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abstract

This paper presents a new sequence called the k−division sequence. The Pell and Lehmer sequences
are then used to de�ne new sequences called the k−division L−Lehmer-Pell sequences and some
properties of these sequences are determined. Then the k−division L−Lehmer-Pell sequences and
corresponding self-invertible matrices are used in a new A�ne-Hill cipher algorithm. The security of
this cipher is examined.
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1. Introduction

De�nition 1.1. For integers L,M , and LM ̸= 0, L−4M ̸= 0, the Lehmer sequence {Un(L,M)}∞n=0

is

Un(L,M) =

{
LUn−1(L,M)−MUn−2(L,M) n odd,
UFn−1(L,M)−MUn−2(L,M) n even,

where U0(L,M) = 0 and U1(L,M) = 1 [13].

The Lehmer sequence in �nite groups was introduced in [3] and the period was studied. In [2],
perfect powers in sequences were derived by shifting non-degenerate quadratic Lucas-Lehmer binary
sequences by a �xed integer. The Lehmer sequences and Lehmer orbits of groups were considered in
[17] to obtain a new RSA algorithm.
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The Pell sequence {Pn}∞n=0 is de�ned as

Pn = 2Pn−1 + Pn−2, n ≥ 0,

with initial conditions P0 = 0 and P1 = 1. The Pell sequence and its generalizations have been
investigated extensively [12, 6, 15, 4, 11]. In [9], the k−nacci sequences were introduced and the
generalized order k−Pell sequences in the semi-direct product of �nite cyclic groups were given.
The generalized order 2-Pell sequences of some classes of groups were also presented. In [16], new
sequences were obtained from the generalized Pell p−numbers and Mersenne numbers. They were
used in algorithms for Di�e-Hellman key exchange.
The characteristic polynomials of the Pell and Lehmer sequences are x2 − 2x− 1 and{

x2 − Lx+M n odd,
x2 − x+M n even,

respectively.

De�nition 1.2. A matrix M is called self-invertible matrix if M = M−1 [1].

The Hill cipher was introduced in [10] and the A�ne cipher was de�ned in [21]. Public key
cryptography using the Hill cipher was considered in [22]. In [19], a key matrix of order 3 that
re�ects a line y = ax + b was used to overcome the noninvertible matrix problem in the A�ne-Hill
cipher modulo a prime number. The following encryption and decryption algorithms were also given.
Encryption is

Ci ≡ PiK +B (mod p),

and decryption is
Pi ≡ (Ci −B)K−1 (mod p),

where K is an n× n key matrix, and Pi, Ci, and B are 1× n matrices over Zp, p a prime [18].
Here, the Pell and Lehmer sequences are used to de�ne new sequences called the k−division

L−Lehmer-Pell sequences. Some properties of these sequences are obtained. Then the k−division
L−Lehmer-Pell sequences and corresponding self-invertible matrices are employed to propose a new
A�ne-Hill cipher algorithm. The security of this algorithm is also discussed.
The remainder of this paper is organized as follows. Section 2 introduces a new method for

constructing sequences called k−division. Then the k−division L−Lehmer-Pell sequences are de�ned
and some results are given. Section 3 presents a new A�ne-Hill cipher algorithm and its security is
examined. Finally, some concluding remarks are given in Section 4.

2. The k−division L−Lehmer-Pell sequences

In this section, we present a new method for constructing sequences called k−division. Then the
k−division L−Lehmer-Pell sequences are de�ned.

De�nition 2.1. Let f(x) and g(x) be the characteristic polynomials of two sequences of degree u

and m, respectively, where m ≥ u. For k ∈ N, the k−division sequence, {hn(k)}∞n=0, is

hn(k) = xk(g(x)) + t(x), n ≥ k +m. (1)
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where t(x) is the remainder of
xk(g(x))

f(x)
, and the initial conditions are h0(k) = h1(k) = · · · =

hm+k−2(k) = 0, hm+k−1(k) = 1.

Let

g(x) =

{
x2 − Lx+M n odd,
x2 − x+M n even,

and f(x) = x2 − 2x− 1, and consider M = −1 in the remainder of the paper. By De�nition 2.1, the
following new sequences are obtained.

