Journal of Combinatorial Mathematics and Combinatorial Computing www.combinatorialpress.com/jcmcc

Decomposition of the cartesian product of complete graphs into paths and cycles of length six

A. Pauline Ezhilarasi^{1, \boxtimes} A. Muthusamy²

¹ Department of Mathematics, Jeppiaar Engineering College, Chennai-600119, India ² Department of Mathematics, Periyar University, Salem-636011, India

ABSTRACT

Let P_k and C_k respectively denote a path and a cycle on k vertices. In this paper, we give necessary and sufficient conditions for the existence of a *complete* $\{P_7, C_6\}$ - *decomposition* of the cartesian product of complete graphs.

Keywords: graph decomposition, path, cycle and product graph

1. Introduction

Unless stated otherwise all graphs considered here are finite, simple, and undirected. For the standard graph-theoretic terminology the readers are referred to [5]. Let P_k , C_k , S_k , K_k respectively denote a path, cycle, star and complete graph on k vertices, and let $K_{m,n}$ denote the complete bipartite graph with m and n vertices in the parts. A graph whose vertex set is partitioned into subsets $V_1, ..., V_m$ such that the edge set is $\bigcup_{i \neq j \in [m]} V_i \times V_j$ is a complete m-partite graph, denoted as $K_{n_1,...,n_m}$, when $|V_i| = n_i$ for all i. For $G = K_{2n}$ or $K_{n,n}$, the graph G - I denotes the graph G with a 1-factor I removed. For any integer $\lambda > 0$, λG denotes λ edge-disjoint copies of G. The complement of the graph G is denoted by \overline{G} . For two graphs G and H we define their Cartesian product, denoted by $G \Box H$, as follows: the vertex set is $V(G) \times V(H)$ and its edge set is

$$E(G\Box H) = \{(g,h)(g',h') : g = g', hh' \in E(H), or gg' \in E(G), h = h'\}$$

It is well known that the Cartesian product is commutative and associative. For a graph G, a partition of G into edge-disjoint sub graphs H_1, \dots, H_k such that $E(G) = E(H_1) \cup \dots \cup E(H_k)$ is called a *decomposition* of G and we write G as $G = H_1 \oplus \dots \oplus H_k$. For $1 \le i \le k$, if $H_i \cong H$, we say

 \boxtimes Corresponding author.

E-mail address: post2pauline@gmail.com (A. Pauline Ezhilarasi).

Accepted 04 June 2020; Published Online 19 March 2025.

DOI: 10.61091/jcmcc124-39

 $[\]odot$ 2025 The Author(s). Published by Combinatorial Press. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

that G has a H-decomposition. If G has a decomposition into p copies of H_1 and q copies of H_2 , then we say that G has a $\{pH_1, qH_2\}$ -decomposition. If such a decomposition exists for all possible values of p and q satisfying trivial necessary conditions, then we say that G has a $\{H_1, H_2\}_{\{p,q\}}$ -decomposition or complete $\{H_1, H_2\}$ -decomposition.

The study of $\{H_1, H_2\}_{\{n,n\}}$ -decomposition of graphs is not new. Authors in [2, 4] completely determined the values of n for which $K_n(\lambda)$ admits a $\{pH_1, qH_2\}$ -decomposition such that $H_1 \cup H_2 \cong$ K_t , when $\lambda \geq 1$ and $|V(H_1)| = |V(H_2)| = t$, when $t \in \{4, 5\}$. Abueida and Daven [3] proved that there exists a $\{pK_k, qS_{k+1}\}$ -decomposition of K_n , for $k \geq 3$ and $n \equiv 0, 1 \pmod{k}$. Abueida and O'Neil [1] proved that for $k \in \{3, 4, 5\}$, there exists a $\{pC_k, qS_k\}$ -decomposition of $K_n(\lambda)$, whenever $n \ge k+1$ except for the ordered triples $(k, n, \lambda) \in \{(3, 4, 1), (4, 5, 1), (5, 6, 1), (5, 6, 2), ($ (5, 6, 4), (5, 7, 1), (5, 8, 1). Farrell and Pike [7] shown that the necessary conditions are sufficient for the existence of C_6 -decomposition of $K_m \Box K_n$. Fu et al. [8] established necessary and sufficient condition for the existence of $\{C_3, S_4\}_{\{p,q\}}$ -decomposition of K_n . Shyu [12] obtained a necessary and sufficient condition on $\{p,q\}$ for the existence of $\{P_5, C_4\}_{\{p,q\}}$ -decomposition of K_n . Priyadharsini and Muthusamy [11] established necessary and sufficient condition for the existence of the $\{pG_n, qH_n\}$ decomposition of $K_n(\lambda)$ when $G_n, H_n \in \{C_n, P_{n-1}, S_{n-1}\}$. Jeevadoss and Muthusamy [9] obtained some necessary and sufficient conditions for the existence of $\{P_{k+1}, C_k\}_{\{p,a\}}$ -decomposition of $K_{m,n}$. Jeevadoss and Muthusamy [10] obtained necessary and sufficient conditions for the existence of $\{P_5, C_4\}_{\{p,q\}}$ -decomposition of $K_m \times K_n, K_m \otimes \overline{K_n}$ and $K_m \Box K_n$. Pauline Ezhilarasi and Muthusamy [6] have obtained necessary and sufficient conditions for the existence of a decomposition of product graphs into paths and stars with three edges.

In this paper, we show that the necessary condition $mn(m + n - 2) \equiv 0 \pmod{12}$ is sufficient for the existence of a $\{P_7, C_6\}_{\{p,q\}}$ -decomposition of $K_m \Box K_n$. We abbreviate the $\{P_{k+1}, C_k\}_{\{p,q\}}$ decomposition as (k; p, q)-decomposition.

To prove our results we state the following:

Theorem 1.1 ([9]). Let p, q be non-negative integers, k be an even integer and n > 4k be an odd integer. If $k(p+q) = \binom{n}{2}$ and $p \neq 1$, then K_n has a (k; p, q)-decomposition.

Theorem 1.2 ([9]). Let s, t > 0 be integers and $k \ge 4$ be an even integer. Then the graph $K_{sk,tk}$ has a (k; p, q)-decomposition.

Remark 1.3. If G and H have a (6; p, q)-decomposition, then $G \cup H$ has a such decomposition. In this paper, we denote $G \cup H$ as $G \oplus H$.

Construction 1.4. Let C_6^1 and C_6^2 be two cycles of length 6, where $C_6^1 = (x_0x_1x_2x_3x_4x_5x_0)$ and $C_6^2 = (y_0y_1y_2y_3y_4y_5y_0)$. If v is a common vertex of C_6^1 and C_6^2 such that at least one neighbour of v from each cycle (say, x_i and y_j) does not belong to the other cycle then we have two edge-disjoint paths of length 6, say P_7^1 and P_7^2 from C_6^1 and C_6^2 as follows:

$$P_7^1 = (C_6^1 - vx_i) \cup vy_j,$$

and

$$P_7^2 = (C_6^2 - vy_j) \cup vx_i$$

2. Base Constructions

In this section we prove some basic lemmas which are used to prove our results. Throughout this paper, we denote $V(K_n) = \{x_i : 1 \le i \le n\}$.

Lemma 2.1. There exists a (6; p, q)-decomposition of $K_7 \setminus E(K_3), p \neq 1$.

Proof. First we decompose $K_7 \setminus E(K_3)$ into $3C_6$ as follows:

 $\{(x_2x_5x_1x_4x_3x_6x_2), (x_2x_4x_6x_1x_3x_7x_2), (x_1x_2x_3x_5x_6x_7x_1)\}.$

The bold edges (resp., ordinary edges) gives $2P_7$ from first two cycles. Now, the $3P_7$ are

 $\{x_4x_6x_7x_1x_2x_3x_5, x_7x_3x_6x_1x_4x_2x_5, x_7x_2x_6x_5x_1x_3x_4\}.$

Hence $K_7 \setminus E(K_3)$ has a (6; p, q)-decomposition.

Lemma 2.2. There exists a (6; p, q)-decomposition of $K_8 - I$, $p \neq 1$.

Proof. First we decompose $K_8 - I$ into C_6 's as follows:

 $\{(x_1\mathbf{x_5x_8x_2x_6x_7x_1}), (\mathbf{x_1x_3}x_2x_7x_4x_8x_1)\}, \{(x_5\mathbf{x_7x_3x_8x_6x_4x_5}), (\mathbf{x_5x_2}x_4x_1x_6x_3x_5)\}.$

The last $3C_6$ can be decomposed into $3P_7$ as follows:

 $\{x_5x_8x_2x_6x_7x_1x_3, x_3x_2x_7x_5x_4x_8x_6, x_6x_4x_7x_3x_8x_1x_5\}.$

Now, using Construction 1.4 we get the required number of paths and cycles from the C_6 -decomposition given above.

Lemma 2.3. There exists a (6; p, q)-decomposition of K_9 , $p \neq 1$.

Proof. First we decompose K_9 into C_6 's as follows:

 $\{(x_1\mathbf{x_3x_5x_7x_9x_2x_1}), (\mathbf{x_1x_4}x_6x_8x_2x_5x_1)\}, \{(x_1\mathbf{x_6x_2x_3x_4x_7x_1}), (\mathbf{x_1x_8}x_3x_7x_6x_9x_1)\}, \{(x_4\mathbf{x_5x_6x_3x_9x_8x_4}), (\mathbf{x_4x_2}x_7x_8x_5x_9x_4)\}.$

The last $3C_6$ can be decomposed into $3P_7$ as follows:

```
\{x_1x_8x_3x_7x_6x_9x_5, x_5x_8x_7x_2x_4x_9x_3, x_3x_6x_5x_4x_8x_9x_1\}.
```

Now, using Construction 1.4 we get the required number of paths and cycles from the C_6 -decomposition given above.

Lemma 2.4. There exists a (6; p, q)-decomposition of $K_{6k,4l}$, $k, l \in \mathbb{Z}^+$ and $p \neq 1$.

Proof. Let $V(K_{6,4}) = \{x_1, \dots, x_6\} \cup \{y_1, \dots, y_4\}$. First we decompose $K_{6,4}$ into C_6 's as follows:

 $\{(y_2 \mathbf{x_2} y_3 \mathbf{x_3} y_1 \mathbf{x_1} y_2), (y_2 \mathbf{x_5} y_3 x_6 y_4 x_4 y_2)\}, \{(y_1 \mathbf{x_2} y_4 x_1 y_3 x_4 y_1), (y_1 \mathbf{x_5} y_4 \mathbf{x_3} y_2 \mathbf{x_6} y_1)\}.$

From the first $3C_6$ we can find $3P_7$ as follows:

 $\{y_1x_1y_3x_4y_2x_5y_3, y_3x_6y_4x_4y_1x_2y_4, y_4x_1y_2x_2y_3x_3y_1\}.$

Now, using Construction 1.4 we get a required number of paths and cycles from the C_6 -decomposition given above. Hence $K_{6,4}$ has a (6; p, q)-decomposition. Now, we can write $K_{6k,4l} = klK_{6,4}$. Hence by Remark 1.3, $K_{6k,4l}$ has a (6; p, q)-decomposition.

Lemma 2.5. There exists a (6; p, q)-decomposition of

(i). $K_{12l+1} \setminus E(2lC_6)$ with $p \neq 1$ and

(ii). $K_{12k} \setminus E(2kC_6)$ with $p \ge 6k$, where $2lC_6$ and $2kC_6$ are vertex disjoint cycles and $k, l \in \mathbb{Z}^+$.

Proof. (i). Let

$$\{\{(x_1\mathbf{x_4x_2x_6x_3x_5x_1}), (\mathbf{x_1x_{10}}x_4x_7x_2x_{12}x_1)\}, \{(x_7\mathbf{x_{13}x_{10}}\mathbf{x_{12}x_8x_{11}x_7}), (\mathbf{x_7x_9}x_{12}x_{13}x_8x_{10}x_7)\}, \\ \{(x_8\mathbf{x_2x_{10}}\mathbf{x_3x_7x_1x_8}), (\mathbf{x_8x_5}x_{10}x_6x_{12}x_4x_8)\}, \{(x_9\mathbf{x_1x_3x_{13}x_{11}x_2x_9}), (\mathbf{x_9x_4}x_{13}x_5x_{11}x_6x_9)\}, \\ \{(x_9x_{11}\mathbf{x_{13}x_{2}x_{5}x_9}), (x_9x_3x_{11}x_4\mathbf{x_6x_{13}x_9})\}, (x_3x_8x_6x_7x_5x_{12}x_3)\},$$

be the C_6 -decomposition of $K_{13} \setminus E(2C_6)$, where $2C_6$ removed from K_{13} are given by $(x_1x_2x_3x_4x_5x_6x_1)$, $(x_7x_8x_9x_{10}x_{11}x_{12}x_7)$. The last $3C_6$ can be decomposed into $3P_7$ as follows:

 $\{x_{12}x_3x_9x_{13}x_6x_4x_{11}, x_3x_8x_6x_7x_5x_9x_{11}, x_3x_{11}x_1x_{13}x_2x_5x_{12}\}.$

Now, using Construction 1.4 we get the required number of paths and cycles from the C_6 decomposition given above. Hence $K_{13} \setminus E(2C_6)$ has a (6; p, q)-decomposition, where the $2C_6$ removed from K_{13} are vertex disjoint cycles. We can write $K_{12l+1} = K_{12(l-1)+1} \oplus K_{13} \oplus K_{12(l-1),12}$. Applying this relation recursively to $K_{12(l-1)+1}$ and using Theorem 1.2, we can have a (6; p, q)-decomposition of $K_{12l+1} \setminus E(2lC_6)$, where the $2lC_6$ removed from K_{12l+1} are vertex disjoint cycles.

(ii). Since the degree of each vertex $v \in V(K_{12k} \setminus E(2kC_6))$ is odd, then $p \geq 6k$. Let

 $\{ x_1 x_{12} x_2 x_{11} x_3 x_{10} x_4, x_3 x_9 x_4 x_8 x_5 x_7 x_6, x_2 x_4 x_6 x_8 x_{10} x_1 x_5, x_7 x_9 x_{12} x_3 x_6 x_2 x_{10}, x_9 x_{11} x_1 x_3 x_5 x_{10} x_{12}, x_{11} x_4 x_7 x_{10} x_6 x_{12} x_8, \{ (x_1 \mathbf{x_8 x_3 x_7 x_2 x_9 x_1}), (x_1 x_7 x_{11} x_5 x_{12} \mathbf{x_4 x_1}) \}, (x_2 x_5 x_9 x_6 x_{11} x_8 x_2) \},$

be the $\{6P_7, 3C_6\}$ -decomposition of $K_{12} \setminus E(2C_6)$, where the $2C_6$ removed from K_{12} are $(x_1x_2x_3x_4x_5x_6x_1)$, $(x_7x_8x_9x_{10}x_{11}x_{12}x_7)$. For p = 7, we decompose the last cycle and the first path into $2P_7$ as follows:

 $\{x_1x_{12}x_2x_{11}x_6x_9x_5, x_5x_2x_8x_{11}x_3x_{10}x_4\}.$

Now, using Construction 1.4 we get the required number of paths and cycles from the decomposition given above. Hence $K_{12} \setminus E(2C_6)$ has a (6; p, q)-decomposition, where the $2C_6$ removed from K_{12} are vertex disjoint cycles. We can write $K_{12k} = K_{12(k-1)} \oplus K_{12} \oplus K_{12(k-1),12}$. Applying this relation recursively to $K_{12(k-1)}$ and using Theorem 1.2, we can have a (6; p, q)-decomposition of $K_{12k} \setminus E(2kC_6)$, where $2kC_6$ removed from K_{12k} are vertex disjoint cycles. \Box

Lemma 2.6. There exists a (6; p, q)-decomposition of $K_m \setminus E(K_3), m \equiv 3, 7 \pmod{12}, m > 3$ and $p \neq 1$.

Proof. Let m = 12k + i, where i = 3, 7. We prove it in two cases.

Case 1. m = 12k + 3. When m = 15, $K_{15} \setminus E(K_3) = K_9 \oplus (K_7 \setminus E(K_3)) \oplus K_{8,6}$. By Lemmas 2.1, 2.3 and 2.4 and Remark 1.3, $K_{15} \setminus E(K_3)$ has a (6; p, q)-decomposition. For m > 15, we can write $K_m \setminus E(K_3) = K_{12(k-1)+1} \oplus (K_{15} \setminus E(K_3)) \oplus K_{12(k-1),14} = K_{12(k-1)+1} \oplus (K_{15} \setminus E(K_3)) \oplus K_{12(k-1),6} \oplus K_{12(k-1),8}$. By Theorems 1.1, 1.2, Lemma 2.4 and Remark 1.3, $K_m \setminus E(K_3)$ has a (6; p, q)-decomposition.

Case 2. m = 12k + 7. We can write $K_m \setminus E(K_3) = K_{12k+1} \oplus (K_7 \setminus E(K_3)) \oplus K_{12k,6}$. By Theorems 1.1, 1.2, Lemma 2.1 and Remark 1.3, $K_m \setminus E(K_3)$ has a (6; p, q)-decomposition.

Lemma 2.7. There exists a (6; p, q)-decomposition of $K_m \setminus E(C_4)$ for $m \equiv 5 \pmod{12}$ and $K_m \setminus E(C_7)$ for $m \equiv 11 \pmod{12}$.

Proof.

Case 1. $m \equiv 5 \pmod{12}$. When m = 17, $K_{17} \setminus E(C_4) = K_8 \oplus K_9 \oplus (K_{8,9} \setminus E(C_4))$. Let $V_1 = V(K_8) = \{x_i : 1 \le i \le 8\}$ and $V_2 = V(K_9) = \{y_i : 1 \le i \le 9\}$. So, $V(K_{8,9}) = V_1 \cup V_2$. Let

$$\{ (x_1 \mathbf{y_2} \mathbf{x_2} \mathbf{y_4} \mathbf{x_3} \mathbf{y_5} \mathbf{x_1}), (\mathbf{x_1} \mathbf{y_1} x_3 x_4 y_3 x_2 x_1) \}, \{ (x_5 \mathbf{y_7} \mathbf{x_2} \mathbf{y_6} \mathbf{x_4} \mathbf{y_9} \mathbf{x_5}), (\mathbf{x_5} \mathbf{x_6} y_8 x_7 x_8 y_6 x_5) \} \\ \{ (x_6 x_8 x_4 x_1 x_7 \mathbf{x_2} \mathbf{x_6}), (x_6 \mathbf{x_3} \mathbf{x_1} \mathbf{x_8} \mathbf{x_5} \mathbf{x_4} \mathbf{x_6}) \}, \{ (y_8 \mathbf{x_2} \mathbf{y_9} \mathbf{x_6} \mathbf{y_4} \mathbf{x_1} \mathbf{y_8}), (\mathbf{y_8} \mathbf{x_5} y_1 x_7 y_6 x_3 y_8) \} \\ \{ (x_8 \mathbf{y_7} \mathbf{x_6} \mathbf{y_5} \mathbf{x_2} \mathbf{y_1} \mathbf{x_8}), (\mathbf{x_8} \mathbf{y_8} x_4 y_7 x_7 y_9 x_8) \}, \{ (y_3 \mathbf{x_3} \mathbf{y_2} \mathbf{x_6} \mathbf{y_6} \mathbf{x_1} \mathbf{y_3}), (\mathbf{y_3} \mathbf{x_7} y_4 x_4 y_5 x_5 y_3) \}, \\ \{ (x_2 x_5 x_1 \mathbf{x_6} \mathbf{x_7} x_3 x_2), (\mathbf{x_4} \mathbf{x_2} \mathbf{x_8} \mathbf{x_3} \mathbf{x_5} \mathbf{x_7} x_4) \}, \{ (x_8 \mathbf{y_5} \mathbf{x_7} \mathbf{y_2} \mathbf{x_5} \mathbf{y_4} \mathbf{x_8}), (\mathbf{x_8} \mathbf{y_3} x_6 y_1 x_4 y_2 x_8) \} \}$$

be the C_6 -decomposition of $K_8 \oplus (K_{8,9} \setminus E(C_4))$. The first $3C_6$ can be decomposed into $3P_7$ as follows:

$$\{x_5y_7x_2y_6x_4x_3y_1, y_2x_2y_4x_3y_5x_1y_1, x_5y_9x_4y_3x_2x_1y_2\}.$$

Now, using Construction 1.4 we get the required number of paths and cycles from the C_6 decomposition of $K_8 \oplus (K_{8,9} \setminus E(C_4))$ given above. Hence by Lemma 2.3 and Remark 1.3, $K_{17} \setminus E(C_4)$ has a (6; p, q)-decomposition. When m > 17, we can write $K_m \setminus E(C_4) = K_{12k+5} \setminus E(C_4) = K_{12(k-1)+1} \oplus (K_{17} \setminus E(C_4)) \oplus K_{12(k-1),16}$. By Theorem 1.1 and Lemma 2.4, $K_{12(k-1)+1}$ and $K_{12(k-1),16}$ have a (6; p, q)-decomposition. Hence by Remark 1.3, $K_m \setminus E(C_4)$ has a (6; p, q)-decomposition.

