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ABSTRACT

A (d, 1)-total labelling of a graph G is an assignment of integers {0,1,---,l} to the vertices and
edges of the graph such that adjacent vertices receive distinct integers, adjacent edges receive distinct
integers, and the integer received by a vertex differs at least d from those received by its incident
edges. The minimum number [ required for such an assignment is called as the (d, 1)-total number
of the graph G. This paper contributes to (d, 1)-total labelling of two infinite families of snarks, the
Goldberg family and Loupekhine family. We completely determine (d, 1)-total numbers of these two
families of snarks for all d > 2.

Keywords: graph labelling, (d,1)-total labelling, (d,1)-total number, Goldberg snark, Loupekhine
snark

1. Introduction

Graph labelling is an assignment of integers to elements of a graph, i.e. vertices and/or edges, such
that the integers assigned to adjacent elements fulfill certain requirements. Various labellings have
been put forward based on different requirements [8]. Among them, an intensively studied one is
known as L(2,1)-labelling. It is an assignment of integers to the vertices such that adjacent vertices
receive integers with difference at least 2, and vertices of distance two receive distinct integers [12].
A natural generalization of L(2,1)-labelling is L(d, 1)-labelling. Further, L(d, 1)-labelling is applied
to the incidence graph s(G), a graph obtained from G by inserting one vertex along each edge of G
[30].

The L(d, 1)-labelling of s(G) is equivalent to an assignment of integers to both the vertices and
edges of GG, which then leads to the notion of (d, 1)-total labelling of G [15, 13].

(d, 1)-Total labelling of a graph G is an assignment of integers {0,1,2,---,[} to the vertices V(G)
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and edges F(G) such that adjacent vertices receive distinct integers, adjacent edges receive distinct
integers, and the integer received by a vertex differs at least d from those received by its incident
edges. It can be also regarded as a generalization of total colouring. The main issue in the study
of (d,1)-total labelling is to find the minimum number [ required for such an assignment, which is
particularly called as the (d, 1)-total number of the graph G, denoted as /\dT(G). However, it is a
difficult problem to determine the exact value of (d, 1)-total number for a graph in general, and it is
also nontrivial even to find its tight bound.

This issue has received increasing attention. So far, great efforts have been directed towards study-
ing (d, 1)-total labellings of graphs, and some progress has been made. Havet and Yu conjectured that
)\dT(G) < A(G)+2d—1, where A(G) is the maximum degree of G [16]. The validity of conjecture has
been verified for complete graphs |4, 16], bipartite graphs [18, 14|, planar graphs [1, 3, 31, 25, 26, 22,
21] and graphs with a given maximum average degree [20]. The exact values of (d, 1)-total numbers
have been determined for some graphs such as flower snarks [28], generalized Petersen graphs [27],
Sierpinski-like graphs [5], and joins of paths and cycles [29].

Snarks are the cubic bridgeless graphs that are not 3-edge colorable. The interest in snarks
partly arises from the fact that several well-known conjectures have snarks as counterexamples. Two
important families of snarks are Goldberg snarks and Loupekhine snarks. A number of articles have
been devoted to studying the labelling and colouring of them, such as their L(2, 1)-labelling[19], edge
colourings [7, 6, 9] and total colouring [2, 24, 11, 23|.

However, the (d, 1)-total numbers of them still remain open. To fill the gap, in this paper, we study
the (d, 1)-total labelling of the two infinite families of snarks. We aim to determine the (d, 1)-total
numbers of them for all d > 2.

This paper is organized as follows. In Section 2, we determine the (d, 1)-total numbers of Goldberg
snarks. In Section 3, we determine the (d,1)-total numbers of Loupekhine snarks. Section 4 is our
conclusion.

2. (d,1)-Total labelling of Goldberg snarks

2.1.  The definitions of Goldberg snarks and their related graphs
A Goldberg snark Gy, for odd k > 3 is defined by V(Gy) = {v}|0 <i < k—1,1 < j < 8} and E(Gy)

—{vivd, vivd, vivd, viol vivt vivl viol vivk, vivk, vivgtt vivstt viottt 10 < i <k —1 }, where the
superscripts are considered modulo & [10].

The graph gained from G}, by replacing the edges v5™'09 and vf 02 with the new edges vh 02
and v 'Y is called a twisted Goldberg snark, denoted as TG}, for odd k > 3.