De�nition 2.2. ForM = −1, the 1−division 3−Lehmer-Pell sequences, denoted by {hLn(k, L)}∞n=0,
are

hLn(1, 3) =

{
3hLn−1(1, 3) + 3hLn−2(1, 3) + hLn−3(1, 3) n odd,
hLn−1(1, 3) + hLn−2(1, 3) + hLn−3(1, 3) n even,

where hL0(1, 3) = hL1(1, 3) = 0 and hL2(1, 3) = 1.

Thus, we have {hLn(1, 3)}∞n=0 = {0, 0, 1, 3, 2, 16, 11, 83, 56, 428, 2289, · · · , }.
We have the following k−division 3−Lehmer-Pell sequences.
(i) The 2−division 3−Lehmer-Pell sequence, denoted by {hLn(2, 3)}∞n=0, is

hLn(2, 3) =

{
3hLn−1(2, 3) + hLn−2(2, 3) + 5hLn−3(2, 3) + 2hLn−4(2, 3) n odd,
hLn−1(2, 3) + hLn−2(2, 3)− 5hLn−3(2, 3)− 2hLn−3(2, 3) n even,

with initial conditions hL0(2, 3) = hL1(2, 3) = hL2(2, 3) = 0, hL2(2, 3) = 1, so

{hLn(2, 3)}∞n=0 = {0, 0, 0, 1, 1, 4, 0, 11,−11,−14,−80,−287, · · ·}.

(ii) The 3−division 3−Lehmer-Pell sequence, denoted by {hLn(3, 3)}∞n=0, is

hLn(3, 3) =

{
3hLn−1(3, 3) + hLn−2(3, 3) + 12hLn−4(3, 3) + 5hLn−5(3, 3) n odd,
hLn−1(3, 3) + hLn−2(3, 3)− 12hLn−4(3, 3)− 5hLn−5(3, 3) n even,

with initial conditions hL0(3, 3) = hL1(3, 3) = hL2(3, 3) = hL3(3, 3) = 0, hL4(3, 3) = 1, so

{hLn(3, 3)}∞n=0 = {0, 0, 0, 0, 1, 3, 4, 15, 7, 77, 21, 340, 202, 1905, 1407, · · ·}.

(iii) The 4−division 3−Lehmer-Pell sequence, denoted by {hLn(4, 3)}∞n=0, is

hLn(4, 3) =

{
3hLn−1(4, 3) + hLn−2(4, 3) + 29hLn−5(4, 3) + 12hLn−6(4, 3) n odd,
hLn−1(4, 3) + hLn−2(4, 3)− 29hLn−5(4, 3)− 12hLn−6(4, 3) n even,

with initial conditions hL0(4, 3) = hL1(4, 3) = hL2(4, 3) = hL3(4, 3) = hL4(4, 3) = 0, hL5(4, 3) = 1,
so

{hLn(4, 3)}∞n=0 = {0, 0, 0, 0, 0, 1, 1, 4, 5, 19,−5, 45,−88,−26,−725, · · ·}.

(iv) The k−division 3−Lehmer-Pell sequences, denoted by {hLn(k, 3)}∞n=0, are

hLn(k, 3) =

{
3hLn−1(k, 3) + hLn−2(k, 3) + Pk+1hLn−k−1(k, 3) + PkhLn−k−2(k, 3) n odd,
hLn−1(k, 3) + hLn−2(k, 3)− Pk+1hLn−k−1(k, 3)− PkhLn−k−2(k, 3) n even,

with initial conditions hL0(k, 3) = hL1(k, 3) = · · · = hLk(k, 3) = 0, hLk+1(k, 3) = 1.
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Lemma 2.3. For k ≥ 2, let ghLn(k,3) be the generating function of the k−division 3−Lehmer-Pell

sequences. Then

ghLn(k,3) =


xk+1

1− 3x− x2 − Pk+1xk+1 − Pkxk+2
n odd,

xk+1

1− x− x2 + Pk+1xk+1 + Pkxk+2
n even,

(2)

