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abstract

A (d, 1)-total labelling of a graph G is an assignment of integers {0, 1, · · · , l} to the vertices and

edges of the graph such that adjacent vertices receive distinct integers, adjacent edges receive distinct

integers, and the integer received by a vertex di�ers at least d from those received by its incident

edges. The minimum number l required for such an assignment is called as the (d, 1)-total number

of the graph G. This paper contributes to (d, 1)-total labelling of two in�nite families of snarks, the

Goldberg family and Loupekhine family. We completely determine (d, 1)-total numbers of these two

families of snarks for all d ≥ 2.

Keywords: graph labelling, (d,1)-total labelling, (d,1)-total number, Goldberg snark, Loupekhine

snark

1. Introduction

Graph labelling is an assignment of integers to elements of a graph, i.e. vertices and/or edges, such

that the integers assigned to adjacent elements ful�ll certain requirements. Various labellings have

been put forward based on di�erent requirements [8]. Among them, an intensively studied one is

known as L(2, 1)-labelling. It is an assignment of integers to the vertices such that adjacent vertices

receive integers with di�erence at least 2, and vertices of distance two receive distinct integers [12].

A natural generalization of L(2, 1)-labelling is L(d, 1)-labelling. Further, L(d, 1)-labelling is applied

to the incidence graph s(G), a graph obtained from G by inserting one vertex along each edge of G

[30].

The L(d, 1)-labelling of s(G) is equivalent to an assignment of integers to both the vertices and

edges of G, which then leads to the notion of (d, 1)-total labelling of G [15, 13].

(d, 1)-Total labelling of a graph G is an assignment of integers {0, 1, 2, · · · , l} to the vertices V (G)
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and edges E(G) such that adjacent vertices receive distinct integers, adjacent edges receive distinct

integers, and the integer received by a vertex di�ers at least d from those received by its incident

edges. It can be also regarded as a generalization of total colouring. The main issue in the study

of (d, 1)-total labelling is to �nd the minimum number l required for such an assignment, which is

particularly called as the (d, 1)-total number of the graph G, denoted as λTd (G). However, it is a

di�cult problem to determine the exact value of (d, 1)-total number for a graph in general, and it is

also nontrivial even to �nd its tight bound.

This issue has received increasing attention. So far, great e�orts have been directed towards study-

ing (d, 1)-total labellings of graphs, and some progress has been made. Havet and Yu conjectured that

λTd (G) ≤ ∆(G)+2d−1, where ∆(G) is the maximum degree of G [16]. The validity of conjecture has

been veri�ed for complete graphs [4, 16], bipartite graphs [18, 14], planar graphs [1, 3, 31, 25, 26, 22,

21] and graphs with a given maximum average degree [20]. The exact values of (d, 1)-total numbers

have been determined for some graphs such as �ower snarks [28], generalized Petersen graphs [27],

Sierpi«ski-like graphs [5], and joins of paths and cycles [29].

Snarks are the cubic bridgeless graphs that are not 3-edge colorable. The interest in snarks

partly arises from the fact that several well-known conjectures have snarks as counterexamples. Two

important families of snarks are Goldberg snarks and Loupekhine snarks. A number of articles have

been devoted to studying the labelling and colouring of them, such as their L(2, 1)-labelling[19], edge

colourings [7, 6, 9] and total colouring [2, 24, 11, 23].

However, the (d, 1)-total numbers of them still remain open. To �ll the gap, in this paper, we study

the (d, 1)-total labelling of the two in�nite families of snarks. We aim to determine the (d, 1)-total

numbers of them for all d ≥ 2.

This paper is organized as follows. In Section 2, we determine the (d, 1)-total numbers of Goldberg

snarks. In Section 3, we determine the (d, 1)-total numbers of Loupekhine snarks. Section 4 is our

conclusion.

2. (d,1)-Total labelling of Goldberg snarks

2.1. The de�nitions of Goldberg snarks and their related graphs

A Goldberg snark Gk for odd k ≥ 3 is de�ned by V (Gk) = {vij|0 ≤ i ≤ k − 1, 1 ≤ j ≤ 8} and E(Gk)

={vi1v
i
2, v

i
2v

i
3, v

i
3v

i
4, v

i
4v

i
5, v

i
5v

i
1, v

i
1v

i
7, v

i
4v

i
8, v

i
7v

i
8, v

i
5v

i
6, v

i
6v

i+1
6 , vi2v

i+1
3 , vi8v

i+1
7 : 0 ≤ i ≤ k − 1 }, where the

superscripts are considered modulo k [10].

