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abstract

Blockchain technology has the characteristics of data anti-tampering and anti-forgery, which can

provide solution ideas for the secure storage and transmission of data in distributed networks. The

study applies blockchain technology to data auditing, constructs an aggregated signature based on

conditional identity anonymization to protect user privacy, simpli�es the auditing computation by

using homomorphic hash function, and deploys three kinds of smart contracts on the blockchain to

design a blockchain-based data integrity auditing scheme. For the privacy protection problem, a

blockchain privacy protection model based on di�erential privacy is constructed by integrating the

di�erential privacy policy into the blockchain smart contract layer. The experimental results show

that the data integrity auditing scheme has superior blockchain storage cost and time overhead,

and the average time overhead under di�erent dynamic operations is below 30ms. The privacy

protection model also exhibits high e�ciency, with encryption and decryption times of 0.075s and

0.063s, respectively, under the largest data �le, and a signi�cant speed advantage in all phases

of operation. The proposed scheme in this paper meets the needs of data integrity and privacy

protection, and can provide e�cient services for users.

Keywords: blockchain technology, di�erential privacy algorithm, privacy protection

1. Introduction

With the advent of the big data era, the growing volume of data has also brought new challenges to

the secure storage and sharing of data. In the past, users were accustomed to storing their personal
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data in third-party data storage platforms, which were managed and maintained by centralized

servers. However, the third-party platform is semi-trustworthy, users cannot control the platform's

use of data stored in the platform, there is a possibility of data misuse, and the centralized platform

is prone to data loss due to a single point of failure [7, 20, 27]. Therefore, the traditional centralized

data management model lurks a huge risk of privacy leakage and is in urgent need of transformation.

In contrast, distributed network is a network environment composed of computer nodes distributed

in di�erent geographical locations [15]. Data is jointly maintained by multiple independent storage

servers in the network, which not only avoids the single point of failure problem in the centralized

storage system, reduces the risk of user data loss, and improves the reliability of the data management

system [19, 14, 5]. In addition, nodes outside the network can also be con�gured to become a member

of the distributed network with strong availability and scalability [3, 25]. The peer-to-peer network

represented by blockchain network is a typical distributed network widely used in the �eld of user

data security protection research.

Blockchain is a distributed database technology realized through a variety of technologies such

as public key cryptography algorithms, hashing algorithms, consensus mechanisms, and distributed

storage technologies [6, 18]. The distributed database of blockchain has more security advantages

compared to the centralized system. In blockchain system, even if a speci�c node fails, the data is

still guaranteed to be complete and not tampered with [22, 13]. The structure without third-party

intermediaries also promotes data security and integrity as each transaction in a blockchain is based

on a consensus established by the nodes of the entire blockchain network and one no longer needs to

assess the trustworthiness of intermediaries or other participants in the network [10, 8, 1].

Many data in today's society have non-negligible commercial value, and the security of user data

should not completely hope on the third-party application platform, a large number of scholars

research on privacy data protection schemes. Literature [16] introduces the privacy security risk of

cloud computing, on the basis of which it compares numerous privacy security protection techniques,

including access control techniques, attribute-based encryption techniques, etc., and analyzes the

characteristics and scope of application of typical schemes supported by technology. Literature

[21] addresses the online social network (OSN) privacy protection problem, proposes to construct

a security prediction model based on neural network, hybrid recursive genetic algorithm and radial

basis function, and adopts attribute-based encryption scheme to encrypt the preprocessed OSN

information, and further improves the security of the privacy data using particle swarm optimization

algorithm. Literature [9] utilizes homomorphic encryption scheme to achieve secure data aggregation

of ciphertexts in elected central nodes, which are generated in Device-to-device network environment

by relying on the reliability-based central node election mechanism ordering. Literature [26] proposes

a privacy-preserving scheme for social networks (PPSSN) based on categorical attribute encryption,

which balances the privacy and security of data distribution by categorizing users and designing access

control with di�erent users and permissions, and also utilizes the buddy data caching mechanism to

further reduce the decryption cost.

In the �eld of information security, blockchain technology's decentralization and other characteris-

tics and can be very good in solving the crisis of trust in user privacy data security sharing problems.

