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abstract

This paper addresses the limitations of the traditional portfolio theory centered on the mean-variance

model and expected utility theory, and proposes the establishment of a portfolio model that takes into

account the subjective psychological factors of investors, taking into account the fact that investors

are susceptible to the in�uence of various psychological biases, a�ective biases, and cognitive biases

in the actual decision-making process, with respect to the theory of consistency of the assumptions

of the investor's risk attitude. The portfolio model based on fuzzy decision-making is proposed,

combined with the development and application of linear programming in portfolio optimization,

the return of assets is regarded as a random fuzzy variable, and the stochastic fuzzy portfolio model

is constructed to consider the risk characteristics of investors. The portfolio returns under di�erent

emotions or di�erent risk preferences are explored separately. Combined with the fund categorization

allocation of the sample �rms, the fund portfolio C based on the fuzzy portfolio model is proposed and

compared with the equal weight allocation fund (fund portfolio A) and the risk coe�cient weighted

allocation fund (fund portfolio B) based on the risk level of return, respectively. Fund Portfolio C

has the highest average return.

Keywords: fuzzy decision making, portfolio optimization, risk preference, linear programming

1. Introduction

A fundamental assumption in the �eld of international business is that the performance outcomes

of multinational enterprises (MNEs) di�er from those of purely domestic �rms. Portfolio diversi�-
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cation can be used to explain how global diversi�cation of MNE activities a�ects cross-border risk

and performance. Portfolio diversi�cation theory suggests that by o�setting idiosyncratic volatility

caused by exogenous events (e.g., exchange rate �uctuations) and by operating passively through

geographically underperforming assets, MNEs can reduce the total variance and covariance of their

portfolios, resulting in a well-diversi�ed portfolio [10, 23, 3, 17].

Portfolio theory emphasizes the risk-reducing bene�ts of investing in a set of assets whose returns

are not perfectly correlated [1, 18]. In the context of international business activities, the application

of portfolio theory suggests that greater geographic scope provides risk diversi�cation opportunities

that can reduce overall portfolio variance and improve risk-return performance outcomes, especially

in geographic markets with imperfectly correlated market characteristics [15, 20, 22]. When there

is imperfect correlation between di�erent regions, the activities of multinational �rms in di�erent

countries may exhibit lower risk than the sector-weighted average of those operating independently

in each regional market [13, 19, 5]. This risk diversi�cation e�ect can even be realized through passive

management, where diversi�cation reduces the variance of portfolio returns as long as lower covari-

ances exist in selected geographic markets [21, 16, 11]. Since portfolio diversi�cation activities can

involve signi�cant implementation costs, passive management of portfolio assets is often considered

superior to more active and expensive portfolio management.

The optimization of investment portfolios has long been a central concern in the investment man-

agement industry and continues to be a subject of research. [7] examined stock market investments

and employed the fund standardization method to represent portfolio returns and calculate portfolio

risk. By integrating this approach with a genetic algorithm, the study identi�ed the optimal port-

folio, demonstrating that this method could e�ectively achieve stable returns while minimizing risk.

The �ndings suggested that the standardized �uctuation of investment funds accurately re�ected the

relative relationship between stocks.

[9] clari�ed that portfolio optimization involves identifying the e�cient frontier between repre-

sentative returns and risks. The study proposed the use of the Swarm Intelligence (SI) method to

address computational challenges associated with portfolio optimization. Meanwhile, [6] introduced

predictive modeling into stock market portfolio optimization by developing a machine learning algo-

rithm for stock return prediction and combining it with a mean-at-risk model for portfolio selection.

The hybrid approach signi�cantly enhanced investment returns.

Furthermore, [4] explored the role of performance-based regularization (PBR) and cross-validation

in portfolio optimization. Experimental analysis demonstrated that the PBR model functioned as

a robust optimization framework by incorporating new uncertainties in mean-variance and mean-

conditional-value-at-risk (mean-CVaR) problems. Additionally, the k-fold cross-validation algorithm

proved e�ective in calibrating the right-hand side of PBR constraints.

[12] developed a robust optimal solution model for portfolio optimization based on real data and

traced the robust linear programming model back to the standard form of linear programming.

Both real and simulated data indicated that this approach improved portfolio stability and reduced

risk. Lastly, [2] introduced the concept of Entropy Value-at-Risk (EVaR), demonstrating that it was

strictly monotonic across a broad range of sub-value domains, including all continuous distributions.

Compared to Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), EVaR allowed the port-

folio rate to be linearly dependent on decision variables, leading to optimal allocation strategies in

large-scale portfolio samples.