The graph gained from Gk by replacing the edges vk−1
2 v03 and vk−1

8 v07 with the new edges vk−1
2 v07

and vk−1
8 v03 is called a twisted Goldberg snark, denoted as TGk for odd k ≥ 3.

Without ambiguity, both the graphs Gk and TGk for odd k ≥ 3 are refereed to as Goldberg family

of snarks, while Gk and TGk for even k ≥ 4 are refereed to as the related graphs of Goldberg snarks.

Figure 1 shows Goldberg snark G3, twisted Goldberg snark TG3, and the related graphs G4 and

TG4. Note that we have drawn Gk and TGk in one �gure, where the edges vk−1
2 v03 and vk−1

8 v07 of Gk

are with full lines while vk−1
2 v07 and vk−1

8 v03 of TGk are with dashed lines.

2.2. (2,1)-Total labelling of Goldberg snarks and their related graphs

We prove that the (2, 1)-total number of Gk and TGk is 5 in this section. To this end, we �rst

demonstrate Lemma 2.1, which provides an upper bound of λT
2 (Gk(TGk)).
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Fig. 1. G3(TG3) and G4(TG4)

Lemma 2.1. λT
2 (Gk(TGk)) ≤ 5 for k ≥ 3.

Proof. We use f to represent an assignment of integers to vertices and edges of Gk. It is de�ned as

Table 1 for odd k, and Table 2 for even k.

Table 1. f(Gk) for odd k

i f(vi1v
i
2) f(vi2v

i
3) f(vi3v

i
4) f(vi4v

i
5) f(vi5v

i
1) f(vi1v

i
7) f(vi4v

i
8) f(vi7v

i
8) f(vi5v

i
6) f(vi6v

i+1
6 )

even(≤k-3) 4 5 3 0 5 3 1 2 4 2

odd 5 0 1 0 2 4 3 5 1 3

k-1 0 5 2 3 2 3 0 5 4 5

i f(vi2v
i+1
3 ) f(vi8) f(vi8v

i+1
7 ) f(vi1) f(vi2) f(vi3) f(vi4) f(vi5) f(vi6) f(vi7)

even(≤k-3) 2 0 1 0 1 5 2 0 0 4

odd 4 4 0 2 4 5 4 5 2 1

k-1 4 4 5 2 0 5 0 1 0 2

Here, f de�ned by Table 1 and Table 2 is also applicable to TGk. The only di�erence is that

the edges vk−1
2 v03 and vk−1

8 v07 of Gk are replaced with vk−1
2 v07 and vk−1

8 v03 of TGk, and there are

f(vk−1
2 v07) = f(vk−1

2 v03) and f(vk−1
8 v03) = f(vk−1

8 v07). Figure 2 shows the labellings of G3(TG3) and

G4(TG4) based on the above assignment f .

To show that the assignment f , de�ned by Table 1 and Table 2, is a (2, 1)-total labelling of

Gk(TGk), we examine the labelling of each vertex and edge. For example, we consider the vertex

v01 of Gk(TGk) for odd k, to which three vertices v02, v
0
5 and v07 are adjacent. According to Table 1,

there are f(v01) = 1, f(v02) = 0, f(v05) = 2, f(v07) = 0, f(v01v
0
2) = 4, f(v05v

0
1) = 5, f(v01v

0
7) = 3. It follows

f(v01) ̸= f(v02), f(v
0
1) ̸= f(v05), f(v

0
1) ̸= f(v07), f(v

0
1v

0
2) ̸= f(v05v

0
1), f(v

0
1v

0
2) ̸= f(v01v

0
7), f(v

0
5v

0
1) ̸= f(v01v

0
7)

and |f(v01)−f(v01v
0
2)|, |f(v01)−f(v05v

0
1)|, |f(v01)−f(v01v

0
7)|≥ 2. Similarly, we can examine the labellings

of v01 for even k and all the other vertices and edges, and verify that they also ful�ll the requirements

of a (2, 1)-total labelling. That is, the assignment ful�lls the three requirements: adjacent vertices

receive distinct integers, adjacent edges receive distinct integers, and the integer received by a vertex

di�ers at least 2 from those received by its incident edges. Therefore, the assignment f , de�ned by



294 gao et al.