Literature [23] proposes blockchain-based edge computing technology, which realizes both the se-

curity protection and integrity checking of data in the cloud, as well as wider multi-party secure

computing, while introducing the Paillier cryptosystem, which reduces the computational burden of

the terminals under the premise of guaranteeing the operational e�ciency. Literature [4] shows that

the chained block structure of blockchain provides tamper-resistant data storage and sharing func-
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tions and is based on a trusted consensus mechanism that enables it to verify the security of data,

however, blockchain still has some privacy issues, and the anonymity and transaction privacy pro-

tection of blockchain in the existing cryptographic defense mechanisms are discussed. Literature [11]

designs a federated blockchain privacy protection scheme (PDPChain) based on the improved Pail-

lier homomorphic encryption mechanism, which encrypts and stores distributed private cluster data

based on �ne-grained access control of ciphertext policy attribute-based encryption, and is suitable

for storing and sharing large amounts of data. Literature [2] designed a blockchain privacy protection

model based on the DEPLEST algorithm, which maintains the local database storage and computa-

tional power within the limits of individual user's device, and ultimately protects the user's sensitive

information through the distributed blockchain and passes the non-sensitive information to the main

system to manage the size of the blockchain. Literature [17] proposes a two-stage privacy protection

mechanism using the transparency of blockchain technology, �rstly using double perturbation local

di�erence privacy algorithm to perturb the location information of the worker, and secondly using

edge cloud computing to upload the sensory data of the edge nodes to the blockchain to feed back

to the requester, which achieves both the integrity of the sensory data and the privacy protection

purpose. Literature [12] evaluates the role of blockchain-based distributed access control system in

the user privacy protection problem, and proposes the concept of fog computing and federated chain,

which e�ectively solves the single-point-of-failure problem of data storage by encrypting the data

on the edge nodes while providing dynamic and �ne-grained access control for the data to achieve

privacy protection. Literature [24] emphasizes that the use of centralized access control mechanisms

in the cloud can easily lead to tampering or leakage of sensitive data, so a blockchain access control

framework AuthPrivacyChain is proposed, which not only blocks illegal access from hackers and

administrators, but also protects authorized privacy.

The study is based on blockchain technology to design data integrity auditing method and privacy

protection method. On the one hand, an aggregate signature algorithm is constructed by combining

user anonymous identity and homomorphic hash function to realize conditional identity privacy

protection, and the homomorphic feature is utilized to reduce the burden of auditing computation,

and at the same time, three kinds of smart contracts are deployed, which are in charge of recording

the metadata and executing the auditing tasks, to build the data integrity auditing method. Several

comparison algorithms are also selected to analyze their storage costs and time overheads under

di�erent dynamic operations to explore the performance of conditional identity anonymous data

auditing methods. On the other hand, the di�erential privacy mechanism is integrated into the smart

contract layer of the blockchain network to realize the process of automatically invoking the chain

code to add noise to the data during user uploading. The perturbation of the original data is realized

by adding random Laplace noise to the numerical data and adding random response noise conforming

to the de�nition of di�erential privacy to the binary data in non-numerical data for random �ip. The

encryption and decryption time analysis of di�erent sizes of data and di�erent complexity of access

policies are carried out respectively, and comparative experiments of the algorithms under di�erent

stages are conducted to measure the privacy protection performance of the privacy protection method

in this paper.

2. Application of blockchain technology in network information security

Blockchain technology, as an innovative distributed database technology, has an increasingly obvious

application value in secure information storage and transmission. As blockchain has the unique
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performance of decentralization, non-tampering and high security, it brings a brand-new solution

and concept to the traditional information security problem.

First of all, blockchain technology can e�ectively solve the problem of data leakage, through the

use of distributed ledger and encryption algorithms, so that blockchain technology to ensure that the

stored data is not interfered with a single point of failure or malicious attacks. All data is strictly

encrypted and only allowed to be accessed and modi�ed under speci�c conditions. This greatly

reduces the risk of illegal access or theft of data and improves information security.

Secondly, blockchain technology can enhance the security of data transmission. Traditional data

transmission methods often face the risk of interception and tampering, etc. Blockchain technology

ensures the integrity and authenticity of the transmitted data through encryption algorithms and

consensus mechanisms. The entire transmission data is recorded in the blockchain and jointly veri�ed

and maintained by a number of nodes within the network. This ensures that the data is not sub-

ject to malicious modi�cation and forgery, and enhances the reliability and security of information

transmission.