Without ambiguity, both the graphs G and TG, for odd k > 3 are refereed to as Goldberg family
of snarks, while G and T'Gj, for even k > 4 are refereed to as the related graphs of Goldberg snarks.
Figure 1 shows Goldberg snark Gj, twisted Goldberg snark T'Gs, and the related graphs G4 and
TG,. Note that we have drawn G, and TG}, in one figure, where the edges v§~ 09 and v 02 of Gy,

are with full lines while v~ "0 and v5 09 of TG}, are with dashed lines.

2.2.  (2,1)-Total labelling of Goldberg snarks and their related graphs

We prove that the (2,1)-total number of Gy and T'Gy, is 5 in this section. To this end, we first
demonstrate Lemma 2.1, which provides an upper bound of \! (Gy(TGy)).
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G3(TGs) G4(TG4)

Fig. 1. G5(TG3) and G4(T'G,)

Lemma 2.1. X (GL(TGy)) <5 for k > 3.

Proof. We use f to represent an assignment of integers to vertices and edges of Gj. It is defined as
Table 1 for odd k, and Table 2 for even k.

Table 1. f(Gy) for odd k

i f(oivg) | f(ogvs) | f(vsvn) | f(uiol) | fugol) | foivr) | f(oivd) | fopvg) | f(vdvg) | fugug™)
even(<k-3) | 4 5 3 0 5 3 1 2 4 2
odd 5 0 1 0 2 4 3 5 1 3
k-1 0 5 2 3 2 3 0 5 1 5

i Flosost™) | f(od) | flogvr™) | f(o]) | f(0) | F(0)) | fod) | F0h) | fluh) | flvh)

even(<k-3) 2 0 1 0 1 5 2 0 0 4
odd 4 4 0 2 4 5 4 5 2 1
k-1 4 4 5 2 0 5 0 1 0 2

Here, f defined by Table 1 and Table 2 is also applicable to T'Gy. The only difference is that
the edges v 0§ and v~ 'v? of Gy are replaced with v5~'0? and vf~'v) of TGy, and there are
fos=19) = f(ub~'d) and f(vE'0d) = f(vf '), Figure 2 shows the labellings of G5(T'Gs) and
G4(T'Gy4) based on the above assignment f.

To show that the assignment f, defined by Table | and Table 2, is a (2,1)-total labelling of
Gr(TGy), we examine the labelling of each vertex and edge. For example, we consider the vertex
v of Gi(TGy) for odd k, to which three vertices v9, v and v? are adjacent. According to Table 1,
there are f(v)) =1, f(v9) =0, f(v)) =2, f(v9) = 0, f(v]0]) =4, f(v2)) = 5, fF(VW02) = 3. Tt follows
FO9) # F03), F00) # F), Fu0) 7 F), F2ed) # F(000d), F09) # F(ofold), F(u0ed) # F(u0?)
and | f(v)) — f(QND)], | F(0Y) = fF(02v))], | f(v]) — f(2909)|> 2. Similarly, we can examine the labellings
of v¥ for even k and all the other vertices and edges, and verify that they also fulfill the requirements
of a (2,1)-total labelling. That is, the assignment fulfills the three requirements: adjacent vertices
receive distinct integers, adjacent edges receive distinct integers, and the integer received by a vertex
differs at least 2 from those received by its incident edges. Therefore, the assignment f, defined by
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Table 2. f(Gy) for even k

i | fivy) | fosed) | f(usvd) | foied) | Fogel) | fuivr) | foivg) | fQog) | F(uave) | f(vgvst)

even 3 2 5 4 5 4 0 2 3 0
odd 0 1 5 4 5 4 0 2 2 1
i | St | kol | Fl) | ) | fh) | Fl) | fl) | f(d) | F(0l) | f(0h)
even 0 3 1 5) 0 2 0 5 0 5
odd 3 3 2 5) 3 2 0 4 0 5

Fig. 2. f(G3(TG3)) and f(G4(T'Gy4)) defined by Table 1 and Table 2

Table 1 and Table 2, gives a (2, 1)-total labelling of G (T'G).

Noting that the integers used in the assignment are {0,1,---,5}, we obtain that the (2, 1)-total
number of Gy (TGy) for k > 3 must be less than or equal to 5. This completes the proof of Lemma
2.1. O

On the other hand, for a A-regular graph G, there is always A\)(G) > d + A [16]. Since
A(Gr(TGy)) = 3, we have Lemma 2.2.