Proof. For k ≥ 2, let ghLn(k,3) be the generating function of the k−division 3−Lehmer-Pell sequences.
If n is odd, then

ghLn(k,3) =
∞∑
n=1

hLn(k, 3)x
n

= hL1(k, 3)x+ hL2(k, 3)x
2 + · · ·+ hLk+1(k, 3)x

k+1 +
∞∑

n=k+2

hLn(k, 3)x
n

= xk+1 +
∞∑

n=k+2

(3hLn−1(k, 3) + hLn−2(k, 3) + Pk+1hLn−k−1(k, 3) + PkhLn−k−2(k, 3))x
n

= xk+1 + 3
∞∑

n=k+2

hLn−1(k, 3)x
n +

∞∑
n=k+2

hLn−2(k, 3)x
n + Pk+1

∞∑
n=k+2

hLn−k−1(k, 3)x
n

+ Pk

∞∑
n=k+2

hn−k−2(k, 3)x
n

= xk+1 + 3x
∞∑
n=1

hLn(k, 3)x
n + x2

∞∑
n=1

hLn(k, 3)x
n + Pk+1x

k+1

∞∑
n=1

hLn(k, 3)x
n

+ Pkx
k+2

∞∑
n=1

hLn(k, 3)x
n

= xk+1 + 3xghLn(k,3) + x2ghLn(k,3) + Pk+1x
k+1ghLn(k,3) + Pkx

k+2ghLn(k,3),

so

ghLn(k,3) =
xk+1

1− 3x− x2 − Pk+1xk+1 − Pkxk+2
.

If n is even, then

ghLn(k,3) =
∞∑
n=1

hLn(k, 3)x
n

= hL1(k, 3)x+ hL2(k, 3)x
2 + · · ·+ hLk+1(k, 3)x

k+1 +
∞∑

n=k+2

hLn(k, 3)x
n

= xk+1 +
∞∑

n=k+2

(hLn−1(k, 3) + hLn−2(k, 3)− Pk+1hLn−k−1(k, 3)− PkhLn−k−2(k, 3))x
n

= xk+1 +
∞∑

n=k+2

hLn−1(k, 3)x
n +

∞∑
n=k+2

hLn−2(k, 3)x
n − Pk+1

∞∑
n=k+2

hLn−k−1(k, 3)x
n

− Pk

∞∑
n=k+2

hn−k−2(k, 3)x
n
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= xk+1 + x

∞∑
n=1

hLn(k, 3)x
n + x2

∞∑
n=1

hLn(k, 3)x
n − Pk+1x

k+1

∞∑
n=1

hLn(k, 3)x
n

− Pkx
k+2

∞∑
n=1

hLn(k, 3)x
n

= xk+1 + xghLn(k,3) + x2ghLn(k,3) − Pk+1x
k+1ghLn(k,3) − Pkx

k+2ghLn(k,3),

so

ghLn(k,3) =
xk+1

1− x− x2 + Pk+1xk+1 + Pkxk+2
.

Lemma 2.4. For k ≥ 2, the generating function of the k−division 3−Lehmer-Pell sequences has

exponential representation

ghLn(k,3) =


xk+1exp

∑∞
i=1

xi

i
(3 + x+ Pk+1x

k + Pkx
k+1)i n odd,

xk+1exp
∑∞

i=1

xi

i
(1 + x− Pk+1x

k − Pkx
k+1)i n even,

Proof. From Lemma 2.3, for n odd we have

ln
ghLn(k,3)

xk+1
= − ln(1− 3x− x2 − Pk+1x

k+1 − Pkx
k+2),

so then

− ln(1− 3x− x2 − Pk+1x
k+1 − Pkx

k+2) = −[−x(3 + x+ Pk+1x
k + Pkx

k+1)

− 1

2
x2(3 + x+ Pk+1x

k + Pkx
k+1)2 − · · · − 1

i
xi(3 + x+ Pk+1x

k + Pkx
k+1)i − · · ·],

and for n even we have

ln
ghLn(k,3)

xk+1
= − ln(1− x− x2 + Pk+1x

k+1 + Pkx
k+2),

so then

− ln(1− x− x2 + Pk+1x
k+1 + Pkx

k+2) = −[−x(1 + x− Pk+1x
k − Pkx

k+1)

− 1

2
x2(1 + x− Pk+1x

k − Pkx
k+1)2 − · · · − 1

i
xi(1 + x− Pk+1x

k − Pkx
k+1)i − · · ·].