In addition, blockchain technology has a long-term preservation and backup function, because the

blockchain is distributed storage, so the data will be decentralized storage to a number of nodes, and

in each node to save a complete copy of the data. This decentralized storage ensures that the data

is durable, reliable, and not lost even when some nodes fail or are attacked. At the same time, the

blockchain automatically backs up and restores data, reducing the risk of data loss.

3. Blockchain-based data integrity auditing program

With the widespread use of cloud computing technology and the explosive growth of data volumes,

it has become particularly important to e�ectively safeguard the integrity and privacy of outsourced

data. However, most of the existing data auditing methods rely on third-party auditors, a practice

that not only increases the risk of data leakage and possible malicious behaviors of auditors, but also

fails to meet the rising demand for data protection. To address the above challenges, this chapter

proposes a blockchain-based conditional identity anonymization data auditing scheme.

3.1. System model

The system model of the blockchain-based data auditing scheme is shown in Figure 1, including four

core entities: data owner (DO), key generation center (PKG), blockchain (BC), and cloud service

provider (CSP). The speci�c four core entities are described as follows:

Fig. 1. Data audit system model based on block chain

DO: The user �rst generates the corresponding digital signature and integrity veri�cation auxiliary
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information for the outsourced data �le. Subsequently, it is uploaded to the CPS and the integrity

veri�cation auxiliary information is uploaded to the blockchain via a secure channel. Finally, DO

deletes the local copy to save storage space.

PKG: Responsible for generating anonymous identity and corresponding key pairs based on DO's

real identity in the initialization phase.

CSP: responsible for storing the outsourced data and their digital signatures, and handling integrity

audit challenges from the BC, returning response messages containing audit proofs to the BC.

BC: The blockchain is maintaining a shared ledger among the participants of the decentralized

network. The BC automatically records data integrity information and performs periodic cloud data

audits via smart contracts.

3.2. Adversary modeling

The blockchain-based conditional identity anonymization data integrity auditing scheme aims to

achieve reliable auditing of data integrity and to protect the identity privacy of the data owner from

possible misbehavior by malicious third-party auditors. Therefore, the following types of attacks are

considered in the data auditing process: forgery attacks, privacy attacks and data recovery attacks.

3.3. Program construction

This program contains Setup, Key GenPID, Sig, Challenge, and V erify, �ve algorithms in total.

3.3.1. System initialization. Setup : The algorithm is executed by PKG by entering security param-

eters ξ into the system, generating two multiplicative cyclic groups of order prime p, G1, G2, setting

up a bilinear mapping: G1 × G1 → G2. Let g be the generating element of the group G1, setting

up two collision-proof hash functions, H1 : G1 × G1 × {0, 1}∗ → {0, 1}ρ, H2 : G1 × {0, 1}ρ → Z∗
p ,

where ρ denotes the length of the bits of the anonymous identity. And a homomorphic hash function,

H3 : Zp → G1. The PKG randomly selects element x← Z∗
p as the master private key, computes the

master public key mpk = gx, and randomly selects element ω ← G1. Finally, the PKG securely and

secretly saves x and discloses the system parameters:

params = (e,G1, G2, g, p, ω,mpk,H1, H2, H3) . (1)

3.3.2. Generating anonymous identities and signing private keys. Key GenPID: The algorithm is

executed by the PKG to generate an anonymous identity PID and a corresponding signing private

key SKPID for the data owner DO based on his real identity ID ∈ {0, 1}ρ. First, the PKG randomly

selects s← Z∗
p and computes the anonymous identity PID of the DO using the master private key

x. Speci�cally, PID consists of two parts:

PID = (PIDa, P IDb) , (2)

PIDa = gs, (3)

PIDb = ID ⊕H1 (PIDx
a ∥mpk∥Time) , (4)

where Time denotes the e�ective period for which the DO can maintain anonymity.