Table 2. f(Gk) for even k

i f(vi1v
i
2) f(vi2v

i
3) f(vi3v

i
4) f(vi4v

i
5) f(vi5v

i
1) f(vi1v

i
7) f(vi4v

i
8) f(vi7v

i
8) f(vi5v

i
6) f(vi6v

i+1
6 )

even 3 2 5 4 5 4 0 2 3 0

odd 0 1 5 4 5 4 0 2 2 1

i f(vi2v
i+1
3 ) f(vi8v

i+1
7 ) f(vi1) f(vi2) f(vi3) f(vi4) f(vi5) f(vi6) f(vi7) f(vi8)

even 0 3 1 5 0 2 0 5 0 5

odd 3 3 2 5 3 2 0 4 0 5
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Fig. 2. f(G3(TG3)) and f(G4(TG4)) de�ned by Table 1 and Table 2

Table 1 and Table 2, gives a (2, 1)-total labelling of Gk(TGk).

Noting that the integers used in the assignment are {0, 1, · · · , 5}, we obtain that the (2, 1)-total

number of Gk(TGk) for k ≥ 3 must be less than or equal to 5. This completes the proof of Lemma

2.1.

On the other hand, for a ∆-regular graph G, there is always λT
d (G) ≥ d + ∆ [16]. Since

∆(Gk(TGk)) = 3, we have Lemma 2.2.

Lemma 2.2. λT2 (Gk(TGk)) ≥ 5 for k ≥ 3.

Lemma 2.1 and Lemma 2.2 give the upper bound and lower bound of λT
2 (Gk(TGk)) respectively,

both of which are 5. Hence, we have Theorem 2.3.

Theorem 2.3. λT2 (Gk(TGk)) = 5 for k ≥ 3.

2.3. (d,1)-Total labelling of Goldberg snarks and their related graphs

We prove that the (d,1)-total number of Gk(TGk) is d+4 in this section. To this end, we demonstrate

Lemma 2.4.

Lemma 2.4. λTd (Gk(TGk)) ≤ d+ 4 for k ≥ 3.

Proof. Let f be an assignment of integers to vertices and edges of Gk. It is de�ned as Table 3 for
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odd k, and Table 4 for even k.

Table 3. f(Gk) for odd k

i f(vi1v
i
2) f(vi2v

i
3) f(vi3v

i
4) f(vi4v

i
5) f(vi5v

i
1) f(vi1v

i
7) f(vi4v

i
8) f(vi7v

i
8) f(vi5v

i
6) f(vi6v

i+1
6 )

even(≤k-3) d+4 d+1 d+4 d+1 d+2 d+3 d+3 d+1 d+4 d+2

odd d+4 d+1 d+4 d+1 d+2 d+3 d+3 d+1 d+4 d+3

k-1 d+4 d+3 d+1 d+3 d+2 d+1 d+4 d+3 d+4 d+1

i f(vi2v
i+1
3 ) f(vi8v

i+1
7 ) f(vi1) f(vi2) f(vi3) f(vi4) f(vi5) f(vi6) f(vi7) f(vi8)

even(≤k-3) d+2 d+2 2 0 1 0 1 0 0 1

odd d+2 d+2 2 0 1 0 1 2 0 1

k-1 d+2 d+2 1 2 1 0 2 1 0 2

Table 4. f(Gk) for even k

i f(vi1v
i
2) f(vi2v

i
3) f(vi3v

i
4) f(vi4v

i
5) f(vi5v

i
1) f(vi1v

i
7) f(vi4v

i
8) f(vi7v

i
8) f(vi5v

i
6) f(vi6v

i+1
6 )

even d+4 d+1 d+4 d+1 d+2 d+3 d+3 d+1 d+3 d+2

odd d+4 d+3 d+1 d+3 d+2 d+1 d+4 d+3 d+4 d+1

i f(vi2v
i+1
3 ) f(vi8v

i+1
7 ) f(vi1) f(vi2) f(vi3) f(vi4) f(vi5) f(vi6) f(vi7) f(vi8)

even d+2 d+2 2 0 1 0 1 0 0 1

odd d+2 d+2 1 2 1 0 2 1 0 2

Here, f de�ned by Table 3 and Table 4 is also applicable to TGk, if we replace the edges v
k−1
2 v03

and vk−1
8 v07 of Gk with vk−1

2 v07 and vk−1
8 v03 of TGk, and let f(vk−1

2 v07) = f(vk−1
2 v03) and f(vk−1

8 v03) =

f(vk−1
8 v07). Figure 3 shows the labellings of G3(TG3) and G4(TG4) based on the above assignment

f .
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Fig. 3. f(G3(TG3)) and f(G4(TG4)) de�ned by Table 3 and Table 4