Lemma 2.2. \L(G,(TG})) > 5 for k > 3.

Lemma 2.1 and Lemma 2.2 give the upper bound and lower bound of \!(G(T'Gy)) respectively,
both of which are 5. Hence, we have Theorem 2.3.

Theorem 2.3. /\2T(Gk(TGk)) =5 for k> 3.

2.3.  (d,1)-Total labelling of Goldberg snarks and their related graphs

We prove that the (d,1)-total number of G (T'Gy) is d+4 in this section. To this end, we demonstrate
Lemma 2.4.

Lemma 2.4. A\ (GL(TGy)) < d+4 for k> 3.

Proof. Let f be an assignment of integers to vertices and edges of G. It is defined as Table 3 for
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odd k, and Table 4 for even k.

Table 3. f(Gy) for odd k

i fvivy) | fogvd) | f(ugol) | foed) | fugui) | f(vivg) | f(ojod) | f(ujod) | fodvg) | f(ugus™)
even(<k-3) | d-+4 d+1 d+4 d+1 d+2 d+3 d+3 d+1 d+4 d+2
odd d-+4 d+1 d-+4 d+1 d+2 d-+3 d-+3 d+1 d-+4 d-+3
k-1 d-+4 d+3 d+1 d-+3 d-+2 d+1 d-+4 d-+3 d-+4 d+1

i fosvs™) | flugor™) | fo1) | foy) | fus) | fd) | F05) | flug) | flv) | f(vE)
even(<k-3) d+2 d+2 2 0 1 0 1 0 0 1
odd d+2 d+2 2 0 1 0 1 2 0 1
k-1 d+2 d+2 1 2 1 0 2 1 0 2

Table 4. f(Gy) for even k

i | fivs) | flobvs) | fobol) | foied) | fogot) | foion) | foiod) | fQivl) | f(ive) | fugus™)
even d+4 d+1 d+4 d+1 d+2 d+3 d+3 d+1 d+3 d+2
odd d+4 d+3 d+1 d-+3 d+2 d+1 d-+4 d+3 d+4 d+1
i | flosvs™) | foger™) | ) | F@3) | f(us) | FQo) | Fo8) | flug) | F07) | f(vR)
even | d+2 d+2 2 0 1 0 1 0 0 1
odd | d+2 d+2 1 2 1 0 2 1 0 2

Here, f defined by Table 3 and Table 4 is also applicable to TG}, if we replace the edges v§_1U§
and v§ 109 of Gy with v and v 0] of TGy, and let f(vs '09) = f(v5~'09) and f(vi'0vg) =
f(uE=109). Figure 3 shows the labellings of G3(T'G3) and G4(T'Gy4) based on the above assignment
f.

Fig. 3. f(G3(TG3)) and f(G4(T'Gy4)) defined by Table 3 and Table 4

By examining the labellings of vertices and edges, we can find that the assignment f, defined
by Table 3 and Table 4, gives a (d, 1)-total labelling of G(T'G). That is, the assignment fulfills
the three requirements: adjacent vertices receive distinct integers, adjacent edges receive distinct
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integers, and the integer received by a vertex differs at least d from those received by its incident
edges. For example, we consider the vertex v{ of G(T'G}) for odd k. According to Table 3, there are
F@Y) =2, f(v3) =0, f(v)) =1, f(¥9) =0, f(v009) = d+4, f(v20]) = d+2, f(v009) = d+3. It follows
fR) # f(02), f(0}) # f(u5), f(0]) # f(vp), f(vivg) # f(vS0Y), f(v1n}) # f(vivr), f(vgnl) # f(vfve)
and | f(v)) — f(9), | f(0?) — f(02u))], | f(v)) — f(0909)|> d. Similarly, we can examine the labellings
of v for even k and all the other vertices and edges, and verify that they fulfill the requirements of
a (d, 1)-total labelling of G (T'Gy).

Since the integers used in the assignment are {0,1,---,d + 4}, we obtain that the (d,1)-total
number of Gi(TGy) for k > 3 must be less than or equal to d + 4. This completes the proof of
Lemma 2.4. [

On the other hand, G (T'Gy,) is a 3-regular nonbipartite graph. By borrowing the result obtained in
Ref. [28], which indicates \](G) > d+ A+ 1 if G is an A-regular nonbipartite graph and d > A > 3,
we have Lemma 2.5.