The PKG then computes a signing private key corresponding to the anonymized identity PID

using the master private key:

SKPID = (s+ x)H2 (PID) . (5)

Finally, the PKG transmits (PID, SKPID, T ime) to the DO over a secure channel.
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3.3.3. Generating digital signatures. The algorithm is executed by the DO to generate the corre-

sponding digital signature based on the data �le that the DO itself is outsourcing, as well as the

corresponding auxiliary integrity audit veri�cation information. First, DO divides data F into n data

blocks, speci�cally denoted as F [1] , F [2] , · · · , F [i] ∈ Z∗
p (i = 1, 2, · · · , n), with �le name Fid ∈ Z∗

p .

Then, DO randomly selects σ, κ, γ ∈ Zp, t ∈ Z∗
p , and computes the following information:

φ1 = σ · κ · γ, φ2 = σ2 · κ2 · γ, · · · , φn = σn · κn · γ. (6)

Y = gt. (7)

And generates an auxiliary integrity veri�cation validation message:

IV A = {σ, κ, γ, Y,H3 (φ1) , H3 (φ2) , · · · , H3 (φn)} . (8)

In addition, the DO computes its digital signature Sigi for each data block using the signing private

key SKPID:

Ri = (H3 (φi) ·H3(PID))t , (9)

Ti =
(
ωF [i]H2 (Fid ∥PID∥ i)

)SKPID
, (10)

Sigi = Ri · Ti. (11)

Finally, the DO uploads the data block and digital signature
(
{F [i]}1≤i≤n , {Sigi}1≤i≤n , Y

)
to the

CSP, and uploads the auxiliary audit information IV A and the anonymized identity PID to the

blockchain's storage contract for preservation.

3.3.4. Generating challenge information. The algorithm is executed by the BC, which generates

an audit challenge message based on the data recorded on the chain when it receives a request

from a DO authorizing it to audit the integrity of the outsourced data stored in the CSP. First, a

challenge contract deployed on the blockchain executes randomly selecting a subset J = {j1, j2, · · · jm}
containing m elements from set {1, 2, · · · , n}, assigning a random coe�cient vj ← Zp to each subset

j in subset J , and sending the challenge message chal =
{
(j, vj)j∈J

}
to the CPS.While waiting for

a response from the CPS, the following pre-computation is executed based on the auxiliary integrity

audit information IV A stored on the chain:

λ = H3 (PID)

jm∑
j=j1

vj

·H3 (γ)

jm∑
j=j1

·σj ·κjvj

. (12)

3.3.5. Data integrity audit. Verify: This algorithm is executed by the CSP, which generates the

corresponding integrity audit proof response message upon receiving the challenge message chal ={
(j, vj)j∈J

}
. First, the CPS picks a random value α ← Zp for blinding the data block to prevent

leakage and computes the proof:

µ = ωα. (13)

The CPS aggregates the appropriate data blocks based on the challenged information:

η = α−1

jm∑
j=h

vjF [j] + µ. (14)
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Then, the aggregated signature is computed:

Sig =

jm∏
j=h

Sig
vj
j . (15)

Finally, CPS sends the integrity audit proof response message {µ, η, Sig} to the blockchain.

After BC receives the integrity audit proof response message {µ, η, Sig}, it utilizes λ to determine

whether the integrity veri�cation equation is valid or not:

e (g, Sig) = e (Y, λ) · e (Y, λ)·e
(
(PIDa ·mpk)H2(PID) , µp−µ ·

∏jm
j=j1

H2 (Fid ∥PID∥ i)vj
)
. (16)

If the validation equation holds, the data outsourced by DO to CPS is complete. Otherwise, the

outsourced data is incomplete.

3.3.6. Smart contract deployment. In this scheme, the programmability, transparency, and im-

mutability of smart contracts, as well as their ability to automate the handling of complex logic

and mathematical computations, play a key role. In view of this, this scheme designs three types

of smart contracts: storage contract, challenge contract and audit contract and deploys them on

the blockchain in order to achieve the intended functions and goals. Among them, the storage con-

tract realizes the storage and retrieval of auxiliary integrity audit information by de�ning two main

functional interfaces, storeData and getData, respectively.

3.4. Experimental evaluation and results

In this section, the performance of the data integrity auditing scheme in this paper is evaluated by

doing comparison with other schemes. Scheme 1 is a multi-copy data integrity veri�cation scheme

based on spatio-temporal chaos, Scheme 2 is a multi-copy data integrity veri�cation scheme based

on identity signature, and Scheme 3 is a blockchain cloud storage integrity auditing scheme based

on T-Merkle hash tree. The three schemes are compared in terms of storage cost of blockchain and

time overhead required under di�erent dynamic update operations to verify the performance of the

schemes in this paper.