By examining the labellings of vertices and edges, we can �nd that the assignment f , de�ned

by Table 3 and Table 4, gives a (d, 1)-total labelling of Gk(TGk). That is, the assignment ful�lls

the three requirements: adjacent vertices receive distinct integers, adjacent edges receive distinct
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integers, and the integer received by a vertex di�ers at least d from those received by its incident

edges. For example, we consider the vertex v01 of Gk(TGk) for odd k. According to Table 3, there are

f(v01) = 2, f(v02) = 0, f(v05) = 1, f(v07) = 0, f(v01v
0
2) = d+4, f(v05v

0
1) = d+2, f(v01v

0
7) = d+3. It follows

f(v01) ̸= f(v02), f(v
0
1) ̸= f(v05), f(v

0
1) ̸= f(v07), f(v

0
1v

0
2) ̸= f(v05v

0
1), f(v

0
1v

0
2) ̸= f(v01v

0
7), f(v

0
5v

0
1) ̸= f(v01v

0
7)

and |f(v01)−f(v01v
0
2)|, |f(v01)−f(v05v

0
1)|, |f(v01)−f(v01v

0
7)|≥ d. Similarly, we can examine the labellings

of v01 for even k and all the other vertices and edges, and verify that they ful�ll the requirements of

a (d, 1)-total labelling of Gk(TGk).

Since the integers used in the assignment are {0, 1, · · · , d + 4}, we obtain that the (d, 1)-total

number of Gk(TGk) for k ≥ 3 must be less than or equal to d + 4. This completes the proof of

Lemma 2.4.

On the other hand, Gk(TGk) is a 3-regular nonbipartite graph. By borrowing the result obtained in

Ref. [28], which indicates λT
d (G) ≥ d+∆+1 if G is an ∆-regular nonbipartite graph and d ≥ ∆ ≥ 3,

we have Lemma 2.5.

Lemma 2.5. λTd (Gk(TGk)) ≥ d+ 4 for k, d ≥ 3.

By combining Lemmas 2.4 and 2.5, we have Theorem 2.6.

Theorem 2.6. λTd (Gk(TGk)) = d+ 4 for k, d ≥ 3.

3. (d,1)-Total labelling of Loupekhine snarks

3.1. The de�nition of Loupekhine snarks

The �rst kind of Loupekhine snark LOk-I for odd k ≥ 3 is similar to Goldberg snark Gk. Specially,

LO3-I is the graph gained from G3 when central triangle of G3 is contracted to a vertex, as shown in

Figure 4(a), and LOk-I for odd k ≥ 5 is recursively constructed by adding the link graph to LOk−2-I

[17], as shown in Figure 4(b). LOk-I is shown as Figure 4(c), where t denotes k−1
2

for simplicity.

The second kind of Loupekhine snark LOk-II for odd k ≥ 3 is de�ned from LOk-I by replacing

the edges vk−1
2 v03 and vk−1

8 v07 with the new edges vk−1
2 v07 and vk−1

8 v03. Both the �rst and second kinds

of Loupekhine snarks, LOk-I and LOk-II, are refereed to as Loupekhine family of snarks.

3.2. (2,1)-Total labelling of Loupekhine snarks

We prove that the (2, 1)-total number of LOk-I and LOk-II is 5 in this section. To this end, we �rst

demonstrate Lemma 3.1.

Lemma 3.1. λT
2 (LOk-I(LOk-II)) ≤ 5 for odd k ≥ 3.

Proof. We use f to represent an assignment of integers to vertices and edges of LOk-I for odd

k ≥ 3. The assignment for most of vertices and edges of LOk-I is de�ned as Table 5, and for

the others are de�ned as follows: f(v6) = 0, f(v05v6) = 3, f(v
k−1
2

5 v6) = 5, f(vk−1
5 v6) = 2 and

f(vi5v
k−1−i
5 ) = 2 (1 ≤ i ≤ k − 2 and i ̸= k−1

2
).