This paper analyzes the basic elements involved in linear programming problems and establishes

the standard form of linear programming applicable to investment decisions. Pointing out the de-
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�ciencies of the traditional portfolio theory centered on the mean-variance model and the expected

utility theory, combined with the fuzzy decision-making theory, it proposes a stochastic fuzzy port-

folio model that takes into account the risk characteristics of investors. Considering the di�erent

psychological characteristics of investors facing the stochasticity of the securities market and the dif-

ferent psychological needs of investors, the return of assets is regarded as a stochastic fuzzy variable,

and the stochastic fuzzy objective a�liation function of the portfolio is established, and the steps

of model solving are given. Discuss the portfolio return strategies under di�erent risk preference

characteristics or di�erent emotional states of investors. Empirical optimization of fund portfolio

strategies is carried out in conjunction with sample �rms.

2. Behavioral �nance-based portfolio decision-making

2.1. Linear programming

Production and business management often put forward how to rationalize the arrangement, so that

human and material resources and other resources are fully utilized to obtain the maximum bene�t,

which is called the planning problem. Usually called the real world people care about, the actual

object of research for the prototype. The mathematical model of the planning problem contains

three components:

(1) Decision variables, refers to the decision makers to achieve the planning objectives to take

programs, measures, is the problem to determine the unknown quantity.

(2) Objective function, refers to the purpose of the problem to achieve the requirements, expressed

as a function of the decision variables.

(3) Constraints, refers to the decision variable to take the value of the limitations of the various

available resources, expressed as an equation or inequality containing the decision variable.

If in the mathematical model of the planning problem, the decision variable is a controllable contin-

uous variable. The objective function and constraints are linear, such models are called mathematical

models of linear programming problems.

The standard form of linear programming is given below as:

min c1x1 + c2x2 + · · ·+ cnxn,

s.t.


a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,
...

am1x1 + am2x2 + · · ·+ amnxn = bm,

x1, x2, · · ·xn ≥ 0.

(1)

Write in compact format:
min

n∑
j=1

cjxj,

s.t.
n∑

j=1

aijxj = bji = 1, 2, · · ·m, xj ≥ 0, j = 1, 2, · · ·n,
(2)

and matrix forms: {
mincTx,

s.t.Ax = b, x ≥ 0.
(3)
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Among them:

c =


c1
c2
...

cn

 , A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

 , x =


x1

x2

...

xn

 , b =


b1
b2
...

bn

 . (4)

For general linear programming problems, it is possible for the objective function to be extremely

small or extremely large, and there may be inequality constraints in addition to equation constraints.

There may not be a non-negative constraint for every variable xj. For a general linear programming

problem, �rst reduce it to standard form.

1) If the objective is to �nd the maximum value max cTx is equivalent to min−cTx.
2) If the constraints are inequality constraints:

n∑
j=1

aijxj = bj. (5)

Equivalent:
n∑

j=1

aijxj + xn+i = bi, xn+i ≥ 0. (6)

At this point xn+i is said to be the slack variable. Inequality constraints:

n∑
j=1

aijxj ≥ bj. (7)

Equivalent:
n∑

j=1

aijxj − xn+i = bi, xn+i ≥ 0. (8)

At this point xn+i is said to be the residual variable.

For linear programming problems, there are mainly the following solution methods:

1) Graphical solution, which has the advantage of being intuitive. The disadvantage is that it is

only applicable to the case of two variables. The speci�c steps are to establish a coordinate system

and represent the constraints on a graph. Establish the range of solutions that satisfy the constraints

plot the graph of the objective function to determine the optimal solution.

2) Simplex form method, whose method steps are more complex, including the arti�cial variable

method, two-stage method, etc., and some people propose to improve the method. As this paper in

the linear programming problem solving with the help of Matlab programming, so the process of the

above solution will not be repeated.

2.2. Fuzzy portfolio modeling

2.2.1. Fuzzy decision theory. Combined with the fuzzy theory, the fuzzy decision theory is es-

tablished in solving the research of multi-objective decision-making problems [24, 14]. This fuzzy

decision-making model includes two elements: fuzzy objectives and fuzzy constraints. Let the set of

real numbers R,X be the cluster of fuzzy sets de�ned on it, G be the fuzzy objective on the fuzzy

set, C be the fuzzy constraint, and the fuzzy decision is D = G ∩ C, i.e., the a�liation function of

D is:

µD(x) = min(µG(x), µC(x)) ∀x ∈ X. (9)
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Similarly, if there are m,n fuzzy objective, fuzzy constraint respectively, the fuzzy decision is

de�ned as follows:

D =
{

G1 ∩G2 ∩ · · · ∩Gm

}
∩
{
C1 ∩ C2 ∩ · · · ∩ Cn

}
. (10)

Then its fuzzy a�liation function is:

µD(x) = min {µG1(x), µG2(x), · · · , µGn(x), µC1(x), µC2(x), · · · , µCn(x)} . (11)

From the above de�nitions, it can be seen that fuzzy objectives are no di�erent from fuzzy con-

straints in a fuzzy environment.

