

volatility interms of standard deviation of out sample( test data)in T rolling window. However, the

most common proxy for daily variance forecasting and modeling the realized volatility is simply the
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daily squared returns

Vd =
1

T

T∑
i=1

R2
i , (19)

where Ri is the return at time i in the day and T the number of daily return observations [1].

The performance of the model's volatility forecasting is measured by comparing the forecasted

volatility with the realized volatility in the out sample data using the metrics mean square er-

ror(MSE), root mean square error (RMSE) and the mean absolute error (MAE). MSE describes

the average of the di�erence squares in the observed and predicted volatility. RMSE indicates the

magnitude of the error in square root of the average square of the predicted and observed values,

where as MAE shows the magnitude of absolute di�erence average of predicted and observed value.

These equations are as follows:

Mean square error is:

MSE =
1

n

n∑
n=1

(σ̂t − σt)
2. (20)

Root mean square error is:

RMSE =

√√√√ 1

n

n∑
n=1

(σ̂t − σt)2. (21)

Mean absolute error is:

MAE =
1

n

n∑
n=1

| σ̂t − σt |, (22)

where σ̂t is the forecasted volatility , σt is the observed(actual) volatility value in time period t and

n is number of out sample periods.

3. Results and discussion

3.1. Estimation of volatility by GARCH

We took a historical trading days time series data of S&P500 stock closed price from 2019-06-07

to 2024-06-06 which has a total of 1259 samples. For simpler statistical analysis and stationarity

this data is changed into log retuns. Furthermore, it splits into 2019-06-10 to 2023-03-08(944) for

training, 2023-03-09 to 2023-10-30 (163) for validation and 2023-10-31 to 2024-06-06 (151) for test(out

samples).

From Table 4, we observed that GARCH(1,1), TGARCH(1,1) and EGARCH(1,1) models under

normal distribution(ND), student's t-distribution(STD) and generalized error distribution(GED) as-

sumptions of S&P 500 log return were selected as the candidate models using minimum Akaike

information criteria(AIC), minimum Schwarz information criterion(SIC) and maximum log likeli-

hood with signi�cant p value of parameters( p-value less than 5%). Thus, based on the minimum

information criteria, maximum log likelihood and signi�cant coe�cients, GARCH(1,1) with GED

assumption for S&P500 log return is identi�ed as the best performing model among the selected

candidate models. The distribution is GED that reveals it is leptokurtic.

The conditional variance equation of S&P500 log return in GARCH(1,1)GED is:

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1, (23)

σ2
t = 0.0000036 + 0.1668ε2t−1 + 0.8145σ2

t−1. (24)
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Table 4. S&P 500 stock price-return GARCH extension model candidate

Model Error AIC SIC Log p-vale p-value.

distribution likelihood α β

GARCH(1,1) ND -4.3414 -4.3210 3990.59 0.0000 0.00000

GARCH(1,1) STD -4.3741 -4.3496 4012.23 0.0000 0.1020

GARCH(1,1) GED -4.3684 -4.3439 4008.56 0.0165 0.0250

TGARCH(1,1) ND -4.3548 -4.3302 4000.02 0.0012 0.0030

TGARCG(1,1) STD -4.3909 -4.3784 4017.55 0.0516 0.4270

TGARCH(1,1) GED -4.3850 -4.3564 4020.01 0.0064 0.2850

EGARCH(1,1) ND -4.3570 -4.3325 4001.39 0.0186 0.0251

EGARCH(1,1) STD -4.4027 -4.3741 4031.13 0.1951 0.6350

EGARCH(1,1) GED -4.3865 -4.3579 4020.97 0.0265 0.66 73

From Eq. (24) above indicates that the volatility of returns is persistent, with the sum of α1

and β1 equal to 0.981(close to unity) which is mean reverting. Moreover, stationarity condition of

α1 + β1 < 1 is satis�ed and it shows that the conditional variance of S&P 500 return series is stable

and predictable.

After the identi�cation of GARCH(1,1), we estimated the conditional volatility of S&P 500 stock

return and the forecasting performance is 0.0000286, 0.005352 and 0.004516 in mean squared error,

root mean squared error and mean absolute error respectively in the out sample test data.

The �tness of the actual volatility which is the logarithmic return of S&P 500 with conditional

volatility obtained from GARCH(1,1) in the training data and the test data with forecasted volatility

are depicted in Figure 6.

3.2. Simulation results of GARCH-CNN-LSTM

We imported the units of CNN and LSTM from tensor�ow and keras library in python software. From

estimated conditional volatility keeping the size of training, validation and test data in GARCH(1,1),

we trained this output conditional volatility into the input CNN -LSTM hybrid model with 20

timesteps(lookbacks),75% time splits, 11 number of folds and hyperparameters in Table 5. The

selection of tunning or hyperparameter is trial and error(random search method) in minimum metrics.

Table 5. CNN and LSTM hyperparametrs

Model Activation function Pool size kernel �lters/units Number of Optimizer epoch Batch size

CNN ReLU 2 3 64 Adam(lr=0.0001-0.0005) 120-200 32

LSTM ReLU 50 Adam(lr=0.0001-0.0005) 120-200 32

The loss value in the GARCH-CNN-LSTM training process is depicted in Figure 7. Furthermore,

the �tness of actual, predicted from GARCH and predicted volatility from GARCH-CNN-LSTM of

out sample data set and the comparison of predicted and actual test data(realized volatility of the

out samples set) is depicted in Figure 8.