3.4.1. Blockchain storage costs. There are many blockchain-based data integrity auditing schemes,

but most of the schemes store the data or the tags of the data blocks on the blockchain, which leads

to a high memory overhead of the blockchain. The scheme in this paper is related to smart contracts,

which includes the storage and retrieval of smart contracts.

In ethereum, each transaction consumes a certain amount of gas. In this paper, a series of tests

are conducted, and the gas consumption of smart contracts with di�erent number of �les (from 16

to 2048) is shown in Figure 2. The experimental results show that the number of consumed gases

for smart contract storage and retrieval is maintained around 150,000 and 340,000, and the gas

consumption of the contract is independent of the number of �les stored. Therefore the blockchain

storage overhead of the conditional identity anonymized data auditing scheme based on blockchain

in this paper is extremely small.

3.4.2. Time overhead analysis. First, the experiment compares the average time overhead spent

by the three schemes with the schemes in this chapter when inserting di�erent amounts of data.

The time overhead during the data insertion operation is shown in Figure 3, where the horizontal
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Fig. 2. The amount of intelligent contract gas consumption in di�erent �les

coordinates indicate the number of di�erent inserted data and the vertical coordinates indicate the

time overhead of the corresponding data amount for the insertion operation.

The experimental results show that the required time overhead tends to grow with the increase

of inserted data. The average time overhead of this chapter's scheme with di�erent numbers of

inserted data is overall smaller than the other three schemes, with an average time overhead of

around 3∼30ms. The average time overhead spent by scheme 3 is increasing with the amount of

inserted data, and the average overhead time increases from 13ms to 35ms, and the average time

overhead spent by schemes 1 and 2 does not �oat much at di�erent amounts of inserted data, and

stabilizes at about 38ms and 40ms, respectively.

Fig. 3. Time overhead of data insertion operation

In the experiments of deletion operations, the average time overhead spent on deleting di�erent

amounts of data by the four schemes is also compared with the schemes in this chapter. The time

overhead during data deletion operation is shown in Figure 4, where the horizontal coordinates

indicate the di�erent number of deleted data and the vertical coordinates indicate the time overhead

of the corresponding data volume of the deletion operation.

From the experimental results, it can be seen that the average time overhead of this chapter's

scheme at di�erent numbers of deleted data has a signi�cant advantage over the other schemes, and

the average time overhead spent in scheme 3 increases with the increase of the amount of deleted data.

The average overhead time of scheme 1 to scheme 3 and the blockchain based data integrity auditing

scheme in this paper in the experiment are 38.18ms, 41.93ms, 21.26ms and 11.86ms respectively.
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Fig. 4. Time overhead of data deletion operation

Subsequently, the experiments compare the average time overhead spent by the three schemes with

the schemes in this chapter when updating di�erent data volumes. The time overhead during the data

deletion operation is shown in Figure 5, where the horizontal coordinate indicates the di�erent number

of updated data, and the vertical coordinate indicates the time overhead of the corresponding data

volume of the update operation. The average overhead time of the blockchain-based data integrity

auditing scheme in this paper is 2.5-20ms, and the average overhead time of scheme 1∼scheme 3

with di�erent number of updated data is 37-40ms, 40-43ms, and 6.5-30ms, respectively.Similarly to

the above experiments, it is concluded that the scheme of this chapter spends the least amount of

time in updating di�erent amount of data. The average time overhead spent by the schemes in this

chapter gradually increases with the increase of the amount of data updated, but the schemes in this

chapter are still relatively superior in terms of the overall average time overhead.