Here, f de�ned by Table 5 with the formulas above it is also applicable to LOk-II if we replace the

edges vk−1
2 v03 and vk−1

8 v07 of LOk-I with vk−1
2 v07 and vk−1

8 v03 of LOk-II, and let f(vk−1
2 v07) = f(vk−1

2 v03)

and f(vk−1
8 v03) = f(vk−1

8 v07). Figure 5 shows the labellings of LO3-I(LO3-II) and LO5-I(LO5-II)
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Fig. 4. The Loupekine snark LO3-I, the link graph and LOk-I

Table 5. f(LOk-I) for odd k ≥ 3

i f(vi1v
i
2) f(vi2v

i
3) f(vi3v

i
4) f(vi4v

i
5) f(vi5v

i
1) f(vi1v

i
7) f(vi4v

i
8) f(vi7v

i
8)

<
k − 1

2
5 4 2 1 0 4 0 2

=
k − 1

2
5 4 2 1 0 4 0 2

>
k − 1

2
5 4 5 1 0 4 0 2

i f(vi2v
i+1
3 ) f(vi8v

i+1
7 ) f(vi1) f(vi2) f(vi3) f(vi4) f(vi5) f(vi7) f(vi8)

<
k − 1

2
3 3 2 1 0 4 5 0 5

=
k − 1

2
3 3 2 1 0 4 3 0 5

>
k − 1

2
3 3 2 1 0 3 4 0 5

based on the above assignment f . Note that LOk-I and LOk-II are drawn in one �gure, where the

edges vk−1
2 v03 and vk−1

8 v07 of LOk-I are with full lines while vk−1
2 v07 and vk−1

8 v03 of LOk-II are with

dashed lines.

By examining the labellings of vertices and edges, we can �nd that the assignment f , de�ned

by Table 5 with the formulas above it, is a (2, 1)-total labelling of LOk-I(LOk-II). Again, we

take the vertex v01 as an example to illustrate this. According to Table 5, there are f(v01) =

2, f(v02) = 1, f(v05) = 5, f(v07) = 0, f(v01v
0
2) = 5, f(v05v

0
1) = 0, f(v01v

0
7) = 4. It follows f(v01) ̸=

f(v02), f(v
0
1) ̸= f(v05), f(v

0
1) ̸= f(v07), f(v

0
1v

0
2) ̸= f(v05v

0
1), f(v

0
1v

0
2) ̸= f(v01v

0
7), f(v

0
5v

0
1) ̸= f(v01v

0
7) and

|f(v01)− f(v01v
0
2)|, |f(v01)− f(v05v

0
1)|, |f(v01)− f(v01v

0
7)|≥ 2. Similarly, we can examine the labellings of

all the other vertices and edges and verify that they ful�ll the requirements of a (2, 1)-total labelling.

Since the integers used in the assignment are {0, 1, · · · , 5}, we obtain that the (2, 1)-total number

of LOk-I(LOk-II) for k ≥ 3 must be less than or equal to 5. This completes the proof of Lemma

3.1.
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Fig. 5. f(LO3-I(LO3-II)) and f(LO5-I(LO5-II)) de�ned by Table 5 with the formulas above it

On the other hand, according to Ref. [16], we have Lemma 3.2.

Lemma 3.2. λT2 (LOk-I(LOk-II))≥ 5 for odd k ≥ 3.

By combining Lemmas 3.1 and 3.2, we have Theorem 3.3.

Theorem 3.3. λT2 (LOk-I(LOk-II))= 5 for odd k ≥ 3.

3.3. (d, 1)-Total labelling of Loupekhine snarks

We prove that the (d,1)-total number of LOk-I(LOk-II) is d + 4 in this section. To this end, we

demonstrate Lemma 3.4.

Lemma 3.4. λT
d (LOk-I(LOk-II)) ≤ d+ 4 for d ≥ 3 and odd k ≥ 3 .

Proof. We use f to represent an assignment of integers to vertices and edges of LOk-I for d ≥ 3 and

odd k ≥ 3. The assignment for most of vertices and edges of LOk-I is de�ned as Table 6, and for

the others are de�ned as follows: f(v6) = 0, f(v05v6) = d + 3, f(v
k−1
2

5 v6) = d + 1, f(vk−1
5 v6) = d + 4

and f(vi5v
k−1−i
5 ) = d+ 4 (1 ≤ i ≤ k − 2 and i ̸= k−1

2
).

Here, f de�ned by Table 6 and the formulas above it is also applicable to LOk-II, if we replace the

edges vk−1
2 v03 and vk−1

8 v07 of LOk-I with vk−1
2 v07 and vk−1

8 v03 of LOk-II, and let f(vk−1
2 v07) = f(vk−1

2 v03)

and f(vk−1
8 v03) = f(vk−1

8 v07). Figure 6 shows the labellings of LO3-I(LO3-II) and LO5-I(LO5-II)

based on the above assignment f .