The forecasting performance of GARCH-CNN-LSTM hybrid model in out sample data set by the
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Fig. 6. Actual vs conditional volatility by GARCH

Fig. 7. loss value in the process of training

loss functions MSE, RMSE and MAE is depicted in Table 6.

The experiment of GARCH-LSTM is processed by taking the output of GARCH(1,1) as the input

for LSTM with the same training, validation and test set data size as GARCH-CNN-LSTM and the

same kind and number of parameters and hyperparameters. The �tness of predicted versus test data

is plotted at Figure 9.

Fig. 8. Actual vs predicted insample outsample plot for GARCH-CNN-LSTM

Keeping the parameters and hyperparamers used for GARCH-LSTM and data S&P 500 stock
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Fig. 9. Actual vs predicted insample outsample plot for GARCH-LSTM

return as the input for CNN integration into LSTM with the same size of training, validation and

test data is carried out for CNN-LSTM hybrid model. Comparatively the performance of this model

is stated at Table 6. Using the conditional volatility of GARCH(1,1) with the same size validation

,test data and hyper parametres as GARCH-CNN-LSTM only changng the order CNN and LSTM

deep learning models the hybrid GARCH-LSTM-CNN is experimented and volatility forecasting

performance in mean square error, root mean square error and mean absolute error is depicted at

Table 6.

The loss value during the training process as well as the �tness of predictions with the actual data

in training set, validation with actual data in validation set and with predictions in test data are

depicted in Figure 10 and Figure 11 for CNN-LSTM and GARCH-LSTM-CNN models respectively.

From Table 6, the minimum values in mean square error, root mean square error and mean absolute

errors we observe that GARCH-CNN-LSTM has the lowest values in the three metrics and GARCH-

LSTM has the second lowest values, where as GARCH has the highest values which indicates that

GARCH-CNN-LSTM is the most accurate model in forecasting the volatility of S&P 500 stock price

and GARCH-LSTM is the second one. GARCH is the worest of all in the volatility predicting

performance of the S&P 500 stock price. The S&P 500 stock price volatility prediction power of

GARCH-LSTM-CNN less than GARCH-CNN-LSTM the sequential input and output matters.

Fig. 10. Actual vs predited insample and outsample plot for GARCH-LSTM-CNN
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Table 6. Forecasting performance of the models in outsample data

Metrics GARCH GARCH GARCH GARCH

CNN-LSTM LSTM CNN-LSTM LSTM-CNN

MSE 0.00002865 0.00002524 0.00002741 0.00002813 0.000027631

RMSE 0.005352 0.005024 0.005235 0.005304 0.005256

MAE 0.004516 0.004218 0.004515 0.004685 0.004553

Fig. 11. CNN-LSTM actual and predicted plot

Table 7. Diebold Mariano (DM)test results

GARCH GARCH GARCH GARCH

CNN-LSTM LSTM CNN-LSTM LSTM-CNN

GARCH 0 0 0 0

GARCH-CNN-LSTM 0 0 0 0

GARCH-LSTM 0. 0 0 0

CNN-LSTM 0 0 0 0

GARCH-LSTM-CNN 0 0 0 0

Table 7 shows the Diebold Mariano test results for the same number of outsample days ,the models

have comparable accuracy as all the p-values are signi�cant at 5% signi�cant lablel. This indicates

that each model has di�erent volatility prediction performance in S&P 500 stock market dynamics.

Although deep learning algoriths have an ability of better forecasting in time series, they have

drawbacks in parameter setting as tuning is based on trial and error depending on the nature of data

[24].

4. Conclusions

Predicting future stock market trends is crucial for traders and investors seeking to mitigate risks.

This study focuses on forecasting S&P 500 stock price volatility by combining econometric and deep
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learning models.

The volatility of S&P 500 stock return has been analyzed using symmetric GARCH, asymmetric

TGARCH and EGARCH models, evaluated under normal, Student's t and generalized error dis-

tributions. Based on the criteria in minimum Akaike Information Criterion (AIC) and maximum

log-likelihood with signi�cant statistical coe�cients, the GARCH(1,1) model with a generalized er-

ror distribution outperforms other GARCH extensions in predicting S&P 500 stock price volatility.

Additionally, we computed the conditional volatility of S&P 500 stock prices during the study period,

providing input for hybrid CNN and LSTM neural network models.

The integration of GARCH with LSTM in forecasting S&P 500 stock price volatility performs

e�ectively, evidenced by low MSE, RMSE, and MAE values in out-of-sample data. GARCH cap-

tures spatial volatility features such as volatility clustering, while LSTM captures long-term memory

persistence. Similarly, the hybrid model GARCH-CNN-LSTM slightly outperforms in volatility fore-

casting, leveraging CNN's ability to recognize spatial patterns in the time series data, as indicated

by the same metrics and out-of-sample data. The combination of CNN and LSTM shows the lowest

performance in terms of high MSE, RMSE, and MAE values on the same out-of-sample data. When

forecasting the volatility of S&P 500 stock prices, the GARCH-LSTM-CNN hybrid model performs

better than CNN-LSTM but not as well as either GARCH-LSTM or GARCH-CNN-LSTM hybrid

models.

In this article, we focus only on the closing price of the stock. However, incorporating additional

factors such as volume, trading activity, and optimizing parameters and hyperparameters selection

methods will enhance the accuracy of predicting S&P 500 stock price volatility.

In summary GARCH-CNN-LSTM is best out performs in the forecasting volatility of S&P 500

stock price upto 13% accuracy improvement in the study period and GARCH-LSTM is the second

most out performs well. Improved predictive abilities of forecasting the volatility of S&p 500 stock

price is pivotal for the decision of �nance and risk management in stock market trading.
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