Case 2. $m \equiv 11 \pmod{12}$. We can write $K_m \setminus E(C_7) = K_{12l+11} \setminus E(C_7) = K_{12l+1} \oplus K_{12l,10} \oplus (K_{11} \setminus E(C_7))$ and $K_{12l,10} = K_{12l,6} \oplus 2lK_{6,4}$. Let

 $\{ (x_1 \mathbf{x_4} \mathbf{x_{10}} \mathbf{x_5} \mathbf{x_7} \mathbf{x_{11}} \mathbf{x_1}), (\mathbf{x_1} \mathbf{x_8} x_5 x_{11} x_{10} x_3 x_1) \}, \{ (x_2 \mathbf{x_7} \mathbf{x_3} \mathbf{x_9} \mathbf{x_6} \mathbf{x_8} \mathbf{x_2}), (\mathbf{x_2} \mathbf{x_{11}} x_3 x_5 x_1 x_{10} x_2) \}, \\ \{ (x_9 \mathbf{x_4} \mathbf{x_{11}} \mathbf{x_6} \mathbf{x_{10}} \mathbf{x_7} \mathbf{x_9}), (\mathbf{x_9} \mathbf{x_1} x_6 x_4 x_8 x_{10} x_9) \}, \{ (x_9 \mathbf{x_8} \mathbf{x_3} \mathbf{x_6} \mathbf{x_2} \mathbf{x_5} \mathbf{x_9}), (\mathbf{x_9} \mathbf{x_{11}} x_8 x_7 x_4 x_2 x_9) \},$

be the C₆-decomposition of $K_{11} \setminus E(C_7)$. The first $3C_6$ can be decomposed into $3P_7$ as follows:

Now, using Construction 1.4 we get the required number of paths and cycles from the C_6 -decomposition given above for $K_{11} \setminus E(C_7)$. By Theorems 1.1, 1.2, Lemma 2.4 and Remark 1.3, $K_m \setminus E(C_7)$ has a (6; p, q)-decomposition.

Lemma 2.8. There exists a (6; p, q)-decomposition of K_m , where $m \equiv 0, 4 \pmod{12}$ and $p \geq m/2$.

Proof. Since the degree of each vertex $v \in V(K_m)$ is odd, then $p \ge m/2$. We prove the required decomposition in two Cases.

Case 1. $m \equiv 0 \pmod{12}$. Let m = 12k and

 $\{ x_3 x_9 x_4 x_8 x_5 x_7 x_6, x_1 x_{12} x_2 x_{11} x_3 x_{10} x_4, x_2 x_4 x_6 x_8 x_{10} x_1 x_5, x_7 x_9 x_{12} x_3 x_6 x_2 x_{10}, x_9 x_{11} x_1 x_3 x_5 x_{10} x_{12}, x_{11} x_4 x_7 x_{10} x_6 x_{12} x_8, \{ (x_1 \mathbf{x_8 x_3 x_7 x_2 x_9 x_1}), (x_1 x_7 x_{11} x_5 x_{12} \mathbf{x_4 x_1}) \}, \{ (\mathbf{x_2 x_5 x_9 x_6 x_{11} x_8 x_2}), (\mathbf{x_2 x_3} x_4 x_5 x_6 x_1 x_2) \}, (x_7 x_8 x_9 x_{10} x_{11} x_{12} x_7) \},$

be a $\{6P_7, 5C_6\}$ -decomposition of K_{12} . For p = 7, we decompose the last cycle and first path into $2P_7$ as follows:

 $\{x_3x_9x_4x_8x_5x_7x_{12}, x_6x_7x_8x_9x_{10}x_{11}x_{12}\}.$

Now, using Construction 1.4 we get the required number of paths and cycles from the C_6 's given above for $p \ge 8$. When k > 1, $K_{12k} = K_{12(k-1)} \oplus K_{12} \oplus K_{12(k-1),12}$. Applying this relation recursively to $K_{12(k-1)}$ and using Theorem 1.2, we can prove that K_{12k} has a (6; p, q)-decomposition.

Case 2. $m \equiv 4 \pmod{12}$. Let m = 12k + 4 and

 $\{ x_1 x_5 x_7 x_4 x_6 x_8 x_2, x_3 x_6 x_7 x_2 x_5 x_8 x_4, x_5 x_3 x_7 x_8 x_1 x_2 x_6, x_7 x_1 x_6 x_5 x_4 x_3 x_8, x_{14} x_{13} x_{15} x_{12} x_9 x_{11} x_{10}, x_{16} x_9 x_{15} x_{10} x_{13} x_{11} x_{12}, x_{13} x_{16} x_{15} x_{11} x_{14} x_{10} x_9, x_{15} x_{14} x_9 x_{13} x_{12} x_{16} x_{11} \},$

$$\{ (x_3 \mathbf{x_9 x_5 x_{11} x_2 x_{10} x_3}), (\mathbf{x_3 x_{12}} x_5 x_{10} x_4 x_{11} x_3) \}, \\ \{ (x_9 \mathbf{x_2 x_{12} x_1 x_{15} x_8 \mathbf{x_9}}), (\mathbf{x_9 x_4} x_{16} x_6 x_{13} x_7 x_9) \}, \\ \{ (x_{13} \mathbf{x_3 x_{15} x_5 x_{16} x_2 x_{13}}), (\mathbf{x_{13} x_4} x_{15} x_7 x_{11} x_{13}) \}, \\ \{ (x_8 \mathbf{x_{12} x_7 x_{14} x_5 x_{13} \mathbf{x_8}}), (\mathbf{x_8 x_{11}} x_6 x_9 x_1 x_{10} x_8) \}, \\ \{ (x_{14} \mathbf{x_6 x_{10} x_7 x_{16} x_8 \mathbf{x_{14}}}), (\mathbf{x_{14} x_2} x_{15} x_6 x_{12} x_4 x_{14}) \}, \\ \{ (x_{1} x_3 x_{14} x_{12} \mathbf{x_{10} x_{16} x_1}), (\mathbf{x_{1} x_{14} x_{16} \mathbf{x_3} \mathbf{x_2} x_{4} x_{1}) \} \}$$

be a $\{8P_7, 12C_6\}$ -decomposition of K_{16} .

For p = 9, we decompose the last cycle and last path into $2P_7$ as follows:

 $\{x_{15}x_{14}x_{9}x_{13}x_{12}x_{16}x_{3}, x_{3}x_{2}x_{4}x_{1}x_{14}x_{16}x_{11}\}.$

Now, using Construction 1.4 we get the required number of paths and cycles from the C_6 's given above for $p \ge 10$. When k > 1, $K_{12k+4} = K_{12(k-1)} \oplus K_{16} \oplus K_{12(k-1),16}$. By Lemma 2.4 and by applying Case 1, K_{12k+4} has a (6; p, q)-decomposition.

3. (6; p, q)-decomposition of $K_m \Box K_n$

In this section we investigate the existence of (6; p, q)-decomposition of Cartesian product of complete graphs. Throughout this paper, we denote $V(K_m \Box K_n) = \{x_{i,j} : 1 \le i \le m, 1 \le j \le n\}$.

Lemma 3.1. There exists a (6; p, q)-decomposition of $K_3 \square K_3$, $p \neq 1$.

Proof. First we decompose $K_3 \square K_3$ into C_6 's as follows:

 $\{(x_{1,1}\mathbf{x_{1,2}}\mathbf{x_{3,2}}\mathbf{x_{3,3}}\mathbf{x_{2,3}}\mathbf{x_{1,3}}\mathbf{x_{1,1}}), (\mathbf{x_{1,1}}\mathbf{x_{2,1}}x_{2,3}x_{2,2}x_{3,2}x_{3,1}x_{1,1}), (x_{1,2}x_{1,3}x_{3,3}x_{3,1}x_{2,1}x_{2,2}x_{1,2})\}.$

The bold edges (resp., ordinary edges) gives $2P_7$ from first two cycles. Also, we can decompose the given graph into $3P_7$ as follows:

 $\{x_{1,2}x_{1,3}x_{3,3}x_{3,2}x_{3,1}x_{1,1}x_{2,1}, x_{2,1}x_{2,2}x_{1,2}x_{1,1}x_{1,3}x_{2,3}x_{3,3}, x_{3,3}x_{3,1}x_{2,1}x_{2,3}x_{2,2}x_{3,2}x_{1,2}\}.$

Hence $K_3 \Box K_3$ has a (6; p, q)-decomposition.

Lemma 3.2. There exists a (6; p, q)-decomposition of $K_3 \Box K_7$, $p \neq 1$.

Proof. First we decompose $K_3 \square K_7$ into C_6 's as follows:

```
 \{ (x_{1,6}\mathbf{x_{2,6}}\mathbf{x_{3,6}}\mathbf{x_{3,5}}\mathbf{x_{1,5}}\mathbf{x_{1,2}}\mathbf{x_{1,6}}), (x_{1,6}x_{3,6}x_{3,4}x_{2,4}x_{1,4}\mathbf{x_{1,3}}\mathbf{x_{1,6}}) \}, \\ \{ (x_{1,7}\mathbf{x_{3,7}}\mathbf{x_{3,3}}\mathbf{x_{3,5}}\mathbf{x_{2,5}}\mathbf{x_{1,5}}\mathbf{x_{1,7}}), (\mathbf{x_{1,7}}\mathbf{x_{2,7}}x_{3,7}x_{3,1}x_{3,4}x_{1,4}x_{1,7}) \}, \\ \{ (\mathbf{x_{1,7}}\mathbf{x_{1,1}}\mathbf{x_{1,4}}\mathbf{x_{1,6}}\mathbf{x_{1,5}}\mathbf{x_{1,3}}x_{1,7}), (x_{1,7}x_{1,6}x_{1,1}x_{1,5}x_{1,4}\mathbf{x_{1,2}}\mathbf{x_{1,7}}) \}, \\ \{ (\mathbf{x_{2,7}}\mathbf{x_{2,6}}\mathbf{x_{2,1}}\mathbf{x_{2,4}}\mathbf{x_{2,5}}\mathbf{x_{2,3}}x_{2,7}), (\mathbf{x_{2,7}}\mathbf{x_{2,2}}x_{2,4}x_{2,6}x_{2,5}x_{2,1}x_{2,7}) \}, \\ \{ (x_{3,7}\mathbf{x_{3,2}}\mathbf{x_{3,6}}\mathbf{x_{3,3}}\mathbf{x_{3,4}}\mathbf{x_{3,5}}\mathbf{x_{3,7}}), (\mathbf{x_{3,7}}\mathbf{x_{3,6}}x_{3,1}x_{3,5}x_{3,2}x_{3,4}x_{3,7}) \}, \\ \{ (x_{1,3}\mathbf{x_{3,3}}\mathbf{x_{3,1}}\mathbf{x_{2,1}}\mathbf{x_{2,2}}\mathbf{x_{1,2}}\mathbf{x_{1,3}}), (\mathbf{x_{1,3}}\mathbf{x_{2,3}}x_{3,3}x_{3,2}x_{1,2}x_{1,1}x_{1,3}) \}, \\ \{ (x_{2,2}\mathbf{x_{2,6}}\mathbf{x_{2,3}}\mathbf{x_{2,4}}\mathbf{x_{2,7}}\mathbf{x_{2,5}}\mathbf{x_{2,2}}), (\mathbf{x_{2,2}}\mathbf{x_{3,2}}x_{3,1}x_{1,1}x_{2,1}x_{2,3}x_{2,2}) \}. \end{cases}
```

The first $3C_6$ can be decomposed into $3P_7$ as follows:

 $\{x_{1,3}x_{1,6}x_{3,6}x_{3,5}x_{2,5}x_{1,5}x_{1,7}, x_{1,7}x_{3,7}x_{3,3}x_{3,5}x_{1,5}x_{1,2}x_{1,6}, x_{1,6}x_{2,6}x_{3,6}x_{3,4}x_{2,4}x_{1,4}x_{1,3}\}.$

Now, using Construction 1.4 we get the required number of paths and cycles from the C_6 -decomposition given above.

Lemma 3.3. There exists a (6; p, q)-decomposition of $K_3 \Box K_8$, $p \ge 12$.

Proof. Since the degree of each vertex $v \in V(K_3 \square K_8)$ is odd, then $p \ge \frac{24}{2} = 12$. For p = 12, the required number of P_7 's and C_6 's are constructed as follows:

 $\begin{array}{l} x_{1,1}x_{1,4}x_{2,4}x_{3,4}x_{3,8}x_{3,7}x_{3,5}, \ x_{1,2}x_{1,1}x_{1,5}x_{1,8}x_{1,3}x_{3,3}x_{2,3}, \\ x_{1,3}x_{2,3}x_{2,4}x_{2,6}x_{2,7}x_{2,1}x_{2,5}, \ x_{1,4}x_{1,3}x_{1,6}x_{1,5}x_{1,7}x_{3,7}x_{2,7}, \\ x_{1,5}x_{1,3}x_{1,1}x_{1,7}x_{1,8}x_{3,8}x_{2,8}, \ x_{1,6}x_{1,7}x_{1,2}x_{1,4}x_{3,4}x_{3,1}x_{3,8}, \\ x_{1,7}x_{2,7}x_{2,5}x_{2,3}x_{2,2}x_{2,8}x_{1,8}, \ x_{2,1}x_{1,1}x_{3,1}x_{3,3}x_{3,4}x_{3,2}x_{3,7}, \\ x_{2,2}x_{1,2}x_{3,2}x_{3,1}x_{3,6}x_{3,5}x_{3,3}, \ x_{2,4}x_{2,1}x_{2,2}x_{2,7}x_{2,8}x_{2,6}x_{3,6}, \end{array}$

```
 \begin{array}{l} x_{2,6}x_{2,3}x_{2,8}x_{2,5}x_{1,5}x_{3,5}x_{3,4}, \ x_{3,1}x_{2,1}x_{2,3}x_{2,7}x_{2,4}x_{2,2}x_{3,2}, \\ \{(\mathbf{x_{1,2}x_{1,5}}x_{1,4}x_{1,8}x_{1,1}x_{1,6}x_{1,2}), \ (x_{1,2}\mathbf{x_{1,3}x_{1,7}}\mathbf{x_{1,4}x_{1,6}}\mathbf{x_{1,8}x_{1,2}})\}, \\ \{(x_{2,6}\mathbf{x_{1,6}x_{3,6}}\mathbf{x_{3,2}}\mathbf{x_{3,5}}\mathbf{x_{2,5}}\mathbf{x_{2,6}}), \ (\mathbf{x_{2,6}x_{2,2}}x_{2,5}x_{2,4}x_{2,8}x_{2,1}x_{2,6})\}, \\ \{(x_{3,3}\mathbf{x_{3,6}}\mathbf{x_{3,7}}\mathbf{x_{3,1}}\mathbf{x_{3,5}}\mathbf{x_{3,8}}\mathbf{x_{3,3}}), \ (x_{3,3}x_{3,7}x_{3,4}x_{3,6}x_{3,8}\mathbf{x_{3,2}}\mathbf{x_{3,3}})\}. \end{array}
```

For p = 13, we decompose the last path and the first cycle into $2P_7$ as follows:

```
\{x_{2,6}x_{2,3}x_{2,8}x_{2,5}x_{1,5}x_{1,4}x_{1,8}, x_{1,8}x_{1,1}x_{1,6}x_{1,2}x_{1,5}x_{3,5}x_{3,4}\}.
```

Now, using Construction 1.4 we get the required number of paths and cycles from the C_6 's given above for $p \ge 14$.

Lemma 3.4. There exists a (6; p, q)-decomposition of $K_3 \Box K_{11}$, $p \neq 1$.

Proof. First we decompose $K_3 \Box K_{11}$ into C_6 's as follows:

```
{(x_{1,2}\mathbf{x_{1,1}}\mathbf{x_{1,8}}\mathbf{x_{1,3}}\mathbf{x_{1,9}}\mathbf{x_{1,10}}\mathbf{x_{1,2}}), (\mathbf{x_{1,2}}\mathbf{x_{1,4}}x_{1,6}x_{1,1}x_{1,7}x_{1,9}x_{1,2})},
 {(x_{1,7}\mathbf{x_{1,11}}\mathbf{x_{1,5}}\mathbf{x_{1,3}}\mathbf{x_{1,10}}\mathbf{x_{1,6}}\mathbf{x_{1,7}}), (x_{1,7}x_{1,10}x_{1,11}x_{1,3}x_{1,2}\mathbf{x_{1,8}}\mathbf{x_{1,7}})},
 \left\{ (x_{1,11}\mathbf{x_{1,8}x_{1,9}x_{1,5}x_{1,10}x_{1,4}x_{1,11}}), \ (x_{1,11}x_{1,9}x_{1,4}x_{1,8}x_{1,5}\mathbf{x_{1,6}x_{1,11}}) \right\},
 \{(x_{2,1}\mathbf{x_{2,11}}\mathbf{x_{2,8}}\mathbf{x_{2,10}}\mathbf{x_{2,4}}\mathbf{x_{2,7}}\mathbf{x_{2,1}}), (\mathbf{x_{2,1}}\mathbf{x_{2,2}}x_{2,4}x_{2,5}x_{2,6}x_{2,9}x_{2,1})\},\
 \{(x_{2,6}\mathbf{x_{2,3}}\mathbf{x_{2,5}}\mathbf{x_{2,9}}\mathbf{x_{2,7}}\mathbf{x_{2,2}}\mathbf{x_{2,6}}), (\mathbf{x_{2,6}}\mathbf{x_{2,10}}x_{2,9}x_{2,2}x_{2,5}x_{2,1}x_{2,6})\},\
 {(x_{2,11}\mathbf{x_{2,6}x_{2,8}x_{2,3}x_{2,10}x_{2,5}x_{2,11}), (\mathbf{x}_{2,11}\mathbf{x}_{2,2}x_{2,10}x_{2,7}x_{2,3}x_{2,4}x_{2,11})},
 \left\{ (x_{3,1}\mathbf{x_{3,11}}\mathbf{x_{3,8}}\mathbf{x_{3,7}}\mathbf{x_{3,9}}\mathbf{x_{3,4}}\mathbf{x_{3,1}}), \ (\mathbf{x_{3,1}}\mathbf{x_{3,3}}x_{3,10}x_{3,11}x_{3,6}x_{3,9}x_{3,1}) \right\},\
 \{(x_{3,2}\mathbf{x_{3,3}x_{3,6}x_{3,5}x_{3,9}x_{3,10}x_{3,2}), (x_{3,2}x_{3,8}x_{3,5}x_{3,10}x_{3,6}x_{3,4}x_{3,2})\},\
 \{(x_{3,1}\mathbf{x_{3,2}}\mathbf{x_{3,11}}\mathbf{x_{3,3}}\mathbf{x_{3,8}}\mathbf{x_{3,6}}\mathbf{x_{3,1}}), (x_{3,1}x_{3,8}x_{3,4}x_{3,11}x_{3,7}\mathbf{x_{3,5}}\mathbf{x_{3,1}})\},\
 \{(x_{1,1}\mathbf{x_{1,3}}\mathbf{x_{1,4}}\mathbf{x_{2,4}}\mathbf{x_{2,1}}\mathbf{x_{3,1}}\mathbf{x_{1,1}}), (\mathbf{x_{1,1}}\mathbf{x_{1,5}}x_{3,5}x_{3,3}x_{2,3}x_{2,1}x_{1,1})\},\
 {(x_{2.11}\mathbf{x_{3.11}}\mathbf{x_{3.9}}\mathbf{x_{1.9}}\mathbf{x_{2.9}}\mathbf{x_{2.3}}\mathbf{x_{2.11}}), (\mathbf{x_{2.11}}\mathbf{x_{1.11}}x_{1.1}x_{1.10}x_{3.10}x_{2.10}x_{2.11})},
 {(x_{1,5}\mathbf{x_{1,7}}\mathbf{x_{2,7}}\mathbf{x_{3,7}}\mathbf{x_{3,4}}\mathbf{x_{1,4}}\mathbf{x_{1,5}}), (\mathbf{x_{1,5}}\mathbf{x_{2,5}}\mathbf{x_{3,5}}x_{3,11}x_{1,11}x_{1,2}x_{1,5})},
 \{(x_{1,3}\mathbf{x_{1,6}}\mathbf{x_{2,6}}\mathbf{x_{2,4}}\mathbf{x_{3,4}}\mathbf{x_{3,3}}\mathbf{x_{1,3}}), (\mathbf{x_{1,3}}\mathbf{x_{1,7}}x_{3,7}x_{3,2}x_{2,2}x_{2,3}x_{1,3})\},\
 {(x_{2,8}\mathbf{x_{3,8}x_{1,8}x_{1,10}x_{2,10}x_{2,1}x_{2,8}), (x_{2,8}x_{2,4}x_{2,9}x_{2,11}x_{2,7}x_{2,5}x_{2,8})},
 \{(x_{3,10}\mathbf{x_{3,4}x_{3,5}x_{3,2}x_{3,6}x_{3,7}x_{3,10}}), (x_{3,10}x_{3,8}x_{3,9}x_{3,3}x_{3,7}x_{3,1}x_{3,10})\},\
 \{(x_{2,8}\mathbf{x_{1.8}x_{1.6}x_{3.6}x_{2.6}x_{2.7}x_{2.8}), (\mathbf{x_{2.8}x_{2.9}}x_{3.9}x_{3.2}x_{1.2}x_{2.2}x_{2.8})\},\
(x_{1,1}x_{1,9}x_{1,6}x_{1,2}x_{1,7}x_{1,4}x_{1,1}).
```

The last $3C_6$ can be decomposed into $3P_7$ as follows:

 $\{x_{1,1}x_{1,9}x_{1,6}x_{1,8}x_{2,8}x_{2,9}x_{3,9}, x_{1,1}x_{1,4}x_{1,7}x_{1,2}x_{1,6}x_{3,6}x_{2,6}, x_{2,6}x_{2,7}x_{2,8}x_{2,2}x_{1,2}x_{3,2}x_{3,9}\}.$

Now, using Construction 1.4 we get the required number of paths and cycles from the C_6 -decomposition given above.