The maximization decision criterion for non-fuzzy numbers is proposed:

D∗ = {x∗ ∈ X|x∗ = argmax(µD(x))} = argmax{min(µG(x), µC(x))}. (12)

If given m fuzzy objective and n fuzzy constraints:

D∗={x∗ ∈ X|x∗ = argmax(µD(x))}
=argmax

{
min(⇀↽ µG1(x),

⇀
↽ µG2(x), · · · , µGm(x), µC1(x),

⇀
↽ µC2(x), · · · , µCm(x))

}
. (13)

2.2.2. Fuzzy decision-based portfolio modeling. Based on the proposed fuzzy decision theory, the

�rst fuzzy decision-based portfolio model is developed and applied to the portfolio problem of bonds.

The idea of the study is as follows, assuming that the portfolio contains n security and the market

has a total of m possible states. The range of investor's target return in the krd market state is

[Rmin
k , Rmax

k ]. For the ith security, the upper and lower bounds of investor's investment ratio are

[xmin
i , xmax

i ]. Let Rik denote the return of the ith security in the kth market, then Rk(x) =
∑

Rikxi is

the expected return of the portfolio in the kth market. The investor's satisfaction with the investment

return can be represented by a linear a�liation function with the following segments:

µk(Rk(x)) =


0 if Rk(x) < Rmin

k ,
Rk(x)−Rmin

k

Rmax
k −Rmin

k
if Rmin

k ≤ Rk(x) ≤ Rmax
k ,

1 if Rk(x) ≥ Rmax
k .

(14)

The portfolio is then modeled as follows:max λ,

s.t. µk(Rk(x)) ≥ λ,
n∑

i=1

xi = 1, xmin
i ≤ xi ≤ xmax

i .
(15)

2.3. Limitations of traditional portfolio theory

Traditional �nancial theory assumes that investors are psychologically endowed with the qualities of

rational expectations, risk aversion and utility maximization. On this basis, the mean-variance the-

ory and the strictly axiomatic expected utility theory have been developed as modeled descriptions

of people's rational behavior when making decisions under uncertainty. A series of strict axiomatic

assumptions of expected utility theory have been seriously challenged by relevant psychological ex-

periments, and phenomena such as the certainty e�ect, the same-ratio e�ect, the isolation e�ect, the

�ring e�ect, preference reversal, and probabilistic insurance have shown that people's actual decision-

making behaviors deviate from expected utility theory. At the same time, �nancial scientists have
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found a large number of market anomalies in their research that cannot be explained by traditional

�nancial theories.

For a long time, the traditional portfolio theory centered on mean-variance model and expected

utility theory has at least the following limitations.

(1) Rational man assumption: traditional �nancial theory treats investors' decision-making be-

havior as a black box, ignoring the impact of investors' emotions, time pressure and other factors on

decision-making.

(2) Consistency of investor risk attitudes assumption: psychological experiments have shown that

investors are not homogeneous and have di�erent risk preferences and behavioral styles. Investors are

not always risk averse, and sometimes pursue risk, both conservative and adventurous psychological

characteristics. Investors are actually loss averse rather than risk averse [8].

(3) E�cient Market Hypothesis: The E�cient Market Hypothesis (EMH) is a central proposition

of modern mainstream �nancial theory and even mainstream economics. One of its basic inferences

is that changes in asset prices or returns follow a �random walk� process, it is impossible to expect

future changes in asset prices and returns. The basic idea behind the test of whether a market is

e�cient is to compare actual returns with expected returns. If they do not, the market is considered

ine�cient.

Subjective expected utility theory (SEU) introduces the subjective utility of human beings, al-

though it is closer to reality than expected utility theory (EU). However, both assume that investors

are completely rational, which is obviously contrary to the actual situation.

In the actual decision-making process, investors are often a�ected by their own psychological

state, emotions and external environment, showing limited rationality, decision-making bias. That

is, the actual decision-making behavior is often inconsistent with the strategy given by EU or SEU

theory. In view of the above shortcomings of the expected utility theory, the non-expected utility

theory is proposed by analyzing and summarizing the actual data. In order to solve the problem

of decision-making under uncertain conditions, and on this basis, behavioral economics has been

gradually developed, and the corresponding behavioral �nance theory e�ectively explains the above

market anomalies through the introduction of the analysis of investor behavior and psychology.