Fig. 5. Time overhead of data update operation

4. Blockchain privacy protection method based on di�erential privacy

Blockchain technology is used to build auditable and tamper-proof data storage solutions, especially

for datasets with stringent security requirements. However, there are still challenges in protecting

personal privacy information in databases, as any node can openly access personal privacy data stored

on the blockchain due to the open and transparent nature of the blockchain. Therefore, there is a

need to design a blockchain data sharing network architecture that satis�es the privacy and security

requirements of multiple parties.
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4.1. Blockchain network model

Aiming at the data privacy protection needs in blockchain, this paper designs a blockchain privacy

protection model based on di�erential privacy, and the blockchain privacy protection model is shown

in Figure 6. Users can carry out user operations through the data upload terminal and data access

terminal of the client module, and make upload and access requests through the Web service with

the middleware module. The smart contract module, on the other hand, automatically processes the

target user's request according to the di�erential privacy chain code function and permission control

chain code function installed in the blockchain network. The public data and identity certi�cates

are stored in the public database of the blockchain, which can provide services to all nodes in the

network, while the noise data is stored in the private ledger of the Hyperledger Fabric, and only

the privileged nodes can use the private data through the authentication by the privilege control

function.

Fig. 6. Blockchain data privacy protection model based on di�erential privacy

4.2. Di�erential privacy algorithm

Di�erential privacy algorithm design for data sharing removes attributes such as name, identi�cation

and other attributes for anonymization when an individual or organization uploads information to

the blockchain network for data sharing, and noise is added to the data by the di�erential privacy

mechanism in the smart contract to scramble the uploaded personal data to prevent di�erential

attacks.

4.2.1. Laplace random noise. By integrating the di�erential privacy mechanism into the blockchain

smart contract layer, it realizes the process of automatically calling the chain code to add noise to

the data in the process of user uploading data. By adding random Laplace noise to numerical data,

the perturbation of the original data is realized, which ensures the privacy of user data while the

data features are not damaged, and the querier can still analyze the relevant data.

Laplace noise function is for numerical data to add a random number in line with the Laplace

distribution: take the random variable α ∼ UNI (0, 1) to meet the uniform distribution, and brought

into the inverse function of the Laplace cumulative distribution function, then the noise value can

be obtained to meet the conditions of the formula is as follows.

F−1 (x) =

{
λ ln (2α) α < 1/2,

µ− λ ln (2α) α > 1/2.
(17)
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If the uniform distribution α ∼ UNI (−0.5, 0.5) is taken, the above segmented function can be

expressed in the form of an equation where the sign function is used to obtain the positive and

negative of the parameter and the abs function is used to obtain the absolute value. The noise value

is the:

F−1 (x) = µ− λ ∗ sign (α) ∗ ln (1− 2 ∗ abs (α)) . (18)

Add the computed random Laplace noise values to the data as in:

M (D) = f (D) + Lap

(
0,

∆f

ε

)
. (19)

The privacy budget ε is inversely proportional to the size of the added noise value, the smaller the

privacy budget, the larger the added noise, the higher the privacy protection strength of the data,

and the lower the data usability, and vice versa, the larger the privacy budget, the smaller the added

noise, the lower the protection strength of the data but the higher the usability. According to the

privacy requirements of a speci�c dataset, adding a privacy budget that meets the requirements can

balance the privacy protection utility level and data availability.

4.2.2. Stochastic response. The random response is a noise function that performs random �ipping,

for example, the "s" attribute in the personal information of the data used is that the individual

has two values of "yes" and "no", a noise that satis�es ε− di�erential privacy is added to it, and

the �ip probability p is calculated through the given privacy budget ε to achieve the purpose of

protecting personal privacy data, and the availability of data is retained, and the user can calculate

the maximum likelihood estimate of each value in the original data through ε for data analysis.

Suppose that the sample of questions and answers are counted and the number of �s� attributes

is counted. The proportion of true answers is given as π. Assume that the number of people who

answered �yes� is n1 and the number of people who answered �no� is n2, and there are:{
Pr [xi = ”yes”] = π ∗ p+ (1− π) ∗ (1− p)

Pr [xi = ”no”] = (1− π) ∗ p+ π ∗ (1− p)
(20)

Unbiased estimation using the method of great likelihood:

L = (π ∗ p+ (1− π) ∗ (1− p))n1 ∗ ((1− π) ∗ p+ π ∗ (1− p))n1 . (21)

Obtain an unbiased estimate of π for π̃:

π̃ =
p− 1

2p− 1
+

n1

(2p− 1)n
. (22)

Estimated number of �s� attributes:

ñ = n ∗ π =
p− 1

2p− 1
n+

n1

2p− 1
. (23)

Noise addition using random �ipping can e�ectively protect the original data from theft, and

the overall features of the original dataset can still be obtained by unbiased estimation of the data

processing.
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4.2.3. Responding to queries. Algorithm (17) will set the corresponding sensitivity and privacy

budget parameters according to the type of data to be uploaded, and the publisher of the data will

standardize the attributes and format of the data to be uploaded, set the noise adding function in

the attribute part of the user's sensitive information, and do not add the data perturbation to the

rest of the attribute information as a way of maximizing the usability of the data.