Lemma 3.5. There exists a (6; p, q)-decomposition of $K_3 \Box K_{16}$, $p \ge 24$.

Proof. Since the degree of each vertex $v \in V(K_3 \square K_{16})$ is odd, $p \ge \frac{48}{2} = 24$. For p = 24, the required number of C_6 's and P_7 's are constructed as follows:

{ $(x_{1,1}\mathbf{x_{1,14}}\mathbf{x_{1,3}}\mathbf{x_{1,7}}\mathbf{x_{1,4}}\mathbf{x_{1,8}}\mathbf{x_{1,1}}), (\mathbf{x_{1,1}}\mathbf{x_{1,16}}x_{1,3}x_{1,2}x_{1,8}x_{1,6}x_{1,1})$ }, { $(x_{1,3}\mathbf{x_{1,9}x_{1,5}x_{1,11}x_{1,2}x_{1,10}x_{1,3}), (x_{1,3}\mathbf{x_{1,12}}x_{1,5}x_{1,10}x_{1,4}x_{1,11}x_{1,3})$ }, { $(x_{1,9}\mathbf{x_{1,2}x_{1,12}x_{1,1}x_{1,15}x_{1,8}x_{1,9}), (x_{1,9}\mathbf{x_{1,4}}x_{1,16}x_{1,6}x_{1,13}x_{1,7}x_{1,9})$ }, { $(x_{1,8}\mathbf{x_{1,12}}\mathbf{x_{1,7}}\mathbf{x_{1,14}}\mathbf{x_{1,5}}\mathbf{x_{1,13}}\mathbf{x_{1,8}}), (\mathbf{x_{1,8}}\mathbf{x_{1,11}}x_{1,6}x_{1,9}x_{1,1}x_{1,10}x_{1,8})$ }, $\{(x_{1,13}\mathbf{x_{1,3}}\mathbf{x_{1,15}}\mathbf{x_{1,5}}\mathbf{x_{1,16}}\mathbf{x_{1,2}}\mathbf{x_{1,13}}), (\mathbf{x_{1,13}}\mathbf{x_{1,4}}x_{1,15}x_{1,7}x_{1,11}x_{1,1}x_{1,13})\},\$ $\left\{ (x_{1,14}\mathbf{x_{1,6}x_{1,10}}\mathbf{x_{1,7}}\mathbf{x_{1,16}}\mathbf{x_{1,8}}\mathbf{x_{1,14}}), \ (\mathbf{x_{1,14}}\mathbf{x_{1,2}}x_{1,15}x_{1,6}x_{1,12}x_{1,4}x_{1,14}) \right\},$ $\{(x_{2,7}\mathbf{x_{2,9}}\mathbf{x_{2,3}}\mathbf{x_{2,11}}\mathbf{x_{2,2}}\mathbf{x_{2,10}}\mathbf{x_{2,7}}), (\mathbf{x_{2,7}}\mathbf{x_{2,12}}x_{2,3}x_{2,10}x_{2,5}x_{2,11}x_{2,7})\},\$ $\{(x_{2,9}\mathbf{x_{2,2}}\mathbf{x_{2,12}}\mathbf{x_{2,4}}\mathbf{x_{2,15}}\mathbf{x_{2,8}}\mathbf{x_{2,9}}), (\mathbf{x_{2,9}}\mathbf{x_{2,5}}x_{2,16}x_{2,6}x_{2,13}x_{2,1}x_{2,9})\},\$ $\{(x_{2,8}\mathbf{x_{2,12}}\mathbf{x_{2,1}}\mathbf{x_{2,14}}\mathbf{x_{2,3}}\mathbf{x_{2,13}}\mathbf{x_{2,8}}), (\mathbf{x_{2,8}}\mathbf{x_{2,11}}x_{2,6}x_{2,9}x_{2,4}x_{2,10}x_{2,8})\},\$ $\{(x_{2,13}\mathbf{x_{2,7}}\mathbf{x_{2,15}}\mathbf{x_{2,3}}\mathbf{x_{2,16}}\mathbf{x_{2,2}}\mathbf{x_{2,13}}), (\mathbf{x_{2,13}}\mathbf{x_{2,5}}x_{2,15}x_{2,1}x_{2,11}x_{2,4}x_{2,13})\},\$ $\{(x_{2,14}\mathbf{x_{2,6}x_{2,10}x_{2,1}x_{2,16}x_{2,8}x_{2,14}), (\mathbf{x_{2,14}x_{2,2}}x_{2,15}x_{2,6}x_{2,12}x_{2,5}x_{2,14})\},\$ $\{(x_{2,4}\mathbf{x_{2,14}}\mathbf{x_{2,7}}\mathbf{x_{2,6}}\mathbf{x_{2,3}}\mathbf{x_{2,8}}\mathbf{x_{2,4}}), (\mathbf{x_{2,4}}\mathbf{x_{2,16}}x_{2,7}x_{2,1}x_{2,8}x_{2,5}x_{2,4})\},\$ $\{(x_{3,1}\mathbf{x_{3,9}}\mathbf{x_{3,3}}\mathbf{x_{3,11}}\mathbf{x_{3,5}}\mathbf{x_{3,10}}\mathbf{x_{3,1}}), (\mathbf{x_{3,1}}\mathbf{x_{3,12}}x_{3,3}x_{3,10}x_{3,4}x_{3,11}x_{3,1})\},\$ $\{(x_{3,9}\mathbf{x_{3,5}}\mathbf{x_{3,12}}\mathbf{x_{3,2}}\mathbf{x_{3,15}}\mathbf{x_{3,8}}\mathbf{x_{3,9}}), (\mathbf{x_{3,9}}\mathbf{x_{3,4}}x_{3,16}x_{3,6}x_{3,13}x_{3,7}x_{3,9})\},\$ $\{(x_{3,8}\mathbf{x_{3,12}}\mathbf{x_{3,7}}\mathbf{x_{3,14}}\mathbf{x_{3,3}}\mathbf{x_{3,13}}\mathbf{x_{3,8}}), (\mathbf{x_{3,8}}\mathbf{x_{3,11}}x_{3,6}x_{3,9}x_{3,2}x_{3,10}x_{3,8})\},\$ $\{(x_{3,13}\mathbf{x_{3,1}}\mathbf{x_{3,15}}\mathbf{x_{3,3}}\mathbf{x_{3,16}}\mathbf{x_{3,5}}\mathbf{x_{3,13}}), (\mathbf{x_{3,13}}\mathbf{x_{3,4}}x_{3,15}x_{3,7}x_{3,11}x_{3,2}x_{3,13})\},\$ { $(x_{3,14}x_{3,6}x_{3,10}x_{3,7}x_{3,16}x_{3,8}x_{3,14}), (x_{3,14}x_{3,5}x_{3,15}x_{3,6}x_{3,12}x_{3,4}x_{3,14}\},$ $\left\{ (x_{3,2}\mathbf{x_{3,14}}\mathbf{x_{3,1}}\mathbf{x_{3,5}}\mathbf{x_{3,8}}\mathbf{x_{3,3}}\mathbf{x_{3,2}}), \ (\mathbf{x_{3,2}}\mathbf{x_{3,16}}x_{3,1}x_{3,7}x_{3,6}x_{3,8}x_{3,2}) \right\},\$ { $(x_{1,10}\mathbf{x_{1,11}}\mathbf{x_{1,15}}\mathbf{x_{1,12}}\mathbf{x_{1,14}}\mathbf{x_{1,16}}\mathbf{x_{1,10}}), (\mathbf{x_{1,10}}\mathbf{x_{1,13}}x_{1,12}x_{1,16}x_{1,9}x_{1,14}x_{1,10})$ }, $\left\{ (x_{2,14}\mathbf{x_{1,14}}\mathbf{x_{3,14}}\mathbf{x_{3,10}}\mathbf{x_{3,13}}\mathbf{x_{2,13}}\mathbf{x_{2,14}}), \ (\mathbf{x_{2,14}}\mathbf{x_{2,10}}x_{2,13}x_{2,12}x_{2,16}x_{2,9}x_{2,14}) \right\},$ $\{(x_{3,11}\mathbf{x_{3,14}}\mathbf{x_{3,15}}\mathbf{x_{3,9}}\mathbf{x_{3,13}}\mathbf{x_{3,16}}\mathbf{x_{3,11}}), (x_{3,11}x_{3,15}x_{3,12}x_{3,14}x_{3,16}\mathbf{x_{3,10}}\mathbf{x_{3,11}})\},\$ $\{(x_{1,4}x_{1,5}x_{2,5}x_{2,2}x_{2,6}x_{1,6}x_{1,4}), (x_{3,2}x_{3,5}x_{3,7}x_{3,8}x_{3,4}x_{3,6}x_{3,2})\},\$

 $x_{1,2}x_{1,6}x_{3,6}x_{3,3}x_{3,7}x_{3,4}x_{2,4}, x_{1,1}x_{1,2}x_{1,5}x_{1,8}x_{1,3}x_{3,3}x_{2,3}, x_{2,5}x_{2,1}x_{2,2}x_{2,7}x_{2,8}x_{2,6}x_{3,6}, x_{2,6}x_{2,1}x_{2,4}x_{1,4}x_{1,1}x_{1,5}x_{3,5}, \\ x_{2,1}x_{1,1}x_{3,1}x_{3,3}x_{3,4}x_{3,2}x_{3,7}, x_{1,4}x_{1,3}x_{1,6}x_{1,5}x_{1,7}x_{3,7}x_{2,7}, x_{1,5}x_{1,3}x_{1,1}x_{1,7}x_{1,8}x_{3,8}x_{2,8}, x_{2,2}x_{1,2}x_{3,2}x_{3,1}x_{3,6}x_{3,5}x_{3,3}, \\ x_{3,1}x_{2,1}x_{2,3}x_{2,7}x_{2,4}x_{2,2}x_{3,2}, x_{1,7}x_{2,7}x_{2,5}x_{2,3}x_{2,2}x_{2,8}x_{1,8}, x_{1,6}x_{1,7}x_{1,2}x_{1,4}x_{3,4}x_{3,1}x_{3,8}, x_{1,3}x_{2,3}x_{2,4}x_{2,6}x_{2,5}x_{3,5}x_{3,4}, \\ x_{1,9}x_{1,12}x_{2,12}x_{3,12}x_{3,16}x_{3,15}x_{3,13}, x_{1,10}x_{1,9}x_{1,13}x_{1,16}x_{1,11}x_{3,11}x_{2,11}, x_{1,11}x_{2,11}x_{2,12}x_{2,14}x_{2,15}x_{2,9}x_{2,13}, \\ x_{1,12}x_{1,11}x_{1,14}x_{1,13}x_{1,15}x_{3,15}x_{2,15}, x_{1,13}x_{1,11}x_{1,9}x_{1,15}x_{1,16}x_{3,16}x_{2,16}, x_{1,14}x_{1,15}x_{1,10}x_{1,12}x_{3,12}x_{3,9}x_{3,16}, \\ x_{1,15}x_{2,15}x_{2,13}x_{2,11}x_{2,10}x_{2,16}x_{1,16}, x_{2,9}x_{1,9}x_{3,9}x_{3,11}x_{3,12}x_{3,10}x_{3,15}, x_{2,10}x_{1,10}x_{3,10}x_{3,9}x_{3,14}x_{3,13}x_{3,11}, \\ x_{2,12}x_{2,9}x_{2,10}x_{2,15}x_{2,16}x_{2,14}x_{3,14}, x_{2,14}x_{2,11}x_{2,16}x_{2,13}x_{1,13}x_{3,13}x_{3,12}, x_{3,9}x_{2,9}x_{2,11}x_{2,15}x_{2,12}x_{2,10}x_{3,10}.$

For p = 25, we decompose the last cycle and first path into $2P_7$ as follows:

 $x_{1,2}x_{1,6}x_{3,6}x_{3,3}x_{3,7}x_{3,4}x_{3,8}, x_{2,4}x_{3,4}x_{3,6}x_{3,2}x_{3,5}x_{3,7}x_{3,8}.$

For p = 26, we can decompose

 $\{(x_{1,4}x_{1,5}x_{2,5}x_{2,2}x_{2,6}x_{1,6}x_{1,4}), x_{1,1}x_{1,2}x_{1,5}x_{1,8}x_{1,3}x_{3,3}x_{2,3}\},\$

into $2P_7$ in p = 25 as follows:

 $x_{1,1}x_{1,2}x_{1,5}x_{2,5}x_{2,2}x_{2,6}x_{1,6}, x_{1,6}x_{1,4}x_{1,5}x_{1,8}x_{1,3}x_{3,3}x_{2,3}.$

Now, using Construction 1.4 we get the required number of paths and cycles from paired C_6 's given above for $p \ge 27$. So, we have the desired decomposition for $K_3 \square K_{16}$. \square

Lemma 3.6. There exists a (6; p, q)-decomposition of $K_6 \square K_2$, $p \neq 1$.

Proof. First we decompose $K_6 \square K_2$ into C_6 's as follows:

```
 \{ (x_{1,2}\mathbf{x_{5,2}}\mathbf{x_{4,2}}\mathbf{x_{3,2}}\mathbf{x_{2,2}}\mathbf{x_{6,2}}\mathbf{x_{1,2}}), \ (\mathbf{x_{2,1}}\mathbf{x_{4,1}}x_{4,2}x_{6,2}x_{6,1}x_{5,1}x_{2,1}) \}, \\ \{ (x_{3,2}\mathbf{x_{6,2}}\mathbf{x_{5,2}}\mathbf{x_{2,2}}\mathbf{x_{4,2}}\mathbf{x_{1,2}}\mathbf{x_{3,2}}), \ (\mathbf{x_{3,2}}\mathbf{x_{3,1}}x_{6,1}x_{1,1}x_{5,1}x_{5,2}x_{3,2}) \}, \\ \{ (x_{1,1}\mathbf{x_{2,1}}\mathbf{x_{6,1}}\mathbf{x_{4,1}}\mathbf{x_{5,1}}\mathbf{x_{3,1}}\mathbf{x_{1,1}}), \ (\mathbf{x_{1,1}}\mathbf{x_{1,2}}x_{2,2}x_{2,1}x_{3,1}x_{4,1}x_{1,1}) \}.
```

The last $3C_6$ can be decomposed into $3P_7$ as follows:

```
\{x_{2,1}x_{3,1}x_{5,1}x_{4,1}x_{1,1}x_{1,2}x_{2,2}, x_{2,2}x_{2,1}x_{1,1}x_{6,1}x_{3,1}x_{3,2}x_{5,2}, x_{2,1}x_{6,1}x_{4,1}x_{3,1}x_{1,1}x_{5,1}x_{5,2}\}.
```

Now, using Construction 1.4 we get the required number of paths and cycles from the C_6 -decomposition given above.

Lemma 3.7. There exists a (6; p, q)-decomposition of $K_6 \Box K_4$, $p \neq 1$.

Proof. First we decompose $K_6 \square K_4$ into C_6 's as follows:

```
 \{ (x_{3,3}\mathbf{x_{1,3}}\mathbf{x_{2,3}}\mathbf{x_{2,4}}\mathbf{x_{3,4}}\mathbf{x_{3,2}}\mathbf{x_{3,3}}), \ (\mathbf{x_{3,3}}\mathbf{x_{4,3}}x_{4,4}x_{6,4}x_{6,3}x_{5,3}x_{3,3}) \}, \\ \{ (x_{1,3}\mathbf{x_{1,1}}\mathbf{x_{1,2}}\mathbf{x_{2,2}}\mathbf{x_{2,4}}\mathbf{x_{1,4}}\mathbf{x_{1,3}}), \ (\mathbf{x_{1,3}}\mathbf{x_{6,3}}x_{3,3}x_{3,4}x_{5,4}x_{5,3}x_{1,3}) \}, \\ \{ (x_{4,2}\mathbf{x_{3,2}}\mathbf{x_{5,2}}\mathbf{x_{6,2}}\mathbf{x_{6,3}}\mathbf{x_{4,3}}\mathbf{x_{4,2}}), \ (\mathbf{x_{4,2}}\mathbf{x_{4,1}}x_{3,1}x_{6,1}x_{6,4}x_{6,2}x_{4,2}) \}, \\ \{ (x_{1,2}\mathbf{x_{3,2}}\mathbf{x_{2,2}}\mathbf{x_{2,1}}\mathbf{x_{1,1}}\mathbf{x_{1,4}}\mathbf{x_{1,2}}), \ (\mathbf{x_{1,2}}\mathbf{x_{1,3}}x_{4,3}x_{2,3}x_{2,2}x_{4,2}x_{1,2}) \}, \\ \{ (x_{6,1}\mathbf{x_{6,3}}\mathbf{x_{2,3}}\mathbf{x_{5,3}}\mathbf{x_{4,3}}\mathbf{x_{4,1}}\mathbf{x_{6,1}}), \ (\mathbf{x_{6,1}}\mathbf{x_{1,1}}x_{5,1}x_{5,4}x_{2,4}x_{2,1}x_{6,1}) \}, \\ \{ (x_{3,1}\mathbf{x_{1,1}}\mathbf{x_{4,1}}\mathbf{x_{2,1}}\mathbf{x_{2,3}}\mathbf{x_{3,3}}\mathbf{x_{3,1}}), \ (\mathbf{x_{3,1}}\mathbf{x_{5,1}}x_{5,2}x_{1,2}x_{6,2}x_{3,2}x_{3,1}) \}, \\ \{ (x_{1,4}\mathbf{x_{6,4}}\mathbf{x_{5,4}}\mathbf{x_{5,2}}\mathbf{x_{4,2}}\mathbf{x_{4,4}}\mathbf{x_{1,4}}), \ (x_{1,4}x_{5,4}x_{4,4}x_{2,4}x_{6,4}\mathbf{x_{3,4}}\mathbf{x_{1,4}}) \}, \\ \{ (x_{5,1}\mathbf{x_{2,1}}\mathbf{x_{3,1}}\mathbf{x_{3,4}}\mathbf{x_{4,4}}\mathbf{x_{4,1}}\mathbf{x_{5,1}}), \ (\mathbf{x_{5,1}}\mathbf{x_{6,1}}x_{6,2}x_{2,2}x_{5,2}x_{5,3}x_{5,1}) \}. \end{cases}
```

The first $3C_6$ can be decomposed into $3P_7$ as follows:

 $\{x_{1,1}x_{1,2}x_{2,2}x_{2,4}x_{1,4}x_{1,3}x_{2,3}, x_{2,3}x_{2,4}x_{3,4}x_{3,2}x_{3,3}x_{4,3}x_{4,4}, x_{6,4}x_{6,3}x_{5,3}x_{3,3}x_{1,3}x_{1,1}\}.$

Now, using Construction 1.4 we get the required number of paths and cycles from the C_6 -decomposition given above.