2.4. Stochastic fuzzy portfolio model considering investors' risk characteristics

In this paper, considering that investors face the double uncertainty factors of stochastic and fuzzy in

the securities market, the return of assets is regarded as a stochastic fuzzy variable. And considering

the psychological needs of investors with di�erent risk characteristics, it establishes stochastic fuzzy

variables considering investors' risk characteristics. Further, the fuzzy expected return a�liation

function is established on the basis of prospect theory. And use the weighted very large-very small

operator to consider the di�erence of investment objectives of di�erent investors, and construct the

stochastic fuzzy portfolio model considering investors' risk characteristics.

2.4.1. Stochastic fuzzy returns considering investor risk characteristics. On the basis of plausibility

theory, it is assumed that the security return F̄ is a random fuzzy variable and ¯̃ri obeys a nor-

mal random distribution with mean L-R fuzzy variable, i.e. ¯̃ri ∼ N(M̃i, σ
2
i ), i = 1, 2, ..., n, whose
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mathematical expression is:
fi(z) =

1√
2πσi

exp
[
− (z−M̃i)

2

2σ2
i

]
,

µM̃i
(si) =

 L
(

mi−si
αi

)
,mi − αi ≤ si ≤ mi,

R
(

si−mi

βi

)
,mi ≤ si ≤ mi + βi,

(16)

where L(·) and R(·) are nonincreasing, upper semicontinuous functions and L(0) = R(0) = 1, L(1) =

R(1) = 0. Parameters αi and βi denote the parameters to the left and right of the fuzzy number of

the mean of the ith security, respectively, and αi and βi are both positive, and n represents the type

of security.

Risk-seeking investors focus on investment returns, leading to overestimation of the a�liation

function of the security's return. Risk-averse investors focus on investment risk, resulting in an

underestimation of the a�liation function of the security return. According to the concavity of the

fuzzy variable a�liation function, the fuzzy yield a�liation function u˜̄h(si), i = 1, 2, ..., n is proposed

to take into account the risk characteristics of investors, and its mathematical expression is:

ui (si) =

 1−
(

mi−si
αi

)k
,mi − αi ≤ si ≤ mi,

1−
(

si−mi

βi

)k
,mi ≤ si ≤ mi + βi,

(17)

where ui(si) is a convex function when k > 1, denoting a risk-seeking investor. When k = 1 when

ui(si) is a linear function, denoting a risk-averse investor. When k < 1 when ui(si) is a concave

function, indicating risk-neutral investors.

Substituting Eq. (17) into equation (16), the stochastic fuzzy rate of return i = 1, 2, . . . n can be

obtained by considering the risk characteristics of the investment information, and its mathematical

expression is: 
fi(z) =

1√
2πσi

exp
[
· · · (z−M̃i)

2

2σ2
i

]
,

µ(si) =

 LN
(

mi−si
αi

)
= 1−

(
mi−si
αi

)k
,mi − αi ≤ si ≤ mi,

RN
(

si−mi

βi

)
= 1−

(
si−mi

βi

)k
,mi ≤ si ≤ mi + βi.

(18)

Thus, the a�liation function of the stochastic fuzzy collection rate r̄kvi considering the investment

if risk characteristics is:

µk
i (υ) = sup

{
µk
i (s) | υi ∼ N(si, σ

2
i )
}
, υj ∈ Γ, i = 1, 2, . . . , n. (19)

In this case, is the ensemble of positive-thought random fractions, and µR
′

i (υi) is the degree to

which the random fuzzy yield r̄kvi is equal to ῡ.

2.4.2. Portfolio stochastic fuzzy objective a�liation function.

1) Portfolio stochastic fuzzy return a�liation function. Let r̄xci represents the random fuzzy return

of security i, then ¯̃f =
n∑

i=1

¯̄rRC
i xi represents the random fuzzy return of the portfolio. According to
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the de�nition (22) that ¯̃f is a random fuzzy variable, the portfolio return ¯̃f a�liation function:

µj(ū) = sup
τ

{
min
1≤k≤n

µRC
τj

(ūi)

∣∣∣∣∣ū =
n∑

i=1

Ūixi

}

=sup
s

{
min
1≤k≤n

µRC
τj

(si)

∣∣∣∣∣ū ∼ N

(
n∑

i=1

sixi,

n∑
i=1

n∑
j=1

σjxixj

)}
. (20)

Among them:

ū ∈ Y, Y =

{
n∑

i=1

Ūixi

∣∣∣∣∣Ūi ∈ Γ, j = 1, 2, . . . , n

}
,

Ū =(υ1, υ2, . . . , υn),

s =(s1, s2, . . . , sn), (21)

where σij denotes the covariance of security i and security j.