Lemma 2.5. Ag(Gk(TGk)) >d+4 for k,d> 3.
By combining Lemmas 2.4 and 2.5, we have Theorem 2.6.

Theorem 2.6. A\ (G4(TG})) =d+4 for k,d > 3.

3. (d,1)-Total labelling of Loupekhine snarks

3.1.  The definition of Loupekhine snarks

The first kind of Loupekhine snark LO-I for odd k > 3 is similar to Goldberg snark Gj. Specially,
LOs-1 is the graph gained from G3 when central triangle of G3 is contracted to a vertex, as shown in
Figure 4(a), and LOy-I for odd k > 5 is recursively constructed by adding the link graph to LOy_o-1
[17], as shown in Figure 4(b). LO-I is shown as Figure 4(c), where ¢ denotes ¥>1 for simplicity.
The second kind of Loupekhine snark LOy-IT1 for odd k > 3 is defined from LOk—I by replacing

klo

the edges v5~'09 and v} with the new edges v5'00 and v5'v). Both the first and second kinds

of Loupekhine snarks, LO,- [ and LOy-11, are refereed to as Loupekhine family of snarks.

3.2.  (2,1)-Total labelling of Loupekhine snarks

We prove that the (2, 1)-total number of LOy-I and LOy-11 is 5 in this section. To this end, we first
demonstrate Lemma 3.1.

Lemma 3.1. \I(LOy-I(LO-I1)) <5 for odd k > 3.

Proof. We use f to represent an assignment of integers to vertices and edges of LO-I for odd
k > 3. The assignment for most of vertices and edges of LOj- I 1s defined as Table 5, and for

the others are defined as follows: f(vg) = 0, f(vivg) = 3, f(v5 v6) 5, f(vE'wg) = 2 and
fE ) =2 (1<i<k—2 and i#52).

Here, f defined by Table 5 with the formulas above it is also applicable to LO-11 if we replace the
edges vk 109 and vf Y of LOy-T with v5'0Q and vi 03 of LOy-I1, and let f(v5'09) = f(vh109)
and f(vi 1)) = f(vE'9). Figure 5 shows the labellings of LOs-I(LOs-I1) and LOs-1(LOs-11)
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(b) The link graph (¢) LOx-I

Fig. 4. The Loupekine snark LOs-I, the link graph and LOy-1

Table 5. f(LOy-I) for odd k > 3

ki 1 fivy) | f(usvy) | fusvh) | fuil) | fokoy) | flojol) | flojol) | f(vioh)
<% 5 4 2 1 0 4 0 2
:—k;1 5 4 2 1 0 4 0 2

|
>k'T 5 4 5 1 0 4 0 9

ki 1 F@hos™) | oo™ | f(od) | F0h) | FR) | fol) | fd) | f(oh) | f(v))
<% 3 3 2 1 0 4 5 0 5
:% 3 3 2 1 0 4 3 0 5
>% 3 3 ) 1 0 3 4 0 5

based on the above assignment f. Note that LOg-I and LO,-11 are drawn in one figure, where the
edges v5 0§ and vi 'Y of LO,-I are with full lines while v5 0 and vfv9 of LOw-II are with
dashed lines.

By examining the labellings of vertices and edges, we can find that the assignment f, defined
by Table 5 with the formulas above it, is a (2,1)-total labelling of LOy-1(LO-II). Again, we

take the vertex vY as an example to illustrate this. According to Table 5, there are f(v)) =

2, f(vg) = L f(vg) = 5 f(v?) = 0,f(0fv)) = 5, f(vg?) = 0, f(xfv7) = 4. Tt follows f(u}) #
FOB), F00) # F0), 705 £ F), FeR) £ (), Folod) £ Fuel), fodef) # F(ued) and
|f(v)) = F@2D], |f () — f0duD)], [ f(0?) — f(vPv?)|> 2. Similarly, we can examine the labellings of
all the other vertices and edges and verify that they fulfill the requirements of a (2, 1)-total labelling.

Since the integers used in the assignment are {0, 1,--,5}, we obtain that the (2, 1)-total number
of LOw-1(LOy-I1) for k > 3 must be less than or equal to 5. This completes the proof of Lemma
3.1. ]
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Fig. 5. f(LO3-I(LO3-II)) and f(LOs-1(LOs-11)) defined by Table 5 with the formulas above it

On the other hand, according to Ref. [16], we have Lemma 3.2.
Lemma 3.2. \] (LOy-I(LOy-11))> 5 for odd k > 3.
By combining Lemmas 3.1 and 3.2, we have Theorem 3.3.