Lemma 3.8. There exists a (6; p, q)-decomposition of $K_6 \Box K_6$, $p \neq 1$.

Proof. First we decompose $K_6 \square K_6$ into C_6 's as follows:

```
 \{ (x_{1,1}\mathbf{x_{1,2}}\mathbf{x_{2,2}}\mathbf{x_{3,2}}\mathbf{x_{6,2}}\mathbf{x_{6,1}}\mathbf{x_{1,1}}), (\mathbf{x_{1,1}}\mathbf{x_{3,1}}x_{4,1}x_{5,1}x_{6,1}x_{2,1}x_{1,1}) \}, \\ \{ (\mathbf{x_{2,1}}\mathbf{x_{2,2}}x_{4,2}x_{4,3}x_{4,4}x_{4,1}x_{2,1}), (x_{2,1}\mathbf{x_{3,1}}\mathbf{x_{6,1}}\mathbf{x_{4,1}}\mathbf{x_{1,1}}\mathbf{x_{5,1}}\mathbf{x_{2,1}}) \}, \\ \{ (x_{1,2}\mathbf{x_{1,4}}\mathbf{x_{1,1}}\mathbf{x_{1,3}}\mathbf{x_{3,3}}\mathbf{x_{3,2}}\mathbf{x_{1,2}}), (x_{1,2}x_{1,3}x_{4,3}x_{4,1}x_{4,2}\mathbf{x_{6,2}}\mathbf{x_{1,2}}) \}, \\ \{ (x_{1,3}\mathbf{x_{5,3}}\mathbf{x_{5,1}}\mathbf{x_{5,2}}\mathbf{x_{6,2}}\mathbf{x_{6,3}}\mathbf{x_{1,3}}), (\mathbf{x_{1,3}}\mathbf{x_{1,6}}x_{1,4}x_{6,4}x_{6,5}x_{1,5}x_{1,3}) \}, \\ \{ (x_{1,4}\mathbf{x_{1,5}}\mathbf{x_{3,5}}\mathbf{x_{2,5}}\mathbf{x_{5,5}}\mathbf{x_{5,4}}\mathbf{x_{1,4}}), (\mathbf{x_{1,4}}\mathbf{x_{4,4}}x_{5,4}x_{2,4}x_{6,4}x_{3,4}x_{1,4}) \}, \\ \{ (x_{1,5}\mathbf{x_{5,5}}\mathbf{x_{5,1}}\mathbf{x_{5,6}}\mathbf{x_{5,2}}\mathbf{x_{1,2}}\mathbf{x_{1,5}}), (\mathbf{x_{1,5}}\mathbf{x_{4,5}}x_{4,2}x_{1,2}x_{1,6}x_{1,1}x_{1,5}) \} \\ \{ (x_{1,6}\mathbf{x_{6,6}}\mathbf{x_{3,6}}\mathbf{x_{4,6}}\mathbf{x_{2,6}}\mathbf{x_{5,6}}\mathbf{x_{1,6}}), (x_{1,6}x_{4,6}x_{6,6}x_{2,6}x_{2,5}\mathbf{x_{1,5}}\mathbf{x_{1,6}}) \}, \\ \{ (x_{1,6}\mathbf{x_{6,6}}\mathbf{x_{3,6}}\mathbf{x_{4,6}}\mathbf{x_{2,6}}\mathbf{x_{5,6}}\mathbf{x_{5,6}}), (\mathbf{x_{5,6}}\mathbf{x_{6,6}}x_{6,4}x_{4,4}x_{4,5}x_{5,5}x_{5,3}x_{3,3}) \}, \\ \{ (x_{1,6}\mathbf{x_{4,6}}\mathbf{x_{4,4}}\mathbf{x_{2,4}}\mathbf{x_{2,6}}\mathbf{x_{3,6}}\mathbf{x_{5,6}}), (\mathbf{x_{5,6}}\mathbf{x_{6,6}}x_{6,4}x_{4,4}x_{4,5}x_{5,5}x_{5,5}x_{5,6}) \} \\ \{ (x_{6,3}\mathbf{x_{4,6}}\mathbf{x_{4,4}}\mathbf{x_{2,4}}\mathbf{x_{2,6}}\mathbf{x_{3,6}}\mathbf{x_{5,6}}), (\mathbf{x_{5,6}}\mathbf{x_{6,6}}x_{6,4}x_{4,4}x_{4,5}x_{5,5}x_{5,5}x_{5,6}) \}, \\ \{ (x_{6,3}\mathbf{x_{4,6}}\mathbf{x_{4,5}}\mathbf{x_{4,6}}\mathbf{x_{4,3}}\mathbf{x_{3,4}}), (\mathbf{x_{3,4}}\mathbf{x_{2,4}}x_{2,3}x_{2,6}x_{1,6}x_{3,6}x_{3,4}) \}, \\ \{ (x_{6,3}\mathbf{x_{6,4}}\mathbf{x_{5,4}}\mathbf{x_{5,6}}\mathbf{x_{5,3}}\mathbf{x_{4,3}}\mathbf{x_{3,6}}), (\mathbf{x_{6,3}}\mathbf{x_{3,3}}x_{3,5}x_{6,5}x_{6,1}x_{6,6}x_{6,6}x_{6,6}x_{6,3}) \}, \\ \{ (x_{6,2}\mathbf{x_{6,4}}\mathbf{x_{6,1}}\mathbf{x_{6,3}}\mathbf{x_{6,5}}\mathbf{x_{6,6}}\mathbf{x_{6,2}}), (x_{6,2}x_{6,5}x_{2,5}x_{2,1}x_{2,6}\mathbf{x_{2,2}}\mathbf{x_{2,2}}x_{2,2}) \}, \\ \{ (x_{5,2}\mathbf{x_{5,4}}\mathbf{x_{5,1}}\mathbf{x_{3,1}}\mathbf{x_{3,2}}\mathbf{x_{4,2}}\mathbf{x_{5,2}}), (\mathbf{x_{5,2}}\mathbf{x_{5,3}}x_{2,3}x_{2,1}x_{2,4}x_{2,2}x_{5,2}) \} \}.
```

The first $3C_6$ can be decomposed into $3P_7$ as follows:

$$\{x_{4,4}x_{4,3}x_{4,2}x_{2,2}x_{3,2}x_{6,2}x_{6,1}, x_{4,4}x_{4,1}x_{5,1}x_{6,1}x_{1,1}x_{2,1}x_{2,2}, x_{6,1}x_{2,1}x_{4,1}x_{3,1}x_{1,1}x_{1,2}x_{2,2}\}.$$

Now, using Construction 1.4 we get the required number of paths and cycles from the C_6 -decomposition given above.

Lemma 3.9. There exists a (6; p, q)-decomposition of $K_6 \square K_8$, $p \neq 1$.

Proof. By Lemma 2.2, $K_8 - I$ has a (6; p, q)-decomposition. We decompose $8K_6 \oplus 6I$ into C_6 's as follows:

$$\{ (x_{3,j}x_{2,j}x_{6,j}\mathbf{x}_{4,j}\mathbf{x}_{5,j}\mathbf{x}_{1,j}\mathbf{x}_{3,j}), \ (\mathbf{x}_{3,j}\mathbf{x}_{5,j}\mathbf{x}_{5,j+1}x_{1,j+1}x_{1,j}x_{6,j}x_{3,j}) \}, \\ \{ (x_{3,j+1}x_{2,j+1}\mathbf{x}_{2,j}\mathbf{x}_{1,j}\mathbf{x}_{4,j}\mathbf{x}_{3,j}\mathbf{x}_{3,j+1}), \ (\mathbf{x}_{3,j+1}\mathbf{x}_{4,j+1}x_{5,j+1}x_{6,j+1}x_{2,j+1}x_{1,j+1}x_{3,j+1}) \}, \\ \{ (x_{4,j+1}\mathbf{x}_{1,j+1}\mathbf{x}_{6,j+1}\mathbf{x}_{3,j+1}\mathbf{x}_{5,j+1}\mathbf{x}_{2,j+1}\mathbf{x}_{4,j+1}), \ , \ (\mathbf{x}_{4,j+1}\mathbf{x}_{4,j}x_{2,j}x_{5,j}x_{6,j}x_{6,j+1}x_{4,j+1}) \} \},$$

where $j = 1, 3, \dots, 7$. The first $3C_6$ can be decomposed into $3P_7$ as follows:

 $\{x_{3,j+1}x_{2,j+1}x_{2,j}x_{3,j}x_{6,j}x_{1,j}x_{1,j+1}, x_{6,j}x_{4,j}x_{1,j}x_{3,j}x_{5,j}x_{5,j+1}x_{1,j+1}, x_{6,j}x_{2,j}x_{1,j}x_{5,j}x_{4,j}x_{3,j}x_{3,j+1}\}.$

Now, using Construction 1.4 we get the required number of paths and cycles from the C_6 -decomposition given above.

Lemma 3.10. There exists a (6; p, q)-decomposition of $K_4 \Box K_4$, $p \neq 1$.

Proof. First we decompose $K_4 \Box K_4$ into C_6 's as follows:

```
 \{ (x_{2,1}\mathbf{x_{4,1}}\mathbf{x_{1,1}}\mathbf{x_{1,2}}\mathbf{x_{2,2}}\mathbf{x_{2,3}}\mathbf{x_{2,1}}), \ (\mathbf{x_{2,1}}\mathbf{x_{3,1}}x_{3,4}x_{3,2}x_{2,2}x_{2,4}x_{2,1}) \}, \\ \{ (x_{2,3}\mathbf{x_{1,3}}\mathbf{x_{1,4}}\mathbf{x_{3,4}}\mathbf{x_{4,4}}\mathbf{x_{2,4}}\mathbf{x_{2,3}}), \ (\mathbf{x_{2,3}}\mathbf{x_{3,3}}x_{3,1}x_{3,2}x_{4,2}x_{4,3}x_{2,3}) \}, \\ \{ (x_{1,1}\mathbf{x_{1,3}}\mathbf{x_{3,3}}\mathbf{x_{3,2}}\mathbf{x_{1,2}}\mathbf{x_{1,4}}\mathbf{x_{1,1}}), \ (x_{1,1}x_{1,2}x_{2,2}x_{4,2}x_{4,1}\mathbf{x_{3,1}}\mathbf{x_{1,1}}) \}, \\ \{ (x_{4,4}\mathbf{x_{1,4}}\mathbf{x_{2,4}}\mathbf{x_{3,4}}\mathbf{x_{3,3}}\mathbf{x_{4,3}}\mathbf{x_{4,3}}), \ (\mathbf{x_{4,4}}\mathbf{x_{4,2}}x_{1,2}x_{1,3}x_{4,3}x_{4,1}x_{4,4}) \}.
```

The first $3C_6$ can be decomposed into $3P_7$ as follows:

 $\{x_{1,1}x_{1,2}x_{2,2}x_{2,4}x_{2,1}x_{2,3}x_{1,3}, x_{1,3}x_{1,4}x_{3,4}x_{3,2}x_{2,2}x_{2,3}x_{2,4}, x_{1,1}x_{4,1}x_{2,1}x_{3,1}x_{3,4}x_{4,4}x_{2,4}\}.$

Now, using Construction 1.4 we get the required number of paths and cycles from the C_6 -decomposition given above.

Lemma 3.11. There exists a (6; p, q)-decomposition of $K_7 \Box K_7$, $p \neq 1$.

Proof. We can write $K_7 \Box K_7 = 7K_7 \setminus E(K_3) \oplus K_3 \oplus 7K_7 \setminus E(K_3) \oplus K_3$. By Lemma 2.1, $K_7 \setminus E(K_3)$ has a (6; p, q)-decomposition. Now, we can view $7K_3 \oplus 7K_3$ as $K_3^1 \oplus \cdots \oplus K_3^7 \oplus (K_3^1)' \oplus \cdots \oplus (K_3^7)'$ with $K_3^i = (x_{i,i-2}x_{i,i-1}x_{i,i}x_{i,i-2})$, for $i = 1, \dots, 7$ and $(K_3^i)' = (x_{i,i}x_{i+1,i}x_{i+2,i}x_{i,i})$, for $i = 1, \dots, 7$, where the subscripts of x are taken modulo 7 with residues $\{1, \dots, 7\}$. The C_6 -decomposition of $7K_3 \oplus 7K_3$ is given below:

```
 \{ (x_{3,1}\mathbf{x_{1,1}}\mathbf{x_{2,1}}\mathbf{x_{2,7}}\mathbf{x_{2,2}}\mathbf{x_{3,2}}\mathbf{x_{3,1}}), \ (\mathbf{x_{3,1}}\mathbf{x_{3,3}}x_{3,2}x_{4,2}x_{2,2}x_{2,1}x_{3,1}) \}, \\ \{ (x_{4,4}\mathbf{x_{4,2}}\mathbf{x_{4,3}}\mathbf{x_{3,3}}\mathbf{x_{5,3}}\mathbf{x_{5,4}}\mathbf{x_{4,4}}), \ (\mathbf{x_{4,4}}\mathbf{x_{6,4}}x_{5,4}x_{5,5}x_{5,3}x_{4,3}x_{4,4}) \}, \\ \{ (\mathbf{x_{7,7}}\mathbf{x_{1,7}}\mathbf{x_{1,6}}\mathbf{x_{6,6}}\mathbf{x_{6,5}}\mathbf{x_{7,5}}x_{7,7}), \ (\mathbf{x_{7,7}}\mathbf{x_{2,7}}x_{1,7}x_{1,1}x_{1,6}x_{7,6}x_{7,7}) \}, \\ (x_{5,5}x_{6,5}x_{6,4}x_{6,6}x_{7,6}x_{7,5}x_{5,5}). \end{cases}
```

The last $3C_6$ can be decomposed into $3P_7$ as follows:

 $\{x_{1,1}x_{1,7}x_{2,7}x_{7,7}x_{7,6}x_{7,5}x_{5,5}, x_{5,5}x_{6,5}x_{6,4}x_{6,6}x_{7,6}x_{1,6}x_{1,7}, x_{1,1}x_{1,6}x_{6,6}x_{6,5}x_{7,5}x_{7,7}x_{1,7}\}.$

Now, using Construction 1.4 we get the required number of paths and cycles from the C_6 -decomposition given above.

Lemma 3.12. There exists a (6; p, q)-decomposition of $K_3 \Box K_{12}$, $p \ge 18$.

Proof. Since the degree of each vertex $v \in V(K_3 \Box K_{12})$ is odd, then $p \geq \frac{36}{2} = 18$. We can write $K_3 \Box K_{12} = 12K_3 \oplus 3K_{12} = 12K_3 \oplus 3((K_{12} \setminus E(2C_6)) \oplus 2C_6)$. The graph $12K_3$ along with three rows of $2C_6$ can be viewed as 2G, where $G = 6K_3 \oplus C_6^1 \oplus C_6^2 \oplus C_6^3$ with $V(G) = \{x_{i,j} : 1 \leq i \leq 3, 1 \leq j \leq 6\}$ and $C_6^1 = (x_{1,1}x_{1,2}x_{1,5}x_{1,4}x_{1,6}x_{1,3}x_{1,1}, C_6^2 = (x_{2,1}x_{2,2}x_{2,4}x_{2,5}x_{2,3}x_{2,6}x_{2,1}), C_6^3 = (x_{3,1}x_{3,2}x_{3,6}x_{3,4}x_{3,3}x_{3,5}x_{3,1})$ and decompose G into C_6 's as follows:

 $\{ (x_{1,1}\mathbf{x_{1,2}}\mathbf{x_{1,5}}\mathbf{x_{2,5}}\mathbf{x_{2,3}}\mathbf{x_{1,3}}\mathbf{x_{1,1}}), \ (\mathbf{x_{1,1}}\mathbf{x_{2,1}}x_{2,2}x_{1,2}x_{3,2}x_{3,1}x_{1,1}) \}, \\ \{ (x_{1,6}\mathbf{x_{1,4}}\mathbf{x_{2,4}}\mathbf{x_{2,2}}\mathbf{x_{3,2}}\mathbf{x_{3,6}}\mathbf{x_{1,6}}), \ (\mathbf{x_{1,6}}\mathbf{x_{2,6}}x_{3,6}x_{3,4}x_{3,3}x_{1,3}x_{1,6}) \}, \\ \{ (x_{3,5}\mathbf{x_{2,5}}\mathbf{x_{2,4}}\mathbf{x_{3,4}}\mathbf{x_{1,4}}\mathbf{x_{1,5}}\mathbf{x_{3,5}}), \ (\mathbf{x_{3,5}}\mathbf{x_{3,1}}x_{2,1}x_{2,6}x_{2,3}x_{3,3}x_{3,5}) \}.$

The first $3C_6$ can be decomposed into $3P_7$ as follows:

 $\{x_{2,1}x_{2,2}x_{1,2}x_{1,1}x_{3,1}x_{3,2}x_{3,6}, x_{2,1}x_{1,1}x_{1,3}x_{2,3}x_{2,5}x_{1,5}x_{1,2}, x_{1,2}x_{3,2}x_{2,2}x_{2,3}x_{1,3}x_{1,6}x_{3,6}\}.$

Now, using Construction 1.4 we get the required number of paths and cycles from the C_6 -decomposition given above. So, G has a (6; p, q)-decomposition. By Lemma 2.5, the remaining edges has a (6; p, q)-decomposition.

Lemma 3.13. There exists a (6; p, q)-decomposition of $K_5 \Box K_{12}$, $p \geq 30$.

Proof. Since the degree of each vertex $v \in V(K_5 \square K_{12})$ is odd, then $p \geq 30$. We can write $K_5 \square K_{12} = 12K_5 \oplus 5K_{12} = 12K_5 \oplus 5((K_{12} \setminus E(2C_6)) \oplus 2C_6)$. By Lemma 2.5, $K_{12} \setminus E(2C_6)$ has a (6; p, q)-decomposition. Let $12K_5 \oplus 10C_6 = G_1 \oplus G_2$, where $G_1 = (6K_5 \oplus C_6^1 \oplus \cdots \oplus C_6^5) \cong G_2$ with

$$C_6^1 = (x_{1,1}x_{1,2}x_{1,4}x_{1,6}x_{1,5}x_{1,3}x_{1,1}), C_6^2 = (x_{2,1}x_{2,5}x_{2,3}x_{2,6}x_{2,2}x_{2,4}x_{2,1}),$$

$$C_6^3 = (x_{3,1}x_{3,3}x_{3,5}x_{3,2}x_{3,6}x_{3,4}x_{3,1}), C_6^4 = (x_{4,1}x_{4,5}x_{4,2}x_{4,4}x_{4,6}x_{4,3}x_{4,1}),$$

$$C_6^5 = (x_{5,1}x_{5,2}x_{5,4}x_{5,6}x_{5,5}x_{5,3}x_{5,1}).$$

The graph G_1 decomposes into required number of C_6 as follows:

$$\{ (x_{1,2}\mathbf{x_{1,4}}\mathbf{x_{5,4}}\mathbf{x_{4,4}}\mathbf{x_{4,2}}\mathbf{x_{3,2}}\mathbf{x_{1,2}}), (\mathbf{x_{1,2}}\mathbf{x_{2,2}}x_{2,4}x_{3,4}x_{5,4}x_{5,2}x_{1,2}) \}, \\ \{ (x_{1,6}\mathbf{x_{2,6}}\mathbf{x_{3,6}}\mathbf{x_{3,4}}\mathbf{x_{4,4}}\mathbf{x_{1,4}}\mathbf{x_{1,6}}), (x_{1,6}x_{3,6}x_{5,6}x_{5,5}x_{2,5}\mathbf{x_{1,5}}\mathbf{x_{1,6}}) \}, \\ \{ (x_{1,3}\mathbf{x_{2,3}}\mathbf{x_{2,6}}\mathbf{x_{5,6}}\mathbf{x_{4,6}}\mathbf{x_{4,3}}\mathbf{x_{1,3}}), (\mathbf{x_{1,3}}\mathbf{x_{1,5}}x_{5,5}x_{3,5}x_{3,3}x_{5,3}x_{1,3}) \}, \\ \{ (x_{2,1}\mathbf{x_{2,5}}\mathbf{x_{3,5}}\mathbf{x_{4,5}}\mathbf{x_{4,1}}\mathbf{x_{1,1}}\mathbf{x_{2,1}}), (\mathbf{x_{2,1}}\mathbf{x_{2,4}}x_{1,4}x_{3,4}x_{3,1}x_{4,1}x_{2,1}) \}, \\ \{ (x_{4,2}\mathbf{x_{5,2}}\mathbf{x_{5,1}}\mathbf{x_{3,1}}\mathbf{x_{1,1}}\mathbf{x_{1,2}}\mathbf{x_{4,2}}), (\mathbf{x_{4,2}}\mathbf{x_{2,2}}x_{3,2}x_{3,5}x_{1,5}x_{4,5}x_{4,2}) \}, \\ \{ (x_{4,6}\mathbf{x_{3,6}}\mathbf{x_{3,2}}\mathbf{x_{5,2}}\mathbf{x_{2,2}}\mathbf{x_{2,6}}\mathbf{x_{4,6}}), (\mathbf{x_{4,6}}\mathbf{x_{1,6}}x_{5,6}x_{5,4}x_{2,4}x_{4,4}x_{4,6}) \}, \\ \{ (x_{3,3}\mathbf{x_{4,3}}\mathbf{x_{4,1}}\mathbf{x_{5,1}}\mathbf{x_{1,1}}\mathbf{x_{1,3}}\mathbf{x_{3,3}}), (\mathbf{x_{3,3}}\mathbf{x_{2,3}}x_{5,3}x_{5,1}x_{2,1}x_{3,1}x_{3,3}) \}, \\ (x_{2,3}x_{2,5}x_{4,5}x_{5,5}x_{5,3}x_{4,3}x_{2,3}). \end{cases}$$

The last $3C_6$ can be decomposed into $3P_7$ as follows:

 $\{x_{5,5}x_{5,3}x_{2,3}x_{4,3}x_{4,1}x_{5,1}x_{2,1}, x_{2,1}x_{3,1}x_{3,3}x_{1,3}x_{1,1}x_{5,1}x_{5,3}, x_{5,3}x_{4,3}x_{3,3}x_{2,3}x_{2,5}x_{4,5}x_{5,5}\}.$

Now, using Construction 1.4 we get the required number of paths and cycles from the C_6 -decomposition given above. Hence G_1 has a (6; p, q)-decomposition and so the graph G_2 .