For k ≥ 2, de�ne the k−division 4−Lehmer-Pell sequences as follows.
(i) The 2−division 4−Lehmer-Pell sequence, denoted by {hLn(2, 4)}∞n=0, is

hLn(2, 4) =

{
4hLn−1(2, 4) + hLn−2(2, 4) + 10hLn−3(2, 4) + 4hLn−4(2, 4) n odd,
hLn−1(2, 4) + hLn−2(2, 4)− 10hLn−3(2, 4)− 4hLn−3(2, 4) n even,

with initial conditions hL0(2, 4) = hL1(2, 4) = hL2(2, 4) = 0, hL2(2, 4) = 1, so

{hLn(2, 4)}∞n=0 = {0, 0, 0, 1, 1, 5,−4, 3,−55,−237,−306,−1999, 285, · · ·}.
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(ii) The 3−division 4−Lehmer-Pell sequence, denoted by {hLn(3, 4)}∞n=0, is

hLn(3, 4) =

{
4hLn−1(3, 4) + hLn−2(3, 4) + 24hLn−4(3, 4) + 10hLn−5(3, 4) n odd,
hLn−1(3, 4) + hLn−2(3, 4)− 24hLn−4(3, 4)− 10hLn−5(3, 4) n even,

with initial conditions hL0(3, 4) = hL1(3, 4) = hL2(3, 4) = hL3(3, 4) = 0, hL4(3, 4) = 1, so

{hLn(3, 4)}∞n=0 = {0, 0, 0, 0, 1, 4, 5, 24, 5, 150,−5, 756, 391, 5970, 4981, · · ·}.

(iii) The 4−division 4−Lehmer-Pell sequence, denoted by {hLn(4, 4)}∞n=0, is

hLn(4, 4) =

{
4hLn−1(4, 4) + hLn−2(4, 4) + 58hLn−5(4, 4) + 24hLn−6(4, 4) n odd,
hLn−1(4, 4) + hLn−2(4, 4)− 58hLn−5(4, 4)− 24hLn−6(4, 4) n even,

with initial conditions hL0(4, 4) = hL1(4, 4) = hL2(4, 4) = hL3(4, 4) = hL4(4, 4) = 0, hL5(4, 4) = 1,
so

{hLn(4, 4)}∞n=0 = {0, 0, 0, 0, 0, 1, 1, 5, 6, 29,−23, 19,−318, · · ·}.

(iv) The k−division 4−Lehmer-Pell sequences, denoted by {hLn(k, 4)}∞n=0, are

hLn(k, 4) =

{
4hLn−1(k, 4) + hLn−2(k, 4) + 2Pk+1hLn−k−1(k, 4) + 2PkhLn−k−2(k, 4) n odd,
hLn−1(k, 4) + hLn−2(k, 4)− 2Pk+1hLn−k−1(k, 4)− 2PkhLn−k−2(k, 4) n even,

with initial conditions hL0(k, 4) = hL1(k, 4) = · · · = hLk(k, 4) = 0, hLk+1(k, 4) = 1.
For k ≥ 2, de�ne the k−division 5−Lehmer-Pell sequence as follows.
(i) The 2−division 5−Lehmer-Pell sequence, denoted by {hLn(2, 5)}∞n=0, is

hLn(2, 5) =

{
5hLn−1(2, 5) + hLn−2(2, 5) + 15hLn−3(2, 5) + 6hLn−4(2, 5) n odd,
hLn−1(2, 5) + hLn−2(2, 5)− 15hLn−3(2, 5)− 6hLn−3(2, 5) n even,

with initial conditions hL0(2, 5) = hL1(2, 5) = hL2(2, 5) = 0, hL2(2, 5) = 1, so

{hLn(2, 5)}∞n=0 = {0, 0, 0, 1, 1, 6,−8,−13,−117,−682,−556,−5295, 5018, · · ·}.