Users can verify the data by sending veri�cation requests to the endorsing nodes to prevent their

uploaded private data from being tampered by other attackers, and the consensus property of the

blockchain itself also requires the process of data veri�cation. In algorithm (18), the endorsing

node sends its identity information and the data identi�er to be veri�ed to the blockchain network

through the client, and the smart contract retrieves and calls the noisy data in the private database

of the corresponding identi�er of the veri�ed data according to the user's authority, and returns it to

the veri�er through denoising to complete the security veri�cation of the data and ensure the data

consistency of the blockchain network.

4.2.4. Privacy analysis. Assuming that the DPNA algorithm computes the model with a noise

privacy budget of ε, then the DPNA algorithm satis�es ε− di�erential privacy.

Proof: with two neighboring datasets D and D′, and let f (·) be the feature correlation function

on the neighboring datasets, and M denote the correlation feature computed for any one record, the

global sensitivity formula is as follows:

∆fM = max
D,D′
∥fM (D)− fM (D′)∥I . (24)

According to the de�nition of Laplace distribution, the probability density function of DPNA algo-

rithm is as follows:

Pr [D] = 1
2b
exp

(
− |fM (D)−M |

b

)
= ε

2∆fM
exp

(
− ε|fM (D)−M |

∆fM

)
. (25)

Thus the ratio of the probability density functions of the results computed by the DPNA algorithm

on two neighboring datasets is as follows:

PM(D)

PM(D′)
=

d∏
j=1

exp

(
ε|fM(D)|j−Mj|

∆fM

)/
exp

(
ε|fM(D′)|j−Mj|

∆fM

)

=
d∏

j=1

exp

(
ε (|fM(D′)|j−Mj)− (ε|fM(D)|j−Mj)

∆fM

)

≤
d∏

j=1

exp

(
ε|fM(D)j − fM(D′)j|

∆fM

)
= exp

(
ε||fM(D)− fM(D′)||1

∆fM

)
≤ exp(ε) (26)

Therefore, the above satis�es the de�nition of di�erential privacy, i.e., the DPNA algorithm satis�es

ε−di�erential privacy when the given privacy budget is ε. Thus, the proof is complete.

4.3. Experimental results and analysis

4.3.1. Experimental environment. All experiments in this chapter were carried out on a processor

Intel 2.70GHz i7-7500U CPU, operating system 64-bit Windows 10 OS, blockchain network deployed



application of blockchain technology for data 201

using Hyperledger Fabric 1.4, consisting of two organizations each consisting of two peer-to-peer

nodes and two users, and relevant code written using Go. Time measurements are performed mainly

for di�erential privacy algorithm performance.

4.3.2. Experimental results. In order to test the performance of the scheme, three experiments are

designed in this section to study the encryption and decryption time of data �les of di�erent sizes,

the impact of data access control policies of di�erent complexity on the encryption and decryption

computation time, and the computation time comparison of the two algorithms, which are designed

as follows.

Experiment 1. The experiment sets up data �les of di�erent sizes, uses the di�erential privacy

algorithm to perform encryption and decryption operations on the data, and takes the �nal com-

putation time as the basis for studying the relationship between data size and data encryption and

decryption cost.

The encryption and decryption times for data �les of di�erent sizes are shown in Figure 7. With

the increase of data size, the length of encryption and decryption are all in a linear growth trend.

In the actual super ledger transaction, a single block can hold a maximum of 10MB of data, so

the data is a maximum of 10MB, at this time, the encryption time is about 0.075s or so, and the

decryption time is about 0.063s. According to the encryption and decryption time length obtained

from the experiment, this paper �nds that the realization time of these two operations are within

the acceptable range of the user, so this scheme has good feasibility.