Lemma 3.14. There exists a (6; p, q)-decomposition of $K_7 \Box K_{12}$, $p \ge 42$.

Proof. Since the degree of each vertex $v \in V(K_7 \Box K_{12})$ is odd, then $p \ge 42$. We can write $K_7 \Box K_{12} = 12K_7 \oplus 7K_{12} = 12(K_7 \setminus E(K_3)) \oplus 4K_{12} \oplus (K_3 \Box K_{12})$. By Lemmas 2.1, 2.8 and 3.12, the given graph has a (6; p, q)-decomposition.

Lemma 3.15. There exists a (6; p, q)-decomposition of $K_{11} \Box K_{12}$, $p \ge 66$.

Proof. Since the degree of each vertex $v \in V(K_{11} \square K_{12})$ is odd, then $p \geq 66$. We can write $K_{11} \square K_{12} = 12K_{11} \oplus 11K_{12} = 12(K_{11} \backslash E(C_7)) \oplus 11K_{12}$. Consider K_{12} in rows 1, 3, 4, 7 as $(K_{12} \backslash E(2C_6)) \oplus 2C_6$, where $2C_6$ are vertex disjoint cycles. Now, these $8C_6$ along with $12C_7$ in columns form a graph $G = (4C_6 \oplus 6C_7) \oplus (4C_6 \oplus 6C_7) = G_1 \oplus G_2, G_1 \cong G_2$. Let $G_1 = C_6^1 \oplus \cdots \oplus C_6^4 \oplus C_7^1 \oplus \cdots \oplus C_7^6$, where

$$C_6^1 = (x_{1,1}x_{1,2}x_{1,5}x_{1,6}x_{1,4}x_{1,3}x_{1,1}), C_6^2 = (x_{3,1}x_{3,2}x_{3,3}x_{3,6}x_{3,4}x_{3,5}x_{3,1}), C_6^3 = (x_{4,1}x_{4,2}x_{4,5}x_{4,6}x_{4,4}x_{4,3}x_{4,1}), C_6^4 = (x_{7,1}x_{7,2}x_{7,3}x_{7,4}x_{7,5}x_{7,6}x_{7,1}),$$

 and

$$C_{7}^{1} = (x_{1,1}x_{2,1}x_{4,1}x_{7,1}x_{3,1}x_{5,1}x_{6,1}x_{1,1}), C_{7}^{2} = (x_{1,2}x_{3,2}x_{7,2}x_{6,2}x_{5,2}x_{4,2}x_{2,2}x_{1,2}), C_{7}^{3} = (x_{1,3}x_{3,3}x_{5,3}x_{6,3}x_{7,3}x_{4,3}x_{2,3}x_{1,3}), C_{7}^{4} = (x_{1,4}x_{2,4}x_{3,4}x_{7,4}x_{6,4}x_{5,4}x_{4,4}x_{1,4}), C_{7}^{5} = (x_{1,5}x_{3,5}x_{5,5}x_{6,5}x_{7,5}x_{4,5}x_{2,5}x_{1,5}), C_{7}^{6} = (x_{1,6}x_{2,6}x_{3,6}x_{4,6}x_{5,6}x_{6,6}x_{7,6}x_{1,6}).$$

This can be decomposed into required number of C_6 as follows:

$$\{ (x_{1,2}\mathbf{x_{3,2}}\mathbf{x_{3,1}}\mathbf{x_{5,1}}\mathbf{x_{6,1}}\mathbf{x_{1,1}}\mathbf{x_{1,2}}), \ (\mathbf{x_{1,2}}\mathbf{x_{1,5}}x_{2,5}x_{4,5}x_{4,2}x_{2,2}x_{1,2}) \}, \\ \{ (x_{7,2}\mathbf{x_{7,1}}\mathbf{x_{4,1}}\mathbf{x_{4,2}}\mathbf{x_{5,2}}\mathbf{x_{6,2}}\mathbf{x_{7,2}}), \ (\mathbf{x_{7,2}}\mathbf{x_{3,2}}x_{3,3}x_{5,3}x_{6,3}x_{7,3}x_{7,2}) \}, \\ \{ (x_{7,4}\mathbf{x_{7,3}}\mathbf{x_{4,3}}\mathbf{x_{4,4}}\mathbf{x_{5,4}}\mathbf{x_{6,4}}\mathbf{x_{7,4}}), \ (\mathbf{x_{7,4}}\mathbf{x_{3,4}}x_{3,5}x_{5,5}x_{6,5}x_{7,5}x_{7,4}) \}, \\ \{ (x_{7,6}\mathbf{x_{7,5}}\mathbf{x_{4,5}}\mathbf{x_{4,6}}\mathbf{x_{5,6}}\mathbf{x_{6,6}}\mathbf{x_{7,6}}), \ (\mathbf{x_{7,6}}\mathbf{x_{7,1}}x_{3,1}x_{3,5}x_{1,5}x_{1,6}x_{7,6}) \}, \\ \{ (x_{1,3}\mathbf{x_{1,4}}\mathbf{x_{2,4}}\mathbf{x_{3,4}}\mathbf{x_{3,6}}\mathbf{x_{3,3}}\mathbf{x_{1,3}}), \ (\mathbf{x_{1,3}}\mathbf{x_{2,3}}x_{4,3}x_{4,1}x_{2,1}x_{1,1}x_{1,3}) \}, \\ (x_{1,4}x_{1,6}x_{2,6}x_{3,6}x_{4,6}x_{4,4}x_{1,4}). \end{cases}$$

The last $3C_6$ can be decomposed into $3P_7$ as follows:

 $\{x_{4,1}x_{2,1}x_{1,1}x_{1,3}x_{1,4}x_{1,6}x_{2,6}, x_{2,6}x_{3,6}x_{4,6}x_{4,4}x_{1,4}x_{2,4}x_{3,4}, x_{3,4}x_{3,6}x_{3,3}x_{1,3}x_{2,3}x_{4,3}x_{4,1}\}.$

Now, using Construction 1.4 we get the required number of paths and cycles from the C_6 -decomposition given above. Hence G_1 also has a (6; p, q)-decomposition and so the graph G_2 . Also by Lemmas 2.5, 2.7, $K_{11} \setminus E(C_7)$ and $K_{12} \setminus E(C_6)$ have a (6; p, q)-decomposition. Hence by Remark 1.3, $K_{11} \Box K_{12}$ has a (6; p, q)-decomposition.

Lemma 3.16. There exists a (6; p, q)-decomposition of $C_6 \Box(K_8 \setminus E(2C_6))$, where p = 24 and the $2C_6$ are $\{(x_{2,i}x_{3,i}x_{7,i}x_{4,i}x_{6,i}x_{8,i}x_{2,i}), (x_{2,i}x_{5,i}x_{4,i}x_{8,i}x_{1,i}x_{6,i}x_{2,i})\}, 1 \le i \le 6.$

Proof. Let $V(G = C_6 \Box(K_8 \setminus E(2C_6))) = \{x_{i,j} : 1 \le i \le 6, 1 \le j \le 8\}$. Since the degree of each vertex $v \in V(G)$ is odd and |E(G)| = 144, then p = 24. Now, the $24P_7$ are given below: $\{x_{i,1}x_{i+1,1}x_{i+1,5}x_{i+1,3}x_{i+1,8}x_{i+1,7}x_{i,7}, x_{i,2}x_{i+1,2}x_{i+1,1}x_{i+1,5}x_{i,5}, x_{i,3}x_{i+1,3}x_{i+1,4}x_{i+1,2}x_{i+1,7}x_{i+1,6}x_{i,6}, x_{i,4}x_{i+1,4}x_{i+1,1}x_{i+1,7}x_{i+1,5}x_{i+1,8}x_{i,8}$, where $1 \le i \le 6$ and the first coordinate of subscripts of x are taken modulo 6 with residues $\{1, \dots, 6\}\}$.

Lemma 3.17. There exists a (6; p, q)-decomposition of $K_8 \Box K_9$, $p \ge 36$.

Proof. Since the degree of each vertex $v \in V(K_8 \Box K_9)$ is odd, then $p \ge \frac{72}{2} = 36$. For p = 36, the required number of P_7 's and C_6 's are constructed as follows:

 $\{ x_{1,1}x_{1,3}x_{1,2}x_{6,2}x_{5,2}x_{3,2}x_{4,2}, x_{1,2}x_{1,9}x_{1,7}x_{2,7}x_{3,7}x_{3,2}x_{6,2}, \\ x_{5,7}x_{6,7}x_{6,1}x_{1,1}x_{7,1}x_{7,6}x_{7,3}, x_{1,5}x_{5,5}x_{6,5}x_{8,5}x_{8,2}x_{1,2}x_{3,2}, \\ x_{1,6}x_{3,6}x_{3,2}x_{7,2}x_{1,2}x_{2,2}x_{2,4}, x_{1,7}x_{1,3}x_{2,3}x_{2,9}x_{2,5}x_{6,5}x_{6,3}, \\ x_{1,8}x_{5,8}x_{5,6}x_{8,6}x_{8,9}x_{8,7}x_{7,7}, x_{1,9}x_{1,1}x_{2,1}x_{6,1}x_{8,1}x_{8,2}x_{8,8}, \\ x_{2,1}x_{5,1}x_{1,1}x_{4,1}x_{4,2}x_{6,2}x_{8,2}, x_{2,2}x_{8,2}x_{8,4}x_{3,4}x_{2,4}x_{2,6}x_{2,7}, \\ x_{2,3}x_{2,4}x_{6,4}x_{7,4}x_{7,6}x_{1,6}x_{6,6}, x_{2,5}x_{2,2}x_{4,2}x_{4,5}x_{3,5}x_{5,5}x_{8,5},$

$x_{2,6}x_{2,9}x_{2,4}x_{5,4}x_{5,1}x_{3,1}x_{7,1}, \ x_{2,8}x_{2,5}x_{2,7}x_{7,7}x_{5,7}x_{4,7}x_{4,6},$
$x_{2,9}x_{1,9}x_{7,9}x_{7,3}x_{8,3}x_{2,3}x_{4,3},\ x_{3,1}x_{3,6}x_{7,6}x_{7,5}x_{7,1}x_{8,1}x_{8,9},$
$x_{3,3}x_{6,3}x_{4,3}x_{4,8}x_{3,8}x_{3,1}x_{4,1},\ x_{3,4}x_{3,5}x_{3,3}x_{1,3}x_{8,3}x_{8,8}x_{7,8},$
$x_{3,5}x_{3,1}x_{3,7}x_{4,7}x_{4,3}x_{3,3}x_{3,6},\ x_{3,7}x_{3,4}x_{4,4}x_{7,4}x_{5,4}x_{5,8}x_{5,9},$
$x_{3,8}x_{3,7}x_{8,7}x_{4,7}x_{4,5}x_{1,5}x_{7,5},\ x_{4,4}x_{5,4}x_{5,3}x_{5,9}x_{6,9}x_{6,6}x_{6,1},$
$x_{4,5}x_{7,5}x_{3,5}x_{3,6}x_{6,6}x_{5,6}x_{5,4},\ x_{4,7}x_{4,9}x_{4,4}x_{4,2}x_{4,8}x_{7,8}x_{7,6},$
$x_{4,8}x_{1,8}x_{1,2}x_{1,1}x_{1,4}x_{5,4}x_{6,4},\ x_{4,9}x_{4,6}x_{2,6}x_{1,6}x_{8,6}x_{7,6}x_{7,2},$
$x_{5,3}x_{5,2}x_{5,9}x_{5,5}x_{5,8}x_{2,8}x_{6,8},\ x_{5,5}x_{2,5}x_{1,5}x_{6,5}x_{6,2}x_{6,4}x_{6,7},$
$x_{5,6}x_{3,6}x_{4,6}x_{6,6}x_{8,6}x_{8,7}x_{8,3},\ x_{5,8}x_{6,8}x_{7,8}x_{7,5}x_{6,5}x_{6,4}x_{6,9},$
$x_{6,5}x_{6,7}x_{6,6}x_{6,3}x_{5,3}x_{5,1}x_{8,1},\ x_{7,4}x_{8,4}x_{8,9}x_{7,9}x_{7,5}x_{8,5}x_{8,7},$
$x_{8,4}x_{4,4}x_{1,4}x_{1,8}x_{2,8}x_{2,6}x_{8,6}, x_{7,9}x_{3,9}x_{4,9}x_{4,1}x_{7,1}x_{6,1}x_{5,1},$
$x_{1,4}x_{2,4}x_{7,4}x_{7,3}x_{7,2}x_{8,2}x_{5,2}, x_{1,3}x_{1,8}x_{1,9}x_{6,9}x_{8,9}x_{5,9}x_{3,9}\}$