2) Portfolio stochastic fuzzy objective probability a�liation function. Combine SP/A theory and

prospect theory to propose a behavioral portfolio model, and use the target probability to measure

the uncertainty level of the portfolio to reach the goal. Investors in the �nancial market have

multiple investment objectives, which not only require the maximization of returns. It also requires

that the target probability P̃ = Pr

{
ω|

n∑
i=1

r̄RC
i xi ≥ f

}
be maximized for a certain level f of return.

Substituting Eq. (21) into P̃ yields the a�liation function of the target probability P̃ of the portfolio:

µP̃ (p) = sup
ū

{
µf̄ (ū)|p = Pr {ω|ū(ω) ≥ f}

}
= sup

s
min1≤i≤n

 µRC
ũi

(si)|
Pr {ω|ū(ω) ≥ f}

ū ∼ N

(
n∑

i=1

sixi,
n∑

i=1

n∑
j=1

σijxixj

) .
(22)

2.4.3. Modeling. Since P̃ = Pr

{
ω|

n∑
i=1

r̄nci xi ≥ f

}
is a random fuzzy variable, solving for the maxi-

mum value of probability P̃ is a fuzzy bounded problem. Use possibility planning to determine the

extent to which probability P̃ satis�es the investor's fuzzy objective G̃p:∏
p̃

(G̃p) = sup
p

min
{
µp̃(p), µG̃p

(p)
}
, (23)

where the investor's expected return f is the interval fuzzy number. The degree to which the

expected return satis�es the investor needs to be considered on the basis of Eq. (23) in order to turn

the portfolio model into a well-bounded problem.

When making multi-objective investment decisions, investors with di�erent risk characteristics

have di�erent preferences for the objective function. In order to be able to meet the needs of

investors' psychological characteristics, the weighted great-extremely small operator is introduced

into the model, and the minimum value of the degree of a�liation in the weighted expected return

and the target probability is used to indicate the degree to which a certain portfolio meets the
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psychological expectations of investors, i.e.:

U(x) = min

{
1

λ1

∏
p̃

(G̃p),
1

λ2

µG̃f
(f)

}
, (24)

where λ1 + λ2 = 1, λ1 > 0, λ2 > 0, λ1 and λ2 denote the investor's target weights for the target

probability and expected return, respectively.

The investor's objective is to �nd a portfolio that makes it possible to maximize the satisfaction

of his or her psychological expectations. According to Eq. (25), the stochastic fuzzy portfolio model

that takes into account the risk characteristics of the investor under the condition that short selling

is not allowed is:
maxmin

{
1
λ1

∏
P (G̃p),

1
λ2
µGr(F)

}
,

s.t. λ1 + λ2 = 1, λ1 > 0, λ2 > 0,
n∑

i=1

xi = 1, 0 ≤ xi ≤ ui, i = 1, 2, . . . , n,
(25)

where ui denotes the maximum investment weight of the ind security.

2.4.4. Model solving. Step 1: Generate the investor's fuzzy expected return and target probability

a�liation function according to Eq. (23) and Eq. (24), respectively.

Step 2: Set q ← min
(
1
λ
, 1
λ

)
and solve the model for the optimal solution x(q) and the optimal

value Z(q). If Z(q) ≥ g−1
F (λ2q), the operation is stopped. In this case, x(q) is the optimal weight of

the model. Otherwise, proceed to the next step.

Step 3: Set q ← 0 and solve the model for the optimal solution x(q) and optimal value Z(q). If

Z(q) ≤ g−1
F (λ2q), stop the computation. In this case, x(q) the degree of satisfying the investor's

psychological expectations is 0. The fuzzy parameters of expected return and target probability

should be reset or the investment in the security for the period should be abandoned. Otherwise,

proceed to the next step.

Step 4: Intersection of Z(q) and g−1
F (λ2q) exists. Set Rq ← min

(
1
λ
, 1
λr

)
and Lq ← 0.

Step 5: Set q ← Rq+Lq

2
.

Step 6: Calculate the optimal solution x(q) and the optimal value Z(q) of the model. If Z(q) =

g−1
F (λ2q)

1, stop the operation and (x(q), q) is equal to (x∗, h∗). If Z(q) < g−1
F (λ2q), set Rq ← q and

return to step 5. If Z(q) > g−1
F (λ2q), set Lq ← q and return to step 5.