Theorem 3.3. A\ (LO-1(LO-11))= 5 for odd k > 3.

3.3.  (d,1)-Total labelling of Loupekhine snarks

We prove that the (d,1)-total number of LOy-I(LOy-II) is d + 4 in this section. To this end, we
demonstrate Lemma 3.4.

Lemma 3.4. \J(LOy-I(LOy-11)) < d+4 for d >3 and odd k > 3 .

Proof. We use f to represent an assignment of integers to vertices and edges of LO,-I for d > 3 and
odd k > 3. The assignment for most of vertices and edges of LOk [ is defined as Table 6, and for

the others are defined as follows: f(vg) = 0, f(vivg) = d + 3, f(v5 v6) =d+ 1, f(vE ) =d +4
and f(vivs ") =d+4(1<i<k—2 and i# 51).

Here, f defined by Table 6 and the formulas above it is also applicable to LOy-11, if we replace the
edges vk "9 and vE 'Y of LO.-I with v5~'0Q and v¥~ ') of LO.-11, and let f(v5~'02) = f(vh~10))
and f(vi 1)) = f(vE~'). Figure 6 shows the labellings of LOs-I1(LOs-I1) and LOs-1(LOs-11)
based on the above assignment f.

By examining the labellings of vertices and edges of LOy-1(LOy-11), we can find that the assign-
ment f, defined by Table 6 with the formulas above it, is a (d, 1)-total labelling of LOg-I1(LOy-
II). We take the vertex v} as an example again. According to Table 6, there are f(v?) =
2, f(0)) =0, f(v)) = 1, f(09) = 0, f(00Y) = d+ 4, f(v2]) = d+ 2, f(v]?) = d + 3. Tt follows
FR) # f(02), f(0}) # f(05), f(]) # f(vp), f(viv3) # f(vS0Y), f(v1n}) # f(vivr), f(vgnd) # f(vfve)
and |£(9) — )], [F(e) — FOR)1F(D) — Fo)]> d.

Since the integers used in the assignment are {0,1,---,d + 4}, we obtain that the (d,1)-total
number of LOy-I(LOy-11) for d > 3 and odd k£ > 3 must be less than or equal to d + 4. This
completes the proof of Lemma 3.1. O
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Table 6. f(LOy-I) for d > 3 and odd k >3

kz’ : fivh) | f(ojvs) | flodvy) | f(uiol) | f(viv}) | foiwl) | fuiol) | f(viug)

<% d+4 d+1 d+4 d+1 d+2 d+3 d+3 d+1
|

=——= d+2 d+1 d+4 d-+2 d+4 d+3 d+3 d+1
EoT

> —— d+3 d+4 d+1 d+3 d+2 d+1 d+4 d+3
kz’ 1 Fos™) | Folod™) | f(d) | F08) | Fd) | fol) | Fd) | f(oh) | f(v))

<% d+2 dr2 2 0 1 0 1 0 1
|

:kT d+3 dr2 9 0 1 0 1 0 1
|

>kT d+2 d+2 1 ) 1 0 ) 0 2

Fig. 6. f(LO3-I(LO3-II)) and f(LO5-I(LO5-I1)) defined by Table 6 with the formulas above it

On the other hand, LOy-I(LOy-II) is a 3-regular nonbipartite graph. By borrowing the result
obtained in Ref. [28], we have Lemma 3.5.

Lemma 3.5. A\l (LO-I(LO-I1))> d+4 for d >3 and odd k > 3.
By combining Lemmas 3.4 and 3.5, we have Theorem 3.6.

Theorem 3.6. AL (LO,-I(LO-11))=d+4 for d >3 and odd k > 3.

4. Conclusion

In conclusion, we have presented (d, 1)-total labellings of Goldberg family and Loupekhine family,
and obtained the exact values of (d, 1)-total numbers of the two infinite families of snarks for all
d > 2. Besides, we have also given the exact values of (d, 1)-total labellings of the related graphs

of Goldberg snarks. The (2,1)-total number and (d, 1)-total number for d > 3 are 5 and d + 4,
respectively, for all of them.
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