and

$ \{ (x_{1,7}x_{1,2}x_{1,6}x_{1,5}x_{1,1}x_{1,8}x_{1,7}), (x_{1,7}x_{1,4}x_{1,5}x_{1,3}x_{1,6}x_{1,1}x_{1,7}) \}, \\ \{ (x_{1,7}x_{3,7}x_{6,7}x_{4,7}x_{2,7}x_{8,7}x_{1,7}), (x_{1,7}x_{1,6}x_{1,9}x_{1,4}x_{1,2}x_{1,5}x_{1,7}) \}, \\ \{ (x_{1,3}x_{1,4}x_{1,6}x_{1,8}x_{1,5}x_{1,9}x_{1,3}), (x_{1,3}x_{6,3}x_{8,3}x_{5,3}x_{3,3}x_{7,3}x_{1,3}) \}, \\ \{ (x_{2,1}x_{2,2}x_{2,8}x_{2,3}x_{2,7}x_{2,9}x_{2,1}), (x_{2,1}x_{2,7}x_{2,4}x_{2,5}x_{2,3}x_{2,6}x_{2,1}) \}, \\ \{ (x_{3,2}x_{3,8}x_{3,3}x_{3,7}x_{3,9}x_{3,1}x_{3,2}), (x_{3,2}x_{3,5}x_{3,7}x_{3,6}x_{3,9}x_{3,4}x_{3,2}) \}, \\ \{ (x_{3,2}x_{3,8}x_{3,3}x_{3,7}x_{3,9}x_{3,1}x_{3,4}), (x_{3,4}x_{3,6}x_{3,8}x_{3,5}x_{3,9}x_{3,3}x_{3,4}) \}, \\ \{ (x_{4,4}x_{4,6}x_{4,8}x_{4,5}x_{4,9}x_{4,3}x_{4,4}), (x_{4,4}x_{4,5}x_{4,3}x_{4,6}x_{4,1}x_{4,7}x_{4,4}) \}, \\ \{ (x_{4,9}x_{4,2}x_{4,3}x_{4,1}x_{4,4}x_{4,8}x_{4,9}), (x_{4,9}x_{5,9}x_{7,9}x_{2,9}x_{3,9}x_{8,9}x_{4,9}) \}, \\ \{ (x_{4,9}x_{4,2}x_{4,3}x_{4,1}x_{4,4}x_{4,8}x_{4,9}), (x_{4,9}x_{5,9}x_{7,9}x_{2,9}x_{3,9}x_{8,9}x_{4,9}) \}, \\ \{ (x_{4,9}x_{4,2}x_{4,3}x_{4,1}x_{4,4}x_{4,8}x_{4,9}), (x_{4,9}x_{5,9}x_{7,9}x_{2,9}x_{3,9}x_{8,9}x_{4,9}) \}, \\ \{ (x_{4,9}x_{4,2}x_{4,6}x_{4,5}x_{4,1}x_{4,8}), (x_{4,8}x_{2,8}x_{8,8}x_{1,8}x_{3,8}x_{6,8}x_{4,8}) \}, \\ \{ (x_{5,2}x_{5,8}x_{5,7}x_{5,9}x_{5,1}x_{5,2}), (x_{5,2}x_{5,7}x_{5,6}x_{5,9}x_{5,4}x_{5,2}) \}, \\ \{ (x_{5,2}x_{5,8}x_{5,7}x_{5,9}x_{5,1}x_{5,2}), (x_{5,2}x_{5,7}x_{5,6}x_{5,1}x_{5,7}x_{5,4}x_{5,2}) \}, \\ \{ (x_{6,4}x_{6,6}x_{6,8}x_{6,5}x_{6,9}x_{6,3}x_{6,4}), (x_{6,4}x_{6,8}x_{6,9}x_{6,2}x_{6,3}x_{6,1}x_{6,4}) \}, \\ \{ (x_{6,4}x_{6,6}x_{6,8}x_{6,5}x_{6,9}x_{6,3}x_{6,1}), (x_{7,7}x_{7,7}x_{7,6}x_{7,9}x_{7,4}x_{7,2}) \}, \\ \{ (x_{6,4}x_{6,6}x_{8,8}x_{5,8}x_{8,9}x_{8,2}x_{8,3}), (x_{8,3}x_{8,6}x_{8,1}x_{8,7}x_{8,4}x_{8,5}x_{8,3}) \}, \\ \{ (x_{7,7}x_{7,1}x_{7,4}x_{7,8}x_{7,9}x_{7,2}x_{7,2}), (x_{7,2}x_{7,2}x_{7,7}x_{7,6}x_{7,3}x_{7,3}x_{7,3}x_{7,3}x_{7,3}) \}, \\ \{ (x_{1,4}x_{6,4}x_{8,4}x_{5,4}x_{3,4}x_{7,4}x_{1,4}), (x_{1,4}x_{3,4}x_{6,4}x_{4,4}x_{2,4}x_{8,4}x_{1,4}) \}, \\ \{ (x_{1,6}x_{6,6}x_{6,6}x_{6,6}x_{6,6}x_{6,6}x_{$	$\{(\mathbf{x}_{1,7}\mathbf{x}_{1,2}x_{1,6}x_{1,5}x_{1,1}x_{1,8}x_{1,7}), (x_{1,7}\mathbf{x}_{1,4}\mathbf{x}_{1,5}\mathbf{x}_{1,3}\mathbf{x}_{1,6}\mathbf{x}_{1,1}\mathbf{x}_{1,7})\},\$
$ \{ (x_{1,3}x_{1,4}x_{1,6}x_{1,8}x_{1,5}x_{1,9}x_{1,3}), (x_{1,3}x_{6,3}x_{8,3}x_{5,3}x_{3,3}x_{7,3}x_{1,3}) \}, \\ \{ (x_{2,1}x_{2,2}x_{2,8}x_{2,3}x_{2,7}x_{2,9}x_{2,1}), (x_{2,1}x_{2,7}x_{2,4}x_{2,5}x_{2,3}x_{2,6}x_{2,1}) \}, \\ \{ (x_{2,1}x_{2,4}x_{2,8}x_{2,9}x_{2,2}x_{2,3}x_{2,1}), (x_{2,1}x_{2,8}x_{2,7}x_{2,2}x_{2,6}x_{2,5}x_{2,1}) \}, \\ \{ (x_{3,2}x_{3,8}x_{3,3}x_{3,7}x_{3,9}x_{3,1}x_{3,2}), (x_{3,2}x_{3,5}x_{3,7}x_{3,6}x_{3,9}x_{3,4}x_{3,2}) \}, \\ \{ (x_{4,4}x_{4,6}x_{4,8}x_{4,5}x_{4,9}x_{4,3}x_{4,4}), (x_{4,4}x_{4,5}x_{4,3}x_{4,6}x_{4,1}x_{4,7}x_{4,4}) \}, \\ \{ (x_{4,9}x_{4,2}x_{4,3}x_{4,1}x_{4,4}x_{4,8}x_{4,9}), (x_{4,9}x_{5,9}x_{7,9}x_{2,9}x_{3,9}x_{8,9}x_{4,9}) \}, \\ \{ (x_{4,8}x_{4,7}x_{4,2}x_{4,6}x_{4,5}x_{4,1}x_{4,8}), (x_{4,8}x_{2,8}x_{8,8}x_{1,8}x_{3,8}x_{6,8}x_{4,8}) \}, \\ \{ (x_{5,5}x_{5,1}x_{5,8}x_{5,7}x_{5,2}x_{5,6}x_{5,5}), (x_{5,5}x_{5,7}x_{5,6}x_{5,1}x_{5,7}x_{5,4}x_{5,2}) \}, \\ \{ (x_{6,2}x_{6,8}x_{6,3}x_{6,7}x_{6,9}x_{6,1}x_{6,2}), (x_{6,2}x_{6,6}x_{6,5}x_{6,1}x_{6,8}x_{6,7}x_{6,2}) \}, \\ \{ (x_{6,2}x_{6,8}x_{6,3}x_{6,7}x_{6,9}x_{6,1}x_{6,2}), (x_{6,2}x_{6,6}x_{6,5}x_{6,1}x_{6,8}x_{6,7}x_{6,2}) \}, \\ \{ (x_{6,2}x_{6,8}x_{6,3}x_{6,7}x_{6,9}x_{6,3}x_{6,4}), (x_{6,4}x_{6,8}x_{6,9}x_{6,3}x_{6,1}x_{6,4}) \}, \\ \{ (x_{7,2}x_{7,8}x_{7,3}x_{7,7}x_{7,9}x_{7,1}x_{7,2}), (x_{7,2}x_{7,5}x_{7,3}x_{7,1}x_{7,8}x_{7,7}) \}, \\ \{ (x_{8,6}x_{8,8}x_{8,5}x_{8,9}x_{8,2}x_{8,3}), (x_{8,3}x_{8,6}x_{8,1}x_{8,7}x_{8,4}x_{8,5}x_{8,3}) \}, \\ \{ (x_{8,3}x_{8,1}x_{8,4}x_{8,8}x_{8,9}x_{8,2}x_{8,3}), (x_{8,3}x_{8,6}x_{8,1}x_{8,7}x_{8,4}x_{8,5}x_{8,3}) \}, \\ \{ (x_{1,4}x_{6,4}x_{8,4}x_{5,4}x_{3,4}x_{7,4}x_{1,4}), (x_{1,4}x_{3,4}x_{6,4}x_{4,4}x_{2,4}x_{8,4}x_{1,4}) \}, \\ \{ (x_{1,5}x_{3,5}x_{6,5}x_{4,5}x_{2,5}x_{8,5}x_{1,5}), (x_{2,5}x_{3,5}x_{8,5}x_{4,5}x_{5,5}x_{7,5}x_{2,5}) \}, \\ \{ (x_{1,6}x_{4,6}x_{7,6}x_{6,6}x_{6,6}x_{6,6}x_{6,6}x_{6,6}x_{7,6}x_{7,6}x_{2,6}) \}, \\ \{ (x_{1,6}x_{4,6}x_{7,6}x_{6,6}x_{2,6}x_{5,6}x_{1,6}), (x_{2,5}x_{3,5}x_{3,5}x_{3,5}x_{3,5}x_{7,5}x_{2,5}) \}, \\ \} \}, \\ \{ (x_{1,6}x_{4,6}x_{7,6}x_{6,6}x_{2,6}x_{5,6}x_{1,6}), (x_{2,5}x_{$	
$ \{ (\mathbf{x}_{2,1}\mathbf{x}_{2,2}\mathbf{x}_{2,8}\mathbf{x}_{2,3}\mathbf{x}_{2,7}\mathbf{x}_{2,9}x_{2,1}), (x_{2,1}x_{2,7}x_{2,4}x_{2,5}x_{2,3}\mathbf{x}_{2,6}\mathbf{x}_{2,1}) \}, \\ \{ (x_{2,1}\mathbf{x}_{2,4}\mathbf{x}_{2,8}\mathbf{x}_{2,9}\mathbf{x}_{2,2}\mathbf{x}_{2,3}\mathbf{x}_{2,1}), (x_{2,1}x_{2,8}x_{2,7}x_{2,2}x_{2,6}\mathbf{x}_{2,5}\mathbf{x}_{2,1}) \}, \\ \{ (x_{3,2}\mathbf{x}_{3,8}\mathbf{x}_{3,3}\mathbf{x}_{3,7}\mathbf{x}_{3,9}\mathbf{x}_{3,1}\mathbf{x}_{3,2}), (\mathbf{x}_{3,2}\mathbf{x}_{3,5}x_{3,7}x_{3,6}x_{3,9}x_{3,4}x_{3,2}) \}, \\ \{ (\mathbf{x}_{4,4}\mathbf{x}_{4,6}\mathbf{x}_{4,8}\mathbf{x}_{4,5}x_{4,9}x_{4,3}\mathbf{x}_{4,1}), (\mathbf{x}_{4,4}\mathbf{x}_{4,5}\mathbf{x}_{4,3}\mathbf{x}_{4,5}\mathbf{x}_{4,3}x_{4,3}\mathbf{x}_{4,3}), (\mathbf{x}_{4,4}\mathbf{x}_{4,5}\mathbf{x}_{4,3}\mathbf{x}_{4,5}\mathbf{x}_{4,3}\mathbf{x}_{4,1}\mathbf{x}_{4,4}\mathbf{x}_{4,8}\mathbf{x}_{4,9}), (\mathbf{x}_{4,9}\mathbf{x}_{5,9}x_{7,9}x_{2,9}x_{3,9}x_{8,9}x_{4,9}) \}, \\ \{ (x_{4,9}\mathbf{x}_{4,2}\mathbf{x}_{4,3}\mathbf{x}_{4,1}\mathbf{x}_{4,4}\mathbf{x}_{4,8}\mathbf{x}_{4,9}), (\mathbf{x}_{4,8}\mathbf{x}_{2,8}x_{8,8}x_{1,8}x_{3,8}x_{6,8}x_{4,8}) \}, \\ \{ (x_{4,9}\mathbf{x}_{4,7}\mathbf{x}_{4,2}\mathbf{x}_{4,6}\mathbf{x}_{4,5}\mathbf{x}_{4,1}x_{4,8}), (\mathbf{x}_{4,8}\mathbf{x}_{2,8}x_{8,8}x_{1,8}x_{3,8}x_{6,8}x_{4,8}) \}, \\ \{ (x_{4,9}\mathbf{x}_{4,7}\mathbf{x}_{4,2}\mathbf{x}_{4,6}\mathbf{x}_{4,5}\mathbf{x}_{4,1}x_{4,8}), (\mathbf{x}_{4,8}\mathbf{x}_{2,8}x_{8,8}x_{1,8}x_{3,8}x_{6,8}x_{4,8}) \}, \\ \{ (x_{5,2}\mathbf{x}_{5,8}\mathbf{x}_{5,7}\mathbf{x}_{5,2}\mathbf{x}_{5,6}\mathbf{x}_{5,5}), (\mathbf{x}_{5,5}\mathbf{x}_{5,7}x_{5,6}x_{5,9}\mathbf{x}_{5,4}x_{5,2}) \}, \\ \{ (x_{6,4}\mathbf{x}_{6,6}\mathbf{x}_{6,8}\mathbf{x}_{6,7}\mathbf{x}_{6,9}x_{6,1}x_{6,2}), (\mathbf{x}_{6,2}\mathbf{x}_{6,6}\mathbf{x}_{6,5}x_{6,1}x_{6,8}x_{6,7}x_{6,2}) \}, \\ \{ (x_{6,4}\mathbf{x}_{6,6}\mathbf{x}_{6,8}\mathbf{x}_{6,7}\mathbf{x}_{6,9}\mathbf{x}_{6,3}\mathbf{x}_{6,4}), (x_{7,2}\mathbf{x}_{7,5}x_{7,3}x_{7,1}x_{7,8}x_{7,7}) \}, \\ \{ (x_{6,4}\mathbf{x}_{6,6}\mathbf{x}_{6,8}\mathbf{x}_{6,5}\mathbf{x}_{6,9}\mathbf{x}_{6,3}\mathbf{x}_{6,4}), (x_{7,7}\mathbf{x}_{7,4}\mathbf{x}_{7,5}x_{7,3}x_{7,1}x_{7,8}x_{7,7}) \}, \\ \{ (\mathbf{x}_{7,7}\mathbf{x}_{7,1}\mathbf{x}_{7,8}\mathbf{x}_{7,9}\mathbf{x}_{7,2}x_{7,7}), (\mathbf{x}_{7,7}\mathbf{x}_{7,4}\mathbf{x}_{7,3}x_{7,7}\mathbf{x}_{7,7}\mathbf{x}_{7,2}\mathbf{x}_{7,2}) \}, \\ \{ (\mathbf{x}_{8,3}\mathbf{x}_{8,1}\mathbf{x}_{8,3}\mathbf{x}_{8,9}\mathbf{x}_{8,3}\mathbf{x}_{8,3}), (\mathbf{x}_{8,3}\mathbf{x}_{8,6}x_{8,1}x_{8,7}\mathbf{x}_{8,4}x_{8,5}\mathbf{x}_{8,3}) \}, \\ \{ (\mathbf{x}_{7,7}\mathbf{x}_{7,7}\mathbf{x}_{7,7}\mathbf{x}_{7,7}\mathbf{x}_{7,7}\mathbf{x}_{7,7}\mathbf{x}_{7,7}\mathbf{x}_{7,7}\mathbf{x}_{7,7}\mathbf{x}_{7,7}\mathbf{x}_{7,7}\mathbf{x}_{7,7}\mathbf{x}_{7,7}\mathbf{x}_{7,7}$	
$ \{ (x_{2,1}x_{2,4}x_{2,8}x_{2,9}x_{2,2}x_{2,3}x_{2,1}), (x_{2,1}x_{2,8}x_{2,7}x_{2,2}x_{2,6}x_{2,5}x_{2,1}) \}, \\ \{ (x_{3,2}x_{3,8}x_{3,3}x_{3,7}x_{3,9}x_{3,1}x_{3,2}), (x_{3,2}x_{3,5}x_{3,7}x_{3,6}x_{3,9}x_{3,4}x_{3,2}) \}, \\ \{ (x_{4,3}x_{4,3}x_{3,8}x_{3,9}x_{3,2}x_{3,3}x_{3,1}x_{3,4}), (x_{4,4}x_{4,5}x_{4,3}x_{4,6}x_{4,1}x_{4,7}x_{4,4}) \}, \\ \{ (x_{4,9}x_{4,2}x_{4,3}x_{4,1}x_{4,4}x_{4,8}x_{4,9}), (x_{4,9}x_{5,9}x_{7,9}x_{2,9}x_{3,9}x_{8,9}x_{4,9}) \}, \\ \{ (x_{4,8}x_{4,7}x_{4,2}x_{4,6}x_{4,5}x_{4,1}x_{4,8}), (x_{4,8}x_{2,8}x_{8,8}x_{1,8}x_{3,8}x_{6,8}x_{4,8}) \}, \\ \{ (x_{5,2}x_{5,8}x_{5,3}x_{5,7}x_{5,9}x_{5,1}x_{5,2}), (x_{5,2}x_{5,5}x_{5,7}x_{5,6}x_{5,9}x_{5,4}x_{5,2}) \}, \\ \{ (x_{5,5}x_{5,1}x_{5,8}x_{5,7}x_{5,2}x_{5,6}x_{5,5}), (x_{5,5}x_{5,3}x_{5,6}x_{5,1}x_{5,7}x_{5,4}x_{5,5}) \}, \\ \{ (x_{6,2}x_{6,8}x_{6,3}x_{6,7}x_{6,9}x_{6,1}x_{6,2}), (x_{6,2}x_{6,6}x_{6,5}x_{6,1}x_{6,8}x_{6,7}x_{6,2}) \}, \\ \{ (x_{6,2}x_{6,8}x_{6,5}x_{6,9}x_{6,3}x_{6,4}), (x_{6,4}x_{6,8}x_{6,9}x_{6,2}x_{6,3}x_{6,1}x_{6,4}) \}, \\ \{ (x_{7,2}x_{7,8}x_{7,3}x_{7,7}x_{7,9}x_{7,1}x_{7,2}), (x_{7,7}x_{7,4}x_{7,5}x_{7,3}x_{7,1}x_{7,8}x_{7,7}) \}, \\ \{ (x_{8,3}x_{8,1}x_{8,4}x_{8,8}x_{8,9}x_{8,2}x_{8,3}), (x_{8,3}x_{8,6}x_{8,1}x_{8,8}x_{8,7}x_{8,2}x_{8,3}) \}, \\ \{ (x_{1,3}x_{6,1}x_{4,1}x_{2,1}x_{8,1}x_{1,1}x_{3,1}), (x_{3,1}x_{8,1}x_{4,1}x_{5,1}x_{7,1}x_{2,1}x_{3,1}) \}, \\ \{ (x_{2,3}x_{5,3}x_{1,3}x_{4,3}x_{7,3}x_{6,3}x_{2,3}), (x_{2,3}x_{3,3}x_{8,3}x_{4,3}x_{5,3}x_{7,3}x_{2,3}) \}, \\ \{ (x_{1,5}x_{3,5}x_{6,5}x_{4,5}x_{2,5}x_{8,5}x_{1,5}), (x_{2,5}x_{3,5}x_{8,5}x_{4,5}x_{5,5}x_{7,5}x_{2,5}) \}, \\ \{ (x_{1,6}x_{4,6}x_{7,6}x_{6,6}x_{2,6}x_{5,6}x_{1,6}), (x_{2,6}x_{3,6}x_{8,6}x_{4,6}x_{5,6}x_{7,6}x_{2,6}) \}, \\ \{ (x_{2,8}x_{3,8}x_{8,8}x_{4,8}x_{5,8}x_{7,8}x_{2,8}), (x_{1,8}x_{6,8}x_{8,8}x_{5,8}x_{3,8}x_{7,8}x_{7,8}x_{7,8}) \}, \\ \end{cases}$	