(ii) The 3−division 5−Lehmer-Pell sequence, denoted by {hLn(3, 5)}∞n=0, is

hLn(3, 5) =

{
5hLn−1(3, 5) + hLn−2(3, 5) + 36hLn−4(3, 5) + 15hLn−5(3, 5) n odd,
hLn−1(3, 5) + hLn−2(3, 5)− 36hLn−4(3, 5)− 15hLn−5(3, 5) n even,

with initial conditions hL0(3, 5) = hL1(3, 5) = hL2(3, 5) = hL3(3, 5) = 0, hL4(3, 5) = 1, so

{hLn(3, 5)}∞n=0 = {0, 0, 0, 0, 1, 5, 6, 35, 5, 255,−31, 1450, 714, · · ·}.

(iii) The 4−division 5−Lehmer-Pell sequence, denoted by {hLn(4, 5)}∞n=0, is

hLn(4, 5) =

{
5hLn−1(4, 5) + hLn−2(4, 5) + 87hLn−5(4, 5) + 36hLn−6(4, 5) n odd,
hLn−1(4, 5) + hLn−2(4, 5)− 87hLn−5(4, 5)− 36hLn−6(4, 5) n even,

with initial conditions hL0(4, 5) = hL1(4, 5) = hL2(4, 5) = hL3(4, 5) = hL4(4, 5) = 0, hL5(4, 5) = 1,
so

{hLn(4, 5)}∞n=0 = {0, 0, 0, 0, 0, 1, 1, 6, 7, 41,−39,−31,−628,−2346,−2346, · · ·}.
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(iv) The k−division 5−Lehmer-Pell sequence, denoted by {hLn(k, 5)}∞n=0, is

hLn(k, 5) =

{
5hLn−1(k, 5) + hLn−2(k, 5) + 3Pk+1hLn−k−1(k, 5) + 3PkhLn−k−2(k, 5) n odd,
hLn−1(k, 5) + hLn−2(k, 5)− 3Pk+1hLn−k−1(k, 5)− 3PkhLn−k−2(k, 5) n even,

with initial conditions hL0(k, 5) = hL1(k, 5) = · · · = hLk(k, 5) = 0, hLk+1(k, 5) = 1.
Thus, for k ≥ 2, the k−division L−Lehmer-Pell sequences, denoted by {hLn(k, L)}∞n=0, are

hLn(k, 5) =


LhLn−1(k, 5) + hLn−2(k, 5) + (L− 2)Pk+1hLn−k−1(k, 5)

+(L− 2)PkhLn−k−2(k, 5) n odd,
hLn−1(k, 5) + hLn−2(k, 5)− (L− 2)Pk+1hLn−k−1(k, 5)

−(L− 2)PkhLn−k−2(k, 5) n even,

with initial conditions hL0(k, L) = hL1(k, L) = · · · = hLk(k, L) = 0, hLk+1(k, L) = 1.

Lemma 2.5. For k ≥ 2, let ghLn(k,L) be the generating function of the k−division L−Lehmer-Pell

sequences. Then

ghLn(k,L) =


xk+1

1− Lx− x2 − (L− 2)Pk+1xk+1 − (L− 2)Pkxk+2
n odd,

xk+1

1− x− x2 + (L− 2)Pk+1xk+1 + (L− 2)Pkxk+2
n even,

(3)

Proof. The proof is similar to that for Lemma 2.3 and so is omitted.

Similar to Lemma 2.4, the following lemma is obtained.

Lemma 2.6. For k ≥ 2, the generating function of the k−division L−Lehmer-Pell sequences has

exponential representation

ghLn(k,L) =


xk+1exp

∑∞
i=1

xi

i
(L+ x+ (L− 2)Pk+1x

k + (L− 2)Pkx
k+1)i n odd,

xk+1exp
∑∞

i=1

xi

i
(1 + x− (L− 2)Pk+1x

k − (L− 2)Pkx
k+1)i n even,

3. An A�ne-Hill Cipher from the k−division L−Lehmer-Pell sequences

In this section, the k−division L−Lehmer-Pell sequences and corresponding self-invertible matrices
are employed to obtain an A�ne-Hill cipher algorithm. Let the public key be (hLn(k, L), p) where
p is prime and i ∈ N is the secret key. The message m is �rst divided into matrices of size 1 × 4

modulo p denoted Pj, 1 ≤ j ≤ n. The secret key is used to compute

hLi(k, L), hLi+1(k, L), hLi+2(k, L), hLi+3(k, L).