By examining the labellings of vertices and edges of LOk-I(LOk-II), we can �nd that the assign-

ment f , de�ned by Table 6 with the formulas above it, is a (d, 1)-total labelling of LOk-I(LOk-

II). We take the vertex v01 as an example again. According to Table 6, there are f(v01) =

2, f(v02) = 0, f(v05) = 1, f(v07) = 0, f(v01v
0
2) = d + 4, f(v05v

0
1) = d + 2, f(v01v

0
7) = d + 3. It follows

f(v01) ̸= f(v02), f(v
0
1) ̸= f(v05), f(v

0
1) ̸= f(v07), f(v

0
1v

0
2) ̸= f(v05v

0
1), f(v

0
1v

0
2) ̸= f(v01v

0
7), f(v

0
5v

0
1) ̸= f(v01v

0
7)

and |f(v01)− f(v01v
0
2)|, |f(v01)− f(v05v

0
1)|, |f(v01)− f(v01v

0
7)|≥ d.

Since the integers used in the assignment are {0, 1, · · · , d + 4}, we obtain that the (d, 1)-total

number of LOk-I(LOk-II) for d ≥ 3 and odd k ≥ 3 must be less than or equal to d + 4. This

completes the proof of Lemma 3.4.
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Table 6. f(LOk-I) for d ≥ 3 and odd k ≥ 3

i f(vi1v
i
2) f(vi2v

i
3) f(vi3v

i
4) f(vi4v

i
5) f(vi5v

i
1) f(vi1v

i
7) f(vi4v

i
8) f(vi7v

i
8)

<
k − 1

2
d+4 d+1 d+4 d+1 d+2 d+3 d+3 d+1

=
k − 1

2
d+2 d+1 d+4 d+2 d+4 d+3 d+3 d+1

>
k − 1

2
d+3 d+4 d+1 d+3 d+2 d+1 d+4 d+3

i f(vi2v
i+1
3 ) f(vi8v

i+1
7 ) f(vi1) f(vi2) f(vi3) f(vi4) f(vi5) f(vi7) f(vi8)

<
k − 1

2
d+2 d+2 2 0 1 0 1 0 1

=
k − 1

2
d+3 d+2 2 0 1 0 1 0 1

>
k − 1

2
d+2 d+2 1 2 1 0 2 0 2

0

1

0

0

1

0

0

1

0

d+2d+2

d+1

d+1

d+3

d+2 d+2

d+2

d+3

d+3

d+1d+3

d+3

d+4

d+1

d+1

d+4

d+4

d+4

d+1d+4

d+2

d+3
d+2

d+4

d+2d+1

d+2

d+3

d+2 d+3

d+2

d+3

d+1

d+4

1

1

2

1

1

2

0

0

2

2

2

1

0

0

1

0

0

1

0

0

1

0

0

10

0

1

0

d+2d+2
d+1

d+1

d+1

d+3

d+3d+3

d+3

d+3

d+1

d+1d+3

d+3

d+3

d+4

d+4

d+1

d+1

d+1

d+4

d+4

d+4

d+4

d+4

d+1

d+1d+4

d+4

d+2

d+3

d+3

d+2

d+2

d+4

d+2

d+2d+1

d+1

d+2

d+3

d+3

d+2

d+2 d+2

d+2

d+2

d+2

d+2 d+3

d+2

d+2

d+3

d+1

d+4

d+4

1

1

1

2

2

1

1

1

2

2

0

0

0

2

2

2

2

2

1

1

0

Fig. 6. f(LO3-I(LO3-II)) and f(LO5-I(LO5-II)) de�ned by Table 6 with the formulas above it

On the other hand, LOk-I(LOk-II) is a 3-regular nonbipartite graph. By borrowing the result

obtained in Ref. [28], we have Lemma 3.5.

Lemma 3.5. λTd (LOk-I(LOk-II))≥ d+ 4 for d ≥ 3 and odd k ≥ 3.

By combining Lemmas 3.4 and 3.5, we have Theorem 3.6.

Theorem 3.6. λTd (LOk-I(LOk-II))= d+ 4 for d ≥ 3 and odd k ≥ 3.

4. Conclusion

In conclusion, we have presented (d, 1)-total labellings of Goldberg family and Loupekhine family,

and obtained the exact values of (d, 1)-total numbers of the two in�nite families of snarks for all

d ≥ 2. Besides, we have also given the exact values of (d, 1)-total labellings of the related graphs

of Goldberg snarks. The (2, 1)-total number and (d, 1)-total number for d ≥ 3 are 5 and d + 4,

respectively, for all of them.
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