$ \{ (x_{3,2}x_{3,8}x_{3,3}x_{3,7}x_{3,9}x_{3,1}x_{3,2}), (x_{3,2}x_{3,5}x_{3,7}x_{3,6}x_{3,9}x_{3,4}x_{3,2}) \}, \\ \{ (x_{4,4}x_{4,6}x_{4,8}x_{4,5}x_{4,9}x_{4,3}x_{4,4}), (x_{4,4}x_{4,5}x_{4,3}x_{4,6}x_{4,1}x_{4,7}x_{4,4}) \}, \\ \{ (x_{4,9}x_{4,2}x_{4,3}x_{4,1}x_{4,4}x_{4,8}x_{4,9}), (x_{4,9}x_{5,9}x_{7,9}x_{2,9}x_{3,9}x_{8,9}x_{4,9}) \}, \\ \{ (x_{4,9}x_{4,2}x_{4,3}x_{4,1}x_{4,4}x_{4,8}x_{4,9}), (x_{4,9}x_{5,9}x_{7,9}x_{2,9}x_{3,9}x_{8,9}x_{4,9}) \}, \\ \{ (x_{4,8}x_{4,7}x_{4,2}x_{4,6}x_{4,5}x_{4,1}x_{4,8}), (x_{4,8}x_{2,8}x_{8,8}x_{1,8}x_{3,8}x_{6,8}x_{4,8}) \}, \\ \{ (x_{5,2}x_{5,8}x_{5,3}x_{5,7}x_{5,9}x_{5,1}x_{5,2}), (x_{5,2}x_{5,5}x_{5,7}x_{5,6}x_{5,9}x_{5,4}x_{5,2}) \}, \\ \{ (x_{5,5}x_{5,1}x_{5,8}x_{5,7}x_{5,2}x_{5,6}x_{5,5}), (x_{5,5}x_{5,3}x_{5,6}x_{5,1}x_{5,7}x_{5,4}x_{5,5}) \}, \\ \{ (x_{6,2}x_{6,8}x_{6,3}x_{6,7}x_{6,9}x_{6,1}x_{6,2}), (x_{6,2}x_{6,6}x_{6,5}x_{6,1}x_{6,8}x_{6,7}x_{6,2}) \}, \\ \{ (x_{6,2}x_{6,8}x_{6,3}x_{6,7}x_{6,9}x_{6,1}x_{6,2}), (x_{6,2}x_{6,6}x_{6,5}x_{6,1}x_{6,8}x_{6,7}x_{6,2}) \}, \\ \{ (x_{6,2}x_{7,8}x_{7,3}x_{7,7}x_{7,9}x_{7,1}x_{7,2}), (x_{7,7}x_{7,7}x_{7,7}x_{7,9}x_{7,9}x_{7,4}x_{7,2}) \}, \\ \{ (x_{7,7}x_{7,1}x_{7,4}x_{7,8}x_{7,9}x_{7,2}x_{7,7}), (x_{7,7}x_{7,4}x_{7,5}x_{7,3}x_{7,1}x_{7,8}x_{7,7}) \}, \\ \{ (x_{8,3}x_{8,1}x_{8,4}x_{8,8}x_{8,9}x_{8,2}x_{8,3}), (x_{8,3}x_{8,6}x_{8,1}x_{8,7}x_{8,4}x_{8,5}x_{8,3}) \}, \\ \{ (x_{2,3}x_{5,3}x_{1,3}x_{4,3}x_{7,3}x_{6,3}x_{2,3}), (x_{2,3}x_{3,3}x_{8,3}x_{4,3}x_{5,3}x_{7,3}x_{2,3}) \}, \\ \{ (x_{1,5}x_{3,5}x_{6,5}x_{4,5}x_{2,5}x_{8,5}x_{1,5}), (x_{2,5}x_{3,5}x_{8,5}x_{4,5}x_{5,5}x_{7,5}x_{2,5}) \}, \\ \{ (x_{1,6}x_{4,6}x_{7,6}x_{6,6}x_{2,6}x_{5,6}x_{1,6}), (x_{2,6}x_{3,6}x_{8,6}x_{4,6}x_{5,6}x_{7,6}x_{2,6}) \}, \\ \{ (x_{2,8}x_{3,8}x_{8,8}x_{4,8}x_{5,8}x_{7,8}x_{2,8}), (x_{1,8}x_{6,8}x_{8,8}x_{5,8}x_{3,8}x_{7,8}x_{5,7}) \}, \\ \\ \{ (x_{2,8}x_{3,8}x_{8,8}x_{4,8}x_{5,8}x_{7,8}x_{2,8}), (x_{1,8}x_{6,8}x_{8,8}x_{5,8}x_{3,8}x_{7,8}x_{1,8}) \}, \\ \\ \} \}$	
$ \{ (\mathbf{x}_{3,4}\mathbf{x}_{3,8}\mathbf{x}_{3,9}\mathbf{x}_{3,2}\mathbf{x}_{3,3}\mathbf{x}_{3,1}x_{3,4}), (\mathbf{x}_{3,4}\mathbf{x}_{3,6}x_{3,8}x_{3,5}x_{3,9}x_{3,3}x_{3,4}) \}, \\ \{ (\mathbf{x}_{4,4}\mathbf{x}_{4,6}\mathbf{x}_{4,8}x_{4,5}x_{4,9}x_{4,3}x_{4,4}), (\mathbf{x}_{4,4}\mathbf{x}_{4,5}\mathbf{x}_{4,3}\mathbf{x}_{4,6}\mathbf{x}_{4,1}x_{4,7}x_{4,4}) \}, \\ \{ (x_{4,9}\mathbf{x}_{4,2}\mathbf{x}_{4,3}\mathbf{x}_{4,1}\mathbf{x}_{4,4}\mathbf{x}_{4,8}\mathbf{x}_{4,9}), (\mathbf{x}_{4,9}\mathbf{x}_{5,9}x_{7,9}x_{2,9}x_{3,9}x_{8,9}x_{4,9}) \}, \\ \{ (\mathbf{x}_{4,8}\mathbf{x}_{4,7}\mathbf{x}_{4,2}\mathbf{x}_{4,6}\mathbf{x}_{4,5}\mathbf{x}_{4,1}x_{4,8}), (\mathbf{x}_{4,8}\mathbf{x}_{2,8}x_{8,8}x_{1,8}x_{3,8}x_{6,8}x_{4,8}) \}, \\ \{ (x_{5,2}\mathbf{x}_{5,8}\mathbf{x}_{5,3}\mathbf{x}_{5,7}\mathbf{x}_{5,9}\mathbf{x}_{5,1}\mathbf{x}_{5,2}), (\mathbf{x}_{5,2}\mathbf{x}_{5,5}x_{5,7}x_{5,6}x_{5,9}x_{5,4}x_{5,2}) \}, \\ \{ (x_{5,5}\mathbf{x}_{5,1}\mathbf{x}_{5,8}\mathbf{x}_{5,7}\mathbf{x}_{5,2}\mathbf{x}_{5,6}\mathbf{x}_{5,5}), (\mathbf{x}_{5,5}\mathbf{x}_{5,7}x_{5,6}x_{5,9}x_{5,4}x_{5,2}) \}, \\ \{ (x_{6,2}\mathbf{x}_{6,8}\mathbf{x}_{6,3}\mathbf{x}_{6,7}\mathbf{x}_{6,9}x_{6,1}x_{6,2}), (\mathbf{x}_{6,2}\mathbf{x}_{6,6}\mathbf{x}_{6,5}x_{6,1}x_{6,8}x_{6,7}x_{6,2}) \}, \\ \{ (x_{6,4}\mathbf{x}_{6,6}\mathbf{x}_{6,8}\mathbf{x}_{6,5}\mathbf{x}_{6,9}\mathbf{x}_{6,3}\mathbf{x}_{6,4}), (x_{7,2}\mathbf{x}_{7,5}x_{7,7}x_{7,6}x_{7,9}x_{7,4}x_{7,2}) \}, \\ \{ (x_{7,2}\mathbf{x}_{7,8}\mathbf{x}_{7,3}\mathbf{x}_{7,7}\mathbf{x}_{7,9}\mathbf{x}_{7,1}\mathbf{x}_{7,2}), (\mathbf{x}_{7,2}\mathbf{x}_{7,5}x_{7,3}x_{7,1}x_{7,8}x_{7,7}) \}, \\ \{ (\mathbf{x}_{7,7}\mathbf{x}_{7,1}\mathbf{x}_{7,4}\mathbf{x}_{7,8}\mathbf{x}_{7,9}x_{7,2}x_{7,7}), (\mathbf{x}_{7,7}\mathbf{x}_{7,4}\mathbf{x}_{7,5}x_{7,3}x_{7,1}x_{7,8}x_{7,7}) \}, \\ \{ (\mathbf{x}_{8,6}\mathbf{x}_{8,8}\mathbf{x}_{8,5}\mathbf{x}_{8,9}\mathbf{x}_{8,3}\mathbf{x}_{8,4}x_{8,6}), (x_{8,6}x_{8,5}x_{8,1}x_{8,8}x_{8,7}\mathbf{x}_{8,2}\mathbf{x}_{8,3}) \}, \\ \{ (\mathbf{x}_{3,1}\mathbf{x}_{6,1}\mathbf{x}_{4,1}\mathbf{x}_{2,1}\mathbf{x}_{8,1}x_{1,1}x_{3,1}), (x_{3,1}x_{8,1}x_{4,1}x_{5,1}\mathbf{x}_{7,1}\mathbf{x}_{2,1}\mathbf{x}_{3,1}) \}, \\ \{ (\mathbf{x}_{1,4}\mathbf{x}_{6,4}\mathbf{x}_{8,4}\mathbf{x}_{5,4}\mathbf{x}_{3,4}\mathbf{x}_{7,4}x_{1,4}), (x_{1,4}x_{3,4}\mathbf{x}_{6,4}\mathbf{x}_{4,4}\mathbf{x}_{2,4}x_{8,4}x_{1,4}) \}, \\ \{ (\mathbf{x}_{1,5}\mathbf{x}_{3,5}\mathbf{x}_{5,5}\mathbf{x}_{4,5}\mathbf{x}_{5,5$	$\{(x_{2,1}\mathbf{x_{2,4}}\mathbf{x_{2,8}}\mathbf{x_{2,9}}\mathbf{x_{2,2}}\mathbf{x_{2,3}}\mathbf{x_{2,1}}), \ (x_{2,1}x_{2,8}x_{2,7}x_{2,2}x_{2,6}\mathbf{x_{2,5}}\mathbf{x_{2,1}})\},\$
$ \{ (\mathbf{x}_{4,4}\mathbf{x}_{4,6}\mathbf{x}_{4,8}x_{4,5}x_{4,9}x_{4,3}x_{4,4}), (\mathbf{x}_{4,4}\mathbf{x}_{4,5}\mathbf{x}_{4,3}\mathbf{x}_{4,6}\mathbf{x}_{4,1}x_{4,7}x_{4,4}) \}, \\ \{ (x_{4,9}\mathbf{x}_{4,2}\mathbf{x}_{4,3}\mathbf{x}_{4,1}\mathbf{x}_{4,4}\mathbf{x}_{4,8}\mathbf{x}_{4,9}), (\mathbf{x}_{4,9}\mathbf{x}_{5,9}x_{7,9}x_{2,9}x_{3,9}x_{8,9}x_{4,9}) \}, \\ \{ (\mathbf{x}_{4,8}\mathbf{x}_{4,7}\mathbf{x}_{4,2}\mathbf{x}_{4,6}\mathbf{x}_{4,5}\mathbf{x}_{4,1}x_{4,8}), (\mathbf{x}_{4,8}\mathbf{x}_{2,8}x_{8,8}x_{1,8}x_{3,8}x_{6,8}x_{4,8}) \}, \\ \{ (x_{5,2}\mathbf{x}_{5,8}\mathbf{x}_{5,3}\mathbf{x}_{5,7}\mathbf{x}_{5,9}\mathbf{x}_{5,1}\mathbf{x}_{5,2}), (\mathbf{x}_{5,2}\mathbf{x}_{5,5}x_{5,7}x_{5,6}x_{5,9}x_{5,4}x_{5,2}) \}, \\ \{ (x_{6,2}\mathbf{x}_{6,8}\mathbf{x}_{6,3}\mathbf{x}_{6,7}\mathbf{x}_{6,9}x_{6,1}x_{6,2}), (\mathbf{x}_{6,2}\mathbf{x}_{6,6}\mathbf{x}_{6,5}x_{6,1}x_{6,8}x_{6,7}x_{6,2}) \}, \\ \{ (x_{6,4}\mathbf{x}_{6,6}\mathbf{x}_{6,8}\mathbf{x}_{6,5}\mathbf{x}_{6,9}\mathbf{x}_{6,3}\mathbf{x}_{6,4}), (x_{6,4}x_{6,8}x_{6,9}x_{6,2}x_{6,3}\mathbf{x}_{6,1}\mathbf{x}_{6,4}) \}, \\ \{ (x_{7,2}\mathbf{x}_{7,8}\mathbf{x}_{7,3}\mathbf{x}_{7,7}\mathbf{x}_{7,9}\mathbf{x}_{7,1}\mathbf{x}_{7,2}), (\mathbf{x}_{7,2}\mathbf{x}_{7,5}x_{7,3}x_{7,1}x_{7,8}x_{7,7}) \}, \\ \{ (\mathbf{x}_{7,7}\mathbf{x}_{7,1}\mathbf{x}_{7,4}\mathbf{x}_{7,8}\mathbf{x}_{7,9}x_{7,2}x_{7,7}), (\mathbf{x}_{7,7}\mathbf{x}_{7,4}\mathbf{x}_{7,5}x_{7,3}x_{7,1}x_{7,8}x_{7,7}) \}, \\ \{ (\mathbf{x}_{8,6}\mathbf{x}_{8,8}\mathbf{x}_{8,5}\mathbf{x}_{8,9}\mathbf{x}_{8,3}\mathbf{x}_{8,4}x_{8,6}), (x_{8,6}x_{8,5}x_{8,1}x_{8,7}\mathbf{x}_{8,4}x_{8,5}x_{8,3}) \}, \\ \{ (\mathbf{x}_{3,1}\mathbf{x}_{6,1}\mathbf{x}_{4,1}\mathbf{x}_{2,1}\mathbf{x}_{8,1}x_{1,1}x_{3,1}), (x_{3,1}x_{8,1}x_{4,1}x_{5,1}\mathbf{x}_{7,1}\mathbf{x}_{2,1}\mathbf{x}_{3,1}) \}, \\ \{ (\mathbf{x}_{7,2}\mathbf{x}_{6,2}\mathbf{x}_{2,2}\mathbf{x}_{5,2}\mathbf{x}_{1,2}x_{4,2}x_{7,2}), (\mathbf{x}_{7,2}\mathbf{x}_{2,3}\mathbf{x}_{3,3}x_{8,3}x_{4,3}x_{5,3}x_{7,3}x_{2,3}) \}, \\ \{ (\mathbf{x}_{3,1}\mathbf{x}_{6,1}\mathbf{x}_{4,1}\mathbf{x}_{2,1}\mathbf{x}_{8,1}x_{1,1}x_{3,1}), (x_{3,1}x_{8,1}x_{4,1}x_{5,1}\mathbf{x}_{7,1}\mathbf{x}_{2,1}\mathbf{x}_{3,1}) \}, \\ \{ (\mathbf{x}_{1,4}\mathbf{x}_{6,4}\mathbf{x}_{8,4}\mathbf{x}_{5,4}\mathbf{x}_{3,4}\mathbf{x}_{7,4}x_{1,4}), (x_{1,4}x_{3,4}\mathbf{x}_{6,4}\mathbf{x}_{4,4}\mathbf{x}_{2,4}x_{8,4}x_{1,4}) \}, \\ \{ (\mathbf{x}_{1,5}\mathbf{x}_{3,5}\mathbf{x}_{5,5}\mathbf{x}_{4,5}\mathbf{x}_{5,5}\mathbf{x}_{7,5}\mathbf{x}_{5,5}\mathbf{x}_{7,5}\mathbf{x}_{2,5}) \}, \\ \{ (\mathbf{x}_{1,6}\mathbf{x}_{4,6}\mathbf{x}_{7,6}\mathbf{x}_{6,6}\mathbf{x}_{2,6}x_{5,6}x_{1,6}), (\mathbf{x}_{2,5}x_{3,5}x_{3,5}x_{4,5}\mathbf{x}_{5,5}\mathbf{x}_{7,5}\mathbf{x}_{2,5}) \}, \\ \{ (\mathbf{x}_{1,4}\mathbf{x}_{6,4}\mathbf{x}_{8,4}\mathbf{x}_{$	$\{(x_{3,2}\mathbf{x_{3,8}x_{3,3}x_{3,7}x_{3,9}x_{3,1}x_{3,2}}), \ (\mathbf{x_{3,2}x_{3,5}}x_{3,7}x_{3,6}x_{3,9}x_{3,4}x_{3,2})\},\$
$ \{ (x_{4,9}x_{4,2}x_{4,3}x_{4,1}x_{4,4}x_{4,8}x_{4,9}), (x_{4,9}x_{5,9}x_{7,9}x_{2,9}x_{3,9}x_{8,9}x_{4,9}) \}, \\ \{ (x_{4,8}x_{4,7}x_{4,2}x_{4,6}x_{4,5}x_{4,1}x_{4,8}), (x_{4,8}x_{2,8}x_{8,8}x_{1,8}x_{3,8}x_{6,8}x_{4,8}) \}, \\ \{ (x_{5,2}x_{5,8}x_{5,3}x_{5,7}x_{5,9}x_{5,1}x_{5,2}), (x_{5,2}x_{5,5}x_{5,7}x_{5,6}x_{5,9}x_{5,4}x_{5,2}) \}, \\ \{ (x_{5,5}x_{5,1}x_{5,8}x_{5,7}x_{5,2}x_{5,6}x_{5,5}), (x_{5,5}x_{5,3}x_{5,6}x_{5,1}x_{5,7}x_{5,4}x_{5,5}) \}, \\ \{ (x_{6,2}x_{6,8}x_{6,3}x_{6,7}x_{6,9}x_{6,1}x_{6,2}), (x_{6,2}x_{6,6}x_{6,5}x_{6,1}x_{6,8}x_{6,7}x_{6,2}) \}, \\ \{ (x_{6,4}x_{6,6}x_{6,8}x_{6,5}x_{6,9}x_{6,3}x_{6,4}), (x_{6,4}x_{6,8}x_{6,9}x_{6,2}x_{6,3}x_{6,1}x_{6,4}) \}, \\ \{ (x_{7,2}x_{7,8}x_{7,3}x_{7,7}x_{7,9}x_{7,1}x_{7,2}), (x_{7,2}x_{7,5}x_{7,7}x_{7,6}x_{7,9}x_{7,4}x_{7,2}) \}, \\ \{ (x_{7,7}x_{7,1}x_{7,4}x_{7,8}x_{7,9}x_{7,2}x_{7,7}), (x_{7,7}x_{7,4}x_{7,5}x_{7,3}x_{7,1}x_{7,8}x_{7,7}) \}, \\ \{ (x_{8,6}x_{8,8}x_{8,5}x_{8,9}x_{8,3}x_{8,4}x_{8,6}), (x_{8,6}x_{8,5}x_{8,1}x_{8,8}x_{8,7}x_{8,2}x_{8,6}) \}, \\ \{ (x_{8,3}x_{8,1}x_{8,4}x_{8,8}x_{8,9}x_{8,2}x_{8,3}), (x_{8,3}x_{8,6}x_{8,1}x_{8,7}x_{8,4}x_{8,5}x_{8,3}) \}, \\ \{ (x_{7,2}x_{6,2}x_{2,2}x_{5,2}x_{1,2}x_{4,2}x_{7,2}), (x_{7,2}x_{2,2}x_{3,2}x_{8,2}x_{4,2}x_{5,2}x_{7,2}) \}, \\ \{ (x_{2,3}x_{5,3}x_{1,3}x_{4,3}x_{7,3}x_{6,3}x_{2,3}), (x_{2,3}x_{3,3}x_{8,3}x_{4,3}x_{5,3}x_{7,3}x_{2,3}) \}, \\ \{ (x_{1,4}x_{6,4}x_{8,4}x_{5,4}x_{3,4}x_{7,4}x_{1,4}), (x_{1,4}x_{3,4}x_{6,4}x_{4,4}x_{2,4}x_{8,4}x_{1,4}) \}, \\ \{ (x_{1,5}x_{3,5}x_{6,5}x_{4,5}x_{2,5}x_{8,5}x_{1,5}), (x_{2,5}x_{3,5}x_{8,5}x_{4,5}x_{5,5}x_{7,5}x_{2,5}) \}, \\ \{ (x_{1,6}x_{4,6}x_{7,6}x_{6,6}x_{2,6}x_{5,6}x_{1,6}), (x_{2,6}x_{3,6}x_{8,6}x_{4,6}x_{5,6}x_{7,6}x_{2,6}) \}, \\ \{ (x_{2,8}x_{3,8}x_{8,8}x_{4,8}x_{5,8}x_{7,8}x_{2,8}), (x_{1,8}x_{6,8}x_{8,8}x_{5,8}x_{3,8}x_{7,8}x_{1,8}) \}, \end{cases} \}$	$\{(\mathbf{x_{3,4}x_{3,8}x_{3,9}x_{3,2}x_{3,3}x_{3,1}x_{3,4}}), \ (\mathbf{x_{3,4}x_{3,6}}x_{3,8}x_{3,5}x_{3,9}x_{3,3}x_{3,4})\},\$