Fig. 7. The time of encryption and reconciliation of di�erent size data �les

Experiment 2. Setting di�erent degrees of access control policies, obtaining the running time of

the di�erential privacy algorithm for access control policies of di�erent complexity and the overall

running time of the scheme, and investigating the e�ect of the complexity of data access control

policies on the running time.

The computation time under access control policies of di�erent complexity is shown in Figure 8,

where 8a is the data encryption time length and 8b is the data decryption time length. As the

complexity of the access policy increases, the time consumption of the encryption process increases,

and the overall running time of the scheme increases, and the data encryption time and the overall

running time of the scheme in the experiments are below 3s and 7s, respectively. Therefore, the

time overhead of the blockchain privacy protection scheme based on di�erential privacy is small in

the whole chain phase, even when the complexity of the access control policy is as high as 50%, its
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computation time is only 2.97s, and the realized time is all within the acceptable range. Moreover,

in Figure 8b, the decryption speed is independent of the policy complexity. Due to the di�erent

strategy complexity of the decryption process, the decryption time consumption varies slightly with

the additive access strategy complexity in the test, and the time cost stabilizes around 0.18s, which

minimizes the overall time consumption.

(a) Data encryption time
(b) Data decryption time

Fig. 8. Computational time in di�erent complexity access control strategies

Experiment 3. In order to better compare the overall time consumption of the scenarios in terms

of time consumption at each stage, the overall time overhead of the test scenario is combined with

the actual situation, the experiments are set to upload and download �les with a size of 600 MB,

respectively, using the CP-ABE algorithm, the CP-ABE-AES algorithm and the di�erential privacy

algorithm of this paper for the overall time consumption test, and the three algorithms are used for

the overall time consumption test, according to the running time of the algorithms Compare the

performance advantages and disadvantages.

Fig. 9. The algorithms take time in di�erent stages

The time consumed by the algorithms under di�erent stages is shown in Figure 9. The computa-

tion time of all stages of this paper's di�erential privacy algorithm is smaller than the comparison

algorithm. First of all, the data encryption and decryption duration of all 3 algorithms is controlled

within 10s, whether it is the data encryption phase or the data access phase, the time overhead of the
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di�erential privacy algorithm used in this scheme is less than the comparison algorithm. Therefore,

the di�erential privacy algorithm is considered to have better performance and provide more e�cient

services to users. Secondly, in the whole scheme, the most time-consuming is the data transmission

process, which is basically maintained at about 50∼60s for the 3 schemes, and since the �le size

used in this case is 600MB, it needs to be transmitted several times, and although the transmission

process is a�ected by the bandwidth, network latency, etc., the experimental data obtained has no

degradation in terms of performance performance. In conclusion, the blockchain privacy protection

scheme based on di�erential privacy has a signi�cant speed advantage in uploading large data �les

at all stages of the data.

5. Conclusion

In the context of the current digital era, data security and privacy protection have risen to be the core

issues of common global concern. In this context, the study proposes a data integrity auditing scheme

with conditional identity anonymization based on blockchain technology. Meanwhile, a blockchain

privacy protection model based on di�erential privacy is proposed for the privacy protection of shared

data in blockchain networks. The two methods are evaluated through experiments, and the main

results are as follows:

(1) The blockchain storage overhead of the data integrity auditing scheme in this paper is small,

and the time overhead under di�erent dynamic operations is lower than other methods. In the

process of inserting data, deleting data and updating data, the average time overhead of this paper's

scheme is 3∼30ms, 3∼20ms and 2.5∼20ms, respectively.It con�rms that this scheme outperforms

other schemes in terms of blockchain storage cost and computation overhead.

(2) The encryption and decryption durations of the di�erential privacy-based blockchain privacy

protection method are lower than 0.075s and 0.063s for di�erent sizes of data �les, the encryption

durations and the total runtime in di�erent complexity access policies are lower than 3s and 7s,

respectively, and the processing times in di�erent runtime phases are smaller than those of the

comparison methods. Therefore, it can be considered that the blockchain privacy protection method

based on di�erential privacy has better performance and can provide more e�cient and convenient

services.

The blockchain technology has great potential in data integrity and privacy protection, but at the

same time, it also needs to pay attention to the challenges and problems it faces. In the future, with

the continuous development and improvement of blockchain technology, it is believed that it will

bring more extensive applications and breakthroughs in the �eld of network security.
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