Then, a self-invertible matrix K is obtained as follows

K =


hLi(k, L) hLi+1(k, L) 1− hLi(k, L) −hLi+1(k, L)

hLi+2(k, L) hLi+3(k, L) −hLi+2(k, L) 1− hLi+3(k, L)

1 + hLi(k, L) hLi+1(k, L) −hLi(k, L) −hLi+1(k, L)

hLi+2(k, L) 1 + hLi+3(k, L) −hLi+2(k, L) −hLi+3(k, L)

 (mod p),
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as well as
B =

[
hLp+i(k, L) hLp+i+1(k, L) hLp+i+2(k, L) hLp+i+3(k, L)

]
.

The message is used to compute Cj ≡ PjK + B (mod p) and C = Cj, 1 ≤ j ≤ n is sent. For
decryption, the public key (hLn(k, L), p) and the secret key i are employed to compute K and B.
Then K and B are used to obtain

Pj ≡ (Cj −B)K−1 (mod p).

The proposed algorithm is given below.

Algorithm

Let (hLn(k, L), p) be the public key where p is prime and i ∈ N be the secret key.
� Encryption

1. Divide the message into matrices of size 1 × 4 modulo p denoted Pj. Using the secret key,
compute hLi(k, L), hLi+1(k, L), hLi+2(k, L), hLi+3(k, L).

2. Obtain a self-invertible matrix K as follows

K =


hLi(k, L) hLi+1(k, L) 1− hLi(k, L) −hLi+1(k, L)

hLi+2(k, L) hLi+3(k, L) −hLi+2(k, L) 1− hLi+3(k, L)

1 + hLi(k, L) hLi+1(k, L) −hLi(k, L) −hLi+1(k, L)

hLi+2(k, L) 1 + hLi+3(k, L) −hLi+2(k, L) −hLi+3(k, L)

 (mod p).

3. Compute

B =
[
hLp+i(k, L) hLp+i+1(k, L) hLp+i+2(k, L) hLp+i+3(k, L)

]
.

4. Using the message, compute Cj ≡ PjK +B (mod p).

5. Send C.

� Decryption

1. Using the public key (hLn(k, L), p) and secret key i, compute K and B.

2. Using K and B, obtain Pj ≡ (Cj −B)K−1 (mod p).

The proposed algorithm is illustrated in the following example.

Example 3.1. Let the public key be (hLn(1, 3), 5) and the secret key be i = 4. The message is
12, 13, 2, 3, 3, 7, 9, 2380, 1, 3.

� Encryption

1. Divide a message into matrix size 1× 4 modulo p denoted Pj, 1 ≤ j ≤ n. We have

P1 =
[
12 13 2 3

]
=

[
2 3 2 3

]
(mod 5).

P2 =
[
3 7 9 2380

]
=

[
3 2 4 0

]
(mod 5).

P3 =
[
1 3 0 0

]
(mod 5).

Using secret key, compute hL4(1, 3) = 2, hL5(1, 3) = 16, hL6(k, 3) = 11, hL7(k, 3) = 83.
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2. Obtain a self-invertible matrix K as follows

K =


hL4(1, 3) hL5(1, 3) 1− hL4(1, 3) −hL5(1, 3)

hL6(1, 3) hL7(1, 3) −hL6(1, 3) 1− hL7(1, 3)

1 + hL4(1, 3) hL5(1, 3) −hL4(1, 3) −hL5(1, 3)

hL6(1, 3) 1 + hL7(1, 3) −hL6(1, 3) −hL7(1, 3)



=


2 16 −1 −16

11 83 −11 −82

3 16 −2 −16

11 84 −11 −83



=


2 1 4 4

1 3 4 3

3 1 3 4

1 4 4 2

 (mod 5).

3. Compute

B =
[
hL9(1, 3) hL10(1, 3) hL11(1, 3) hL12(1, 3)

]
=

[
428 289 2207 1407

]
≡

[
3 4 2 0

]
(mod 5).