3. Empirical studies

In order to prove the validity and feasibility of the above model, this study takes 5 stocks in Shanghai

Stock Exchange as the research data, and the trapezoidal possibility distribution of their investment

returns is shown in Table 1.

Based on the historical data, expert experience, market forecast analysis and other information,

combined with the gradient fuzzy number calculation method, the trapezoidal possibility distribution

of the investment return rate of �ve risky assets is obtained.

3.1. Discussion of di�erent risk appetite characteristics in the same sentiment

This subsection focuses on how investor risk preferences a�ect investment portfolios when one of the

investors' subjective psychological factors, optimistic pessimism, is certain. Taking the neutrosophic
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Table 1. The trapezoidal probability distribution of risk assets

Assets Trapezoidal fuzzy number

Asset 1 ( 0.056,0.023,0.054,0.097 )

Asset 2 ( 0.095,0.116,0.077,0.143 )

Asset 3 ( 0.118,0.138,0.096,0.125 )

Asset 4 ( 0.134,0.168,0.113,0.165 )

Asset 5 ( 0.128,0.213,0.157,0.223 )

mood state as an example, the model is solved separately to obtain the portfolio results of investors

with di�erent risk preferences.

The portfolio of risk-averse investors is shown in Table 2. As can be seen from the table, for

risk-averse investors, their investment risk and return are 7.87% and 15.32% respectively when their

portfolio realizes the optimal investment ratio.

Table 2. Risk aversion investment portfolio

Risk (%) 7.52 7.53 7.54 7.85 7.86 7.87

Earnings(%) 12.33 12.63 13.06 13.51 14.22 15.32

x1 0.4000 0.4000 0.2864 0.2399 0.1824 0.1000

x2 0.4000 0.2536 0.1856 0.1968 0.1404 0.1000

x3 0.2000 0.2000 0.1000 0.2000 0.2000 0.4000

x4 0.2000 0.2000 0.2000 0.3000 0.3000 0.3000

x5 0.3000 0.2367 0.3005 0.4123 0.4532 0.5000

The risk-neutral investor's portfolio is shown in Table 3, with a maximum risk and return on

investment of 8.97% and 14.33%.

Table 3. Venture neutral investor portfolio

Risk (%) 8.89 8.91 8.92 8.95 8.96 8.97

Earnings(%) 12.34 13.15 13.46 13.98 14.05 14.33

x1 0.5000 0.3000 0.231 0.2136 0.2104 0.1529

x2 0.4000 0.2235 0.1245 0.2131 0.2133 0.2000

x3 0.3000 0.1200 0.3000 0.2000 0.1500 0.3000

x4 0.2000 0.2000 0.2000 0.3051 0.2000 0.4000

x5 0.1000 0.3621 0.3458 0.4030 0.3000 0.5000

The risk-seeking investor's portfolio is shown in Table 4 and the maximum risk and return on

investment is 11.23% and 15.67%.

In summary, when investor sentiment is certain, the trend of investment ratios of investors with

risk-averse, risk-neutral, and risk-seeking risk preferences is consistent. All of them realize the optimal

investment ratio by reducing the ratio of lower-yielding asset 1 and asset 2 and increasing the ratio

of high-yielding asset 5. The more one invests in low-yielding assets, the lower the investment risk.

Similarly, the more you invest in high-yield assets, the higher the investment risk.

For investors with di�erent risk preferences, it does not matter whether the return on assets is a

triangular fuzzy number or a trapezoidal fuzzy number. Its portfolio return and risk are inversely
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Table 4. Risk pursuit investor portfolio

Risk (%) 11.04 11.05 11.06 11.21 11.22 11.23

Earnings(%) 13.47 13.62 13.89 14.36 14.78 15.67

x1 0.3000 0.3000 0.2683 0.2352 0.2193 0.2000

x2 0.4000 0.2342 0.2100 0.1563 0.2011 0.3000

x3 0.2000 0.2000 0.1253 0.2000 0.2000 0.1000

x4 0.1000 0.2000 0.2100 0.2300 0.3000 0.1000

x5 0.2000 0.3204 0.3244 0.4253 0.2634 0.4000

proportional to the sensitivity of risk, the more sensitive the investor is to risk, i.e., the more risk-

averse the risk preference. The lower their portfolio return and risk, again proving the impact of

investors' subjective psychological factors on investment decisions.

3.2. Discussion of di�erent emotional states for the same risk appetite

Similar to the previous section, this section discusses how investor sentiment a�ects the portfolio when

the subjective factor risk preference is certain. Taking investors' risk preferences as risk-neutral as

an example, the model is solved separately to obtain the portfolio e�cient frontier under di�erent

emotional states.

It is consistent with the conclusion that investor optimism and pessimism a�ect the portfolio when

the economic cycle is certain. When investors' risk appetite is certain, the more optimistic investors

are. Their portfolios still show the characteristics of the e�cient frontier curve of high return-high

risk. However, compared with the investors who hold a neutral and optimistic sentiment, their

portfolio e�ective frontier is in the lower risk and higher return range.

The empirical study in this subsection shows that, as when the economic cycle is certain, investor

optimism and pessimism a�ect the portfolio model. When one of the investors' subjective psycho-

logical factors, risk preference, is certain, investors' pessimism also plays a role in their investment

decisions. Speci�cally, when investors' risk appetite is certain, the higher investors' optimism is, the

higher their portfolio returns are and the lower their risk is.

4. Optimization of the portfolio strategy of the Fund for Transnational

Corporations

4.1. Con�guration of the classi�cation of TNCs

A multinational wealth management company was founded in 2005 with a registered capital of 20

million dollars. At present, the fund research center has set up a macro strategy team, an asset

allocation team, a product research team, an independent risk control team and a service support

team. With the full cooperation of each team, the company's fund products are becoming more and

more diversi�ed.

The essence of investment portfolio is the allocation of various broad asset classes. Under the

premise of selecting funds of di�erent broad asset classes for the asset portfolio, the sample funds are

paired two by two, and the correlation of the paired funds is calculated. The correlation coe�cient

analysis shows that:

(1) The correlation of funds managed under the name of the same fund manager is higher due to



622 r. gao

more similar investment style and management ability, and the correlation coe�cient of some funds

can be as high as 1.

(2) The same type of fund with the market �uctuations in the same direction and amplitude, to

a certain extent, to verify the necessity of the basic principles of asset allocation portfolio in this

paper.

Finally, through screening, this paper �nally identi�ed �ve funds with correlation below 0.5, and

their correlation coe�cients are shown in Table 5.

Table 5. Various fund correlation analysis

Fund code Fund type 000042 000063 000012 000025 000009

000042 Quasi-bond type 1.000 0.584 0.236 0.497 0.366

000063 Stock type 0.584 1.000 0.598 0.436 0.339

000012 Stock type 0.236 0.598 1.000 -0.096 0.205

000025 Pure bond 0.497 0.436 -0.096 1.000 0.301

000009 Stock type 0.366 0.339 0.205 0.301 1.000

4.2. Management of the fund's portfolio allocation

The fund portfolio A is constructed by the equal weight allocation fund, and the fund portfolio B

is constructed by the risk factor weight allocation fund.The risk level of the basic weight allocation

scheme is shown in Table 6. By comparing the mean and standard deviation of the returns of the two

portfolios constructed by the basic weight allocation scheme, it can be found that the fund portfolios

constructed in accordance with the risk factor allocation of the weight value conform to the law of

investment, i.e. the higher the risk, the higher the return! The higher the risk, the higher the return.

Table 6. Risk level of base weight ratio scheme

Fund code Weights of equal weights (fund combination AS) Ratio of risk ratio (fund portfolio B)

000042 0.20 0.15

000063 0.20 0.21

000012 0.20 0.16

000025 0.20 0.23

000009 0.20 0.25

Weight total 1.00 1.00

Standard deviation 0.1236 0.0519

The yield mean of the scheme 0.3307 0.1267

A comparison of the base weight allocation portfolios is shown in Figure 1. The �gure visualizes

the comparison between the return and volatility between a single fund, Fund Portfolio A and Fund

Portfolio B. Since the portfolio consists of �ve di�erent funds, in order to show the legend more

clearly, this paper randomly selects three funds from the constituent funds to compare with the

portfolio. Fund codes 000063, 000009 and 000025 are compared with Fund Portfolio A and Fund

Portfolio B. It is found that the Fund Portfolio can better iron out the market risk, and the return

is more robust under diversi�cation.
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Fig. 1. The ratio of the base weight ratio is compared

4.3. Optimized management of weight rationing based on risk level

In this paper, after using the base weighting scheme portfolios A and B, the base weighting scheme

is optimized and managed with the help of Markowitz theory, fuzzy portfolio model, and investor

risk characteristics. The management objective is to construct the fund portfolio C so that its risk

coe�cient is reduced and at the same time its income return is increased.

Based on this, the construction steps of fund portfolio C in this paper are mainly as follows:

(1) Opportunity set stochastic simulation.