4. Using the message, compute Cj ≡ PjK +B (mod p) so then we have

C1 ≡ P1K +B =
[
2 3 2 3

]

2 1 4 4

1 3 4 3

3 1 3 4

1 4 4 2

+
[
3 4 2 0

]
≡

[
4 4 0 1

]
(mod 5).

C2 ≡ P2K +B =
[
3 2 4 0

]

2 1 4 4

1 3 4 3

3 1 3 4

1 4 4 2

+
[
3 4 2 0

]
≡

[
3 2 4 4

]
(mod 5).

C3 ≡ P3K +B =
[
1 3 0 0

]

2 1 4 4

1 3 4 3

3 1 3 4

1 4 4 2

+
[
3 4 2 0

]
≡

[
3 4 3 3

]
(mod 5).

5. Send C = C1C2C3 = 4, 4, 0, 1, 3, 2, 4, 4, 3, 4, 3, 3.

� Decryption

1. Using the public key (hLn(1, 3), 5) and secert key 4, compute K and B.

2. Using K and B, obtain Pj ≡ (Cj −B)K−1 (mod 5).

P1 ≡ (C1 −B)K−1
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= (
[
4 4 0 1

]
−
[
3 4 0 1

]
)×


2 1 4 4

1 3 4 3

3 1 3 4

1 4 4 2


−1

≡
[
2 3 2 3

]
(mod 5),

P2 ≡ (C2 −B)K−1

= (
[
3 2 4 4

]
−
[
3 4 0 1

]
)×


2 1 4 4

1 3 4 3

3 1 3 4

1 4 4 2


−1

≡
[
3 2 4 0

]
(mod 5),

P3 ≡ (C3 −B)K−1

= (
[
3 4 3 3

]
−
[
3 4 0 1

]
)×


2 1 4 4

1 3 4 3

3 1 3 4

1 4 4 2


−1

≡
[
1 3 0 0

]
(mod 5).

For s ≥ 5, the proposed algorithm can be generalized so that K is an s× s self-invertible matrix
[1], B is an l × s matrix, and the message matrix divides an l × s matrix.

3.1. Security analysis

An important attack on the A�ne-Hill cipher is the brute force attack [20]. In this method, all
possible matrices must be tested. In the proposed algorithm, the keys are constructed using self-
invertible matrices. Since these matrices are invertible, we must check the order of the groupGLn(Fp).
GLn(Fp), p prime, consists of all invertible matrices of order n× n over Fp [8]. This group has order

| GLn(Fp) |= (pn − pn−1)(pn − pn−2) · · · (pn − 1).

Since K is an invertible matrix of order 4× 4, we have

| GL4(Fp) |= (p4 − p3)(p4 − p2)(p4 − p1)(p4 − 1).

For example

if p = 2, we have | GL4(F2) |= (24 − 23)(24 − 22)(24 − 21)(24 − 1) = 20160,

if p = 3, we have | GL4(F3) |= (34 − 33)(34 − 32)(34 − 31)(34 − 1) = 24261120,

if p = 5, we have | GL4(F5) |= (54 − 53)(54 − 52)(54 − 51)(54 − 1) = 116064000000.

As p and n increase, | GLn(Fp) |→ ∞. Therefore, the key space is very large so the probability of a
successful attack is negligible.
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Another attack is a timing attack. This is a type of side channel attack in which the attacker
tries to compromise the cryptographic system by analyzing the time taken to execute the algorithm.
Because the keys in the proposed algorithm are matrices and multiplication is employed, accessing
the system and obtaining the required information will be very time-consuming and prone to errors,
so this is not a practical attack.

4. Conclusion

A new sequence called the k−division sequence was introduced. Then the Pell and Lehmer sequences
were used to obtain new sequences called the k−division L−Lehmer-Pell sequences, and some proper-
ties of these sequences were determined. As an application, the k−division L−Lehmer-Pell sequences
and corresponding self-invertible matrices were employed in a new A�ne-Hill cipher algorithm, and
the security was studied. Other sequences such as Mersenne, Fibonacci, and Jacobsthal sequences
[5, 7, 14] can be used for this algorithm.
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