(2) E�cient frontier curve generation. In this paper, Monte Carlo simulation experiments are

used to simulate the e�ective frontier curve of Markowitz's portfolio to obtain the e�ective fron-

tier curve of the investment e�ective set in this paper. Using the portfolio model based on fuzzy

decision-making to substitute the stochasticity of the securities market with the psychological needs

of investors with di�erent risk characteristics, to establish the stochastic fuzzy variables for investors'

risk characteristics.

(3) Fixed risk coe�cient. Combined with the risk coe�cient of fund portfolio A and fund portfolio

B, the risk is weighed in the fund portfolio rationing management, and the �xed risk value in this

paper is 0.0715.

The weighted rationing optimization scheme is shown in Table 7, and the mean value of the risk

coe�cient of fund portfolio C is 0.3912.

Table 7. Weight matching optimization scheme

Fund code Weights of equal weights (fund

combination A)

Ratio of risk ratio(fund portfolio

B)

Markovitz frontier curve output

fund weighting weighting (portfo-

lio C)

000042 0.20 0.15 0.19

000063 0.20 0.21 0.27

000012 0.20 0.16 0.05

000025 0.20 0.23 0.16

000009 0.20 0.25 0.33

Weight total 1.00 1.00 1.00

Standard deviation 0.1236 0.0519 0.0715

The yield mean of the scheme 0.3307 0.1267 0.3912
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4.4. Simple risk-return comparison of optimized fund portfolios

This paper uses historical data from January 1, 2018 - January 1, 2021 to construct the Fund Portfolio

C used in this paper based on Markowitz Portfolio Theory.In this section, this paper will use the

data from January 2, 2021 - December 4, 2023 into the historical backtesting of Fund Portfolio C.

The data will be used to compare the returns of Fund Portfolio A, Fund Portfolio B, Fund Portfolio

C, and two randomly selected funds of di�erent asset classes.

In this summary, the paper compares the simple mean and volatility of returns for Fund Portfolio

A, Fund Portfolio B, Fund Portfolio C, and two randomly selected funds of di�erent asset classes

using a simple line graph. From the mean and variance of simple returns, from January 2, 2021 -

December 4, 2023, Fund Portfolio C has the highest average return. It is about 0.154 units higher

than the return of Fund Portfolio A and 0.173 units higher than the return of Fund Portfolio B.

At the same time Fund Portfolio C's risk remains between Fund Portfolio A and Fund Portfolio B.

As a result, the risk-return trade-o� of Fund Portfolio C remains valid in the capital market in the

�rst half of 2021-2023. In order to more visually demonstrate the excellent characteristics of Fund

Portfolio C, this paper plots a comparison between Fund Portfolio C and two other fund portfolios as

well as a randomly selected single fund representing a di�erent broad asset class. The comparison of

weighting schemes is shown in Figure 2. A comparison between the three fund portfolios' returns and

volatilities and a typical single fund is shown. In this paper, one bond fund and one equity fund from

the underlying assets are randomly selected and the time series of their returns are used to compare

the good characteristics of Fund Portfolio C. Taken as a whole, either portfolio e�ectively irons out

market risk. Taken as a whole, Fund Portfolio C belongs to the optimal investment strategy among

them. That is, the stochastic portfolio model based on the stochasticity of the securities market with

consideration of investors' risk characteristics has the optimal bene�t.

Fig. 2. Comparison of weight matching schemes

5. Conclusion

In this paper, we use the fuzzy decision portfolio model to establish a portfolio model based on

the stochastic nature of the securities market and the investment behavior of investors considering

di�erent risk preference characteristics by considering the return on assets as a random fuzzy variable.

The portfolio bene�ts under di�erent emotional states or di�erent risk preferences are discussed
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in separate cases. Taking the meso-emotional state as an example, the trend of the investment ratio

of investors under the three risk preferences of risk-averse investors, risk-neutral investors, and risk-

seeking investors is consistent. Portfolio bene�t and risk are inversely proportional to the sensitivity

of risk, the more sensitive investors are to risk, that is, the more risk-averse risk appetite. And as in

the case of a certain economic cycle, investor optimism and pessimism will a�ect the portfolio model.

Optimize the fund portfolio classi�cation allocation with sample MNCs and propose a fuzzy port-

folio based fund portfolio C. Comparing the mean and volatility of the returns of di�erent fund

portfolios A, B, and C, the stochastic fuzzy return based on investor's risk characteristics proposed

in this paper (fund portfolio C) is higher than that of fund portfolios A and B. When the market is

in a state of high volatility, the returns of Fund Portfolio A and Fund Portfolio B will be �at, but

the return of Fund Portfolio C can always be maintained at a high level. When the market is at a

low level, Fund Portfolio C can e�ectively stabilize investors' investment returns and can achieve a

higher level of return compared to equity funds.
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