$ \{ (\mathbf{x}_{4,8}\mathbf{x}_{4,7}\mathbf{x}_{4,2}\mathbf{x}_{4,6}\mathbf{x}_{4,5}\mathbf{x}_{4,1}x_{4,8}), (\mathbf{x}_{4,8}\mathbf{x}_{2,8}x_{8,8}x_{1,8}x_{3,8}x_{6,8}x_{4,8}) \}, \\ \{ (x_{5,2}\mathbf{x}_{5,8}\mathbf{x}_{5,3}\mathbf{x}_{5,7}\mathbf{x}_{5,9}\mathbf{x}_{5,1}\mathbf{x}_{5,2}), (\mathbf{x}_{5,2}\mathbf{x}_{5,5}x_{5,7}x_{5,6}x_{5,9}x_{5,4}x_{5,2}) \}, \\ \{ (x_{5,5}\mathbf{x}_{5,1}\mathbf{x}_{5,8}\mathbf{x}_{5,7}\mathbf{x}_{5,2}\mathbf{x}_{5,6}\mathbf{x}_{5,5}), (\mathbf{x}_{5,5}\mathbf{x}_{5,3}x_{5,6}x_{5,1}x_{5,7}x_{5,4}x_{5,5}) \}, \\ \{ (\mathbf{x}_{6,4}\mathbf{x}_{6,6}\mathbf{x}_{6,8}\mathbf{x}_{6,5}\mathbf{x}_{6,9}\mathbf{x}_{6,1}x_{6,2}), (\mathbf{x}_{6,4}x_{6,8}x_{6,9}x_{6,2}x_{6,3}\mathbf{x}_{6,1}\mathbf{x}_{6,4}) \}, \\ \{ (x_{6,4}\mathbf{x}_{6,6}\mathbf{x}_{6,8}\mathbf{x}_{6,5}\mathbf{x}_{6,9}\mathbf{x}_{6,3}\mathbf{x}_{6,4}), (x_{6,4}x_{6,8}x_{6,9}x_{6,2}x_{6,3}\mathbf{x}_{6,1}\mathbf{x}_{6,4}) \}, \\ \{ (x_{7,2}\mathbf{x}_{7,8}\mathbf{x}_{7,3}\mathbf{x}_{7,7}\mathbf{x}_{7,9}\mathbf{x}_{7,1}\mathbf{x}_{7,2}), (\mathbf{x}_{7,2}\mathbf{x}_{7,5}x_{7,3}x_{7,1}x_{7,8}x_{7,7}) \}, \\ \{ (\mathbf{x}_{7,7}\mathbf{x}_{7,1}\mathbf{x}_{7,4}\mathbf{x}_{7,8}\mathbf{x}_{7,9}x_{7,2}x_{7,7}), (\mathbf{x}_{7,7}\mathbf{x}_{7,4}\mathbf{x}_{7,5}x_{7,3}x_{7,1}x_{7,8}x_{7,7}) \}, \\ \{ (\mathbf{x}_{8,6}\mathbf{x}_{8,8}\mathbf{x}_{8,5}\mathbf{x}_{8,9}\mathbf{x}_{8,3}\mathbf{x}_{8,4}x_{8,6}), (x_{8,6}x_{8,5}x_{8,1}x_{8,8}x_{8,7}\mathbf{x}_{8,2}\mathbf{x}_{8,6}) \}, \\ \{ (\mathbf{x}_{8,3}\mathbf{x}_{8,1}\mathbf{x}_{8,4}\mathbf{x}_{8,8}\mathbf{x}_{8,9}\mathbf{x}_{8,2}x_{8,3}), (\mathbf{x}_{8,3}\mathbf{x}_{8,6}x_{8,1}x_{8,7}x_{8,4}x_{8,5}x_{8,3}) \}, \\ \{ (\mathbf{x}_{3,1}\mathbf{x}_{6,1}\mathbf{x}_{4,1}\mathbf{x}_{2,1}\mathbf{x}_{8,1}x_{1,1}x_{3,1}), (x_{3,1}x_{8,1}x_{4,1}x_{5,1}\mathbf{x}_{7,1}\mathbf{x}_{2,1}\mathbf{x}_{3,1}) \}, \\ \{ (\mathbf{x}_{7,2}\mathbf{x}_{6,2}\mathbf{x}_{2,2}\mathbf{x}_{5,2}\mathbf{x}_{1,2}x_{4,2}x_{7,2}), (\mathbf{x}_{7,2}\mathbf{x}_{2,3}\mathbf{x}_{3,2}x_{4,2}x_{5,2}x_{7,2}) \}, \\ \{ (\mathbf{x}_{2,3}\mathbf{x}_{5,3}\mathbf{x}_{1,3}\mathbf{x}_{4,3}\mathbf{x}_{7,3}\mathbf{x}_{6,3}x_{2,3}), (\mathbf{x}_{2,3}\mathbf{x}_{3,3}x_{8,3}x_{4,3}x_{5,3}x_{7,3}x_{2,3}) \}, \\ \{ (\mathbf{x}_{1,4}\mathbf{x}_{6,4}\mathbf{x}_{8,4}\mathbf{x}_{5,4}\mathbf{x}_{3,4}\mathbf{x}_{7,4}\mathbf{x}_{1,4}), (x_{1,4}x_{3,4}\mathbf{x}_{6,4}\mathbf{x}_{4,4}\mathbf{x}_{2,4}x_{8,4}x_{1,4}) \}, \\ \{ (\mathbf{x}_{1,5}\mathbf{x}_{3,5}\mathbf{x}_{6,5}\mathbf{x}_{4,5}\mathbf{x}_{5,6}x_{7,6}\mathbf{x}_{2,6}\mathbf{x}_{3,6}\mathbf{x}_{8,5}x_{4,5}\mathbf{x}_{5,5}\mathbf{x}_{7,5}\mathbf{x}_{2,5}) \}, \\ \{ (\mathbf{x}_{1,6}\mathbf{x}_{4,6}\mathbf{x}_{7,6}\mathbf{x}_{6,6}\mathbf{x}_{2,6}x_{5,6}x_{1,6}), (\mathbf{x}_{2,5}\mathbf{x}_{3,5}\mathbf{x}_{3,5}\mathbf{x}_{3,5}\mathbf{x}_{7,5}\mathbf{x}_{5,7}) \}, \\ \{ (\mathbf{x}_$	$\{(\mathbf{x_{4,4}x_{4,6}x_{4,8}}x_{4,5}x_{4,9}x_{4,3}x_{4,4}), \ (\mathbf{x_{4,4}x_{4,5}x_{4,3}}x_{4,6}\mathbf{x_{4,1}}x_{4,7}x_{4,4})\},\$
$ \{ (x_{5,2}x_{5,8}x_{5,3}x_{5,7}x_{5,9}x_{5,1}x_{5,2}), (x_{5,2}x_{5,5}x_{5,7}x_{5,6}x_{5,9}x_{5,4}x_{5,2}) \}, \\ \{ (x_{5,5}x_{5,1}x_{5,8}x_{5,7}x_{5,2}x_{5,6}x_{5,5}), (x_{5,5}x_{5,3}x_{5,6}x_{5,1}x_{5,7}x_{5,4}x_{5,5}) \}, \\ \{ (x_{6,2}x_{6,8}x_{6,3}x_{6,7}x_{6,9}x_{6,1}x_{6,2}), (x_{6,2}x_{6,6}x_{6,5}x_{6,1}x_{6,8}x_{6,7}x_{6,2}) \}, \\ \{ (x_{6,4}x_{6,6}x_{6,8}x_{6,5}x_{6,9}x_{6,3}x_{6,4}), (x_{6,4}x_{6,8}x_{6,9}x_{6,2}x_{6,3}x_{6,1}x_{6,4}) \}, \\ \{ (x_{7,2}x_{7,8}x_{7,3}x_{7,7}x_{7,9}x_{7,1}x_{7,2}), (x_{7,2}x_{7,5}x_{7,7}x_{7,6}x_{7,9}x_{7,4}x_{7,2}) \}, \\ \{ (x_{7,7}x_{7,1}x_{7,4}x_{7,8}x_{7,9}x_{7,2}x_{7,7}), (x_{7,7}x_{7,4}x_{7,5}x_{7,3}x_{7,1}x_{7,8}x_{7,7}) \}, \\ \{ (x_{8,6}x_{8,8}x_{8,5}x_{8,9}x_{8,3}x_{8,4}x_{8,6}), (x_{8,6}x_{8,5}x_{8,1}x_{8,8}x_{8,7}x_{8,2}x_{8,6}) \}, \\ \{ (x_{8,3}x_{8,1}x_{8,4}x_{8,8}x_{8,9}x_{8,2}x_{8,3}), (x_{8,3}x_{8,6}x_{8,1}x_{8,7}x_{8,4}x_{8,5}x_{8,3}) \}, \\ \{ (x_{3,1}x_{6,1}x_{4,1}x_{2,1}x_{8,1}x_{1,1}x_{3,1}), (x_{3,1}x_{8,1}x_{4,1}x_{5,1}x_{7,1}x_{2,1}x_{3,1}) \}, \\ \{ (x_{2,3}x_{5,3}x_{1,3}x_{4,3}x_{7,3}x_{6,3}x_{2,3}), (x_{2,3}x_{3,3}x_{8,3}x_{4,3}x_{5,3}x_{7,3}x_{2,3}) \}, \\ \{ (x_{1,4}x_{6,4}x_{8,4}x_{5,4}x_{3,4}x_{7,4}x_{1,4}), (x_{1,4}x_{3,4}x_{6,4}x_{4,4}x_{2,4}x_{8,4}x_{1,4}) \}, \\ \{ (x_{1,6}x_{4,6}x_{7,6}x_{6,6}x_{2,6}x_{5,6}x_{1,6}), (x_{2,5}x_{3,5}x_{8,5}x_{4,5}x_{5,5}x_{7,5}x_{2,5}) \}, \\ \{ (x_{1,6}x_{4,6}x_{7,6}x_{6,6}x_{2,6}x_{5,6}x_{1,6}), (x_{2,5}x_{3,5}x_{8,5}x_{4,5}x_{5,6}x_{7,6}x_{2,6}) \}, \\ \{ (x_{2,8}x_{3,8}x_{8,8}x_{4,8}x_{5,8}x_{7,8}x_{2,8}), (x_{1,8}x_{6,8}x_{8,8}x_{5,8}x_{3,8}x_{7,8}x_{1,8}) \}, \end{cases}$	$\{(x_{4,9}\mathbf{x_{4,2}x_{4,3}x_{4,1}x_{4,4}x_{4,8}x_{4,9}}), \ (\mathbf{x_{4,9}x_{5,9}}x_{7,9}x_{2,9}x_{3,9}x_{8,9}x_{4,9})\},\$
$ \{ (x_{5,5}x_{5,1}x_{5,8}x_{5,7}x_{5,2}x_{5,6}x_{5,5}), (x_{5,5}x_{5,3}x_{5,6}x_{5,1}x_{5,7}x_{5,4}x_{5,5}) \}, \\ \{ (x_{6,2}x_{6,8}x_{6,3}x_{6,7}x_{6,9}x_{6,1}x_{6,2}), (x_{6,2}x_{6,6}x_{6,5}x_{6,1}x_{6,8}x_{6,7}x_{6,2}) \}, \\ \{ (x_{6,4}x_{6,6}x_{6,8}x_{6,5}x_{6,9}x_{6,3}x_{6,4}), (x_{6,4}x_{6,8}x_{6,9}x_{6,2}x_{6,3}x_{6,1}x_{6,4}) \}, \\ \{ (x_{7,2}x_{7,8}x_{7,3}x_{7,7}x_{7,9}x_{7,1}x_{7,2}), (x_{7,2}x_{7,5}x_{7,7}x_{7,6}x_{7,9}x_{7,4}x_{7,2}) \}, \\ \{ (x_{7,7}x_{7,1}x_{7,4}x_{7,8}x_{7,9}x_{7,2}x_{7,7}), (x_{7,7}x_{7,4}x_{7,5}x_{7,3}x_{7,1}x_{7,8}x_{7,7}) \}, \\ \{ (x_{8,6}x_{8,8}x_{8,5}x_{8,9}x_{8,3}x_{8,4}x_{8,6}), (x_{8,6}x_{8,5}x_{8,1}x_{8,8}x_{8,7}x_{8,2}x_{8,6}) \}, \\ \{ (x_{8,3}x_{8,1}x_{8,4}x_{8,8}x_{8,9}x_{8,2}x_{8,3}), (x_{8,3}x_{8,6}x_{8,1}x_{8,7}x_{8,4}x_{8,5}x_{8,3}) \}, \\ \{ (x_{3,1}x_{6,1}x_{4,1}x_{2,1}x_{8,1}x_{1,1}x_{3,1}), (x_{3,1}x_{8,1}x_{4,1}x_{5,1}x_{7,1}x_{2,1}x_{3,1}) \}, \\ \{ (x_{7,2}x_{6,2}x_{2,2}x_{5,2}x_{1,2}x_{4,2}x_{7,2}), (x_{7,2}x_{2,2}x_{3,2}x_{8,2}x_{4,2}x_{5,2}x_{7,2}) \}, \\ \{ (x_{2,3}x_{5,3}x_{1,3}x_{4,3}x_{7,3}x_{6,3}x_{2,3}), (x_{2,3}x_{3,3}x_{8,3}x_{4,3}x_{5,3}x_{7,3}x_{2,3}) \}, \\ \{ (x_{1,4}x_{6,4}x_{8,4}x_{5,4}x_{3,4}x_{7,4}x_{1,4}), (x_{1,4}x_{3,4}x_{6,4}x_{4,4}x_{2,4}x_{8,4}x_{1,4}) \}, \\ \{ (x_{1,5}x_{3,5}x_{6,5}x_{4,5}x_{2,5}x_{8,5}x_{1,5}), (x_{2,5}x_{3,5}x_{8,5}x_{4,5}x_{5,5}x_{7,5}x_{2,5}) \}, \\ \{ (x_{1,6}x_{4,6}x_{7,6}x_{6,6}x_{2,6}x_{5,6}x_{1,6}), (x_{2,6}x_{3,6}x_{8,6}x_{4,6}x_{5,6}x_{7,6}x_{2,6}) \}, \\ \{ (x_{2,8}x_{3,8}x_{8,8}x_{4,8}x_{5,8}x_{7,8}x_{2,8}), (x_{1,8}x_{6,8}x_{8,8}x_{5,8}x_{3,8}x_{7,8}x_{1,8}) \}, \end{cases}$	$\{(\mathbf{x_{4,8}x_{4,7}x_{4,2}x_{4,6}x_{4,5}x_{4,1}x_{4,8}), \ (\mathbf{x_{4,8}x_{2,8}x_{8,8}x_{1,8}x_{3,8}x_{6,8}x_{4,8})\},\$
$ \{ (\mathbf{x_{6,2}x_{6,8}x_{6,3}x_{6,7}x_{6,9}x_{6,1}x_{6,2}), (\mathbf{x_{6,2}x_{6,6}x_{6,5}x_{6,1}x_{6,8}x_{6,7}x_{6,2}) \}, \\ \{ (x_{6,4}x_{6,6}x_{6,8}x_{6,5}x_{6,9}x_{6,3}x_{6,4}), (x_{6,4}x_{6,8}x_{6,9}x_{6,2}x_{6,3}x_{6,1}x_{6,4}) \}, \\ \{ (x_{7,2}x_{7,8}x_{7,3}x_{7,7}x_{7,9}x_{7,1}x_{7,2}), (\mathbf{x_{7,2}x_{7,5}}x_{7,7}x_{7,6}x_{7,9}x_{7,4}x_{7,2}) \}, \\ \{ (\mathbf{x_{7,7}x_{7,1}x_{7,4}x_{7,8}x_{7,9}x_{7,2}x_{7,7}), (\mathbf{x_{7,7}x_{7,4}x_{7,5}x_{7,3}x_{7,1}x_{7,8}x_{7,7}) \}, \\ \{ (\mathbf{x_{8,6}x_{8,8}x_{8,5}x_{8,9}x_{8,3}x_{8,4}x_{8,6}), (x_{8,6}x_{8,5}x_{8,1}x_{8,8}x_{8,7}x_{8,2}x_{8,6}) \}, \\ \{ (\mathbf{x_{8,3}x_{8,1}x_{8,4}x_{8,8}x_{8,9}x_{8,2}x_{8,3}), (\mathbf{x_{8,3}x_{8,6}x_{8,1}x_{8,7}x_{8,4}x_{8,5}x_{8,3}) \}, \\ \{ (\mathbf{x_{3,1}x_{6,1}x_{4,1}x_{2,1}x_{8,1}x_{1,1}x_{3,1}), (x_{3,1}x_{8,1}x_{4,1}x_{5,1}x_{7,1}x_{2,1}x_{3,1}) \}, \\ \{ (\mathbf{x_{7,2}x_{6,2}x_{2,2}x_{5,2}x_{1,2}x_{4,2}x_{7,2}), (\mathbf{x_{7,2}x_{2,2}x_{3,2}x_{8,2}x_{4,2}x_{5,2}x_{7,2}) \}, \\ \{ (\mathbf{x_{2,3}x_{5,3}x_{1,3}x_{4,3}x_{7,3}x_{6,3}x_{2,3}), (x_{2,3}x_{3,3}x_{8,3}x_{4,3}x_{5,3}x_{7,3}x_{2,3}) \}, \\ \{ (\mathbf{x_{1,4}x_{6,4}x_{8,4}x_{5,4}x_{3,4}x_{7,4}x_{1,4}), (x_{1,4}x_{3,4}x_{6,4}x_{4,4}x_{2,4}x_{8,4}x_{1,4}) \}, \\ \{ (\mathbf{x_{1,6}x_{4,6}x_{7,6}x_{6,6}x_{2,6}x_{5,6}x_{1,6}), (\mathbf{x_{2,5}x_{3,5}x_{8,5}x_{4,5}x_{5,5}x_{7,5}x_{2,5}) \}, \\ \{ (\mathbf{x_{5,7}x_{1,7}x_{4,7}x_{7,7}x_{6,7}x_{2,7}x_{5,7}), (\mathbf{x_{5,7}x_{3,7}x_{7,7}x_{1,7}x_{6,7}x_{8,7}x_{5,7}) \}, \\ \{ (\mathbf{x_{2,8}x_{3,8}x_{8,8}x_{4,8}x_{5,8}x_{7,8}x_{2,8}), (x_{1,8}x_{6,8}x_{8,8}x_{5,8}x_{3,8}x_{7,8}x_{1,8}) \}, \end{cases}$	$\{(x_{5,2}\mathbf{x_{5,8}x_{5,3}x_{5,7}x_{5,9}x_{5,1}x_{5,2}}), \ (\mathbf{x_{5,2}x_{5,5}}x_{5,7}x_{5,6}x_{5,9}x_{5,4}x_{5,2})\},\$
$ \{ (x_{6,4}x_{6,6}x_{6,8}x_{6,5}x_{6,9}x_{6,3}x_{6,4}), (x_{6,4}x_{6,8}x_{6,9}x_{6,2}x_{6,3}x_{6,1}x_{6,4}) \}, \\ \{ (x_{7,2}x_{7,8}x_{7,3}x_{7,7}x_{7,9}x_{7,1}x_{7,2}), (x_{7,2}x_{7,5}x_{7,7}x_{7,6}x_{7,9}x_{7,4}x_{7,2}) \}, \\ \{ (x_{7,7}x_{7,1}x_{7,4}x_{7,8}x_{7,9}x_{7,2}x_{7,7}), (x_{7,7}x_{7,4}x_{7,5}x_{7,3}x_{7,1}x_{7,8}x_{7,7}) \}, \\ \{ (x_{8,6}x_{8,8}x_{8,5}x_{8,9}x_{8,3}x_{8,4}x_{8,6}), (x_{8,6}x_{8,5}x_{8,1}x_{8,8}x_{8,7}x_{8,2}x_{8,6}) \}, \\ \{ (x_{8,3}x_{8,1}x_{8,4}x_{8,8}x_{8,9}x_{8,2}x_{8,3}), (x_{8,3}x_{8,6}x_{8,1}x_{8,7}x_{8,4}x_{8,5}x_{8,3}) \}, \\ \{ (x_{3,1}x_{6,1}x_{4,1}x_{2,1}x_{8,1}x_{1,1}x_{3,1}), (x_{3,1}x_{8,1}x_{4,1}x_{5,1}x_{7,1}x_{2,1}x_{3,1}) \}, \\ \{ (x_{7,2}x_{6,2}x_{2,2}x_{5,2}x_{1,2}x_{4,2}x_{7,2}), (x_{7,2}x_{2,2}x_{3,2}x_{8,2}x_{4,2}x_{5,2}x_{7,2}) \}, \\ \{ (x_{2,3}x_{5,3}x_{1,3}x_{4,3}x_{7,3}x_{6,3}x_{2,3}), (x_{2,3}x_{3,3}x_{8,3}x_{4,3}x_{5,3}x_{7,3}x_{2,3}) \}, \\ \{ (x_{1,4}x_{6,4}x_{8,4}x_{5,4}x_{3,4}x_{7,4}x_{1,4}), (x_{1,4}x_{3,4}x_{6,4}x_{4,4}x_{2,4}x_{8,4}x_{1,4}) \}, \\ \{ (x_{1,5}x_{3,5}x_{6,5}x_{4,5}x_{2,5}x_{8,5}x_{1,5}), (x_{2,5}x_{3,5}x_{8,5}x_{4,5}x_{5,5}x_{7,5}x_{2,5}) \}, \\ \{ (x_{1,6}x_{4,6}x_{7,6}x_{6,6}x_{2,6}x_{5,6}x_{1,6}), (x_{2,6}x_{3,6}x_{8,6}x_{4,6}x_{5,6}x_{7,6}x_{2,6}) \}, \\ \{ (x_{2,8}x_{3,8}x_{8,8}x_{4,8}x_{5,8}x_{7,8}x_{2,8}), (x_{1,8}x_{6,8}x_{8,8}x_{5,8}x_{3,8}x_{7,8}x_{1,8}) \}, \end{cases}$	$\{(x_{5,5}\mathbf{x_{5,1}x_{5,8}x_{5,7}x_{5,2}x_{5,6}x_{5,5}}), \ (\mathbf{x_{5,5}x_{5,3}}x_{5,6}x_{5,1}x_{5,7}x_{5,4}x_{5,5})\},\$
$ \{ (x_{7,2}x_{7,8}x_{7,3}x_{7,7}x_{7,9}x_{7,1}x_{7,2}), (x_{7,2}x_{7,5}x_{7,7}x_{7,6}x_{7,9}x_{7,4}x_{7,2}) \}, \\ \{ (x_{7,7}x_{7,1}x_{7,4}x_{7,8}x_{7,9}x_{7,2}x_{7,7}), (x_{7,7}x_{7,4}x_{7,5}x_{7,3}x_{7,1}x_{7,8}x_{7,7}) \}, \\ \{ (x_{8,6}x_{8,8}x_{8,5}x_{8,9}x_{8,3}x_{8,4}x_{8,6}), (x_{8,6}x_{8,5}x_{8,1}x_{8,8}x_{8,7}x_{8,2}x_{8,6}) \}, \\ \{ (x_{8,3}x_{8,1}x_{8,4}x_{8,8}x_{8,9}x_{8,2}x_{8,3}), (x_{8,3}x_{8,6}x_{8,1}x_{8,7}x_{8,4}x_{8,5}x_{8,3}) \}, \\ \{ (x_{3,1}x_{6,1}x_{4,1}x_{2,1}x_{8,1}x_{1,1}x_{3,1}), (x_{3,1}x_{8,1}x_{4,1}x_{5,1}x_{7,1}x_{2,1}x_{3,1}) \}, \\ \{ (x_{7,2}x_{6,2}x_{2,2}x_{5,2}x_{1,2}x_{4,2}x_{7,2}), (x_{7,2}x_{2,2}x_{3,2}x_{8,2}x_{4,2}x_{5,2}x_{7,2}) \}, \\ \{ (x_{2,3}x_{5,3}x_{1,3}x_{4,3}x_{7,3}x_{6,3}x_{2,3}), (x_{2,3}x_{3,3}x_{8,3}x_{4,3}x_{5,3}x_{7,3}x_{2,3}) \}, \\ \{ (x_{1,4}x_{6,4}x_{8,4}x_{5,4}x_{3,4}x_{7,4}x_{1,4}), (x_{1,4}x_{3,4}x_{6,4}x_{4,4}x_{2,4}x_{8,4}x_{1,4}) \}, \\ \{ (x_{1,5}x_{3,5}x_{6,5}x_{4,5}x_{2,5}x_{8,5}x_{1,5}), (x_{2,5}x_{3,5}x_{8,5}x_{4,5}x_{5,5}x_{7,5}x_{2,5}) \}, \\ \{ (x_{1,6}x_{4,6}x_{7,6}x_{6,6}x_{2,6}x_{5,6}x_{1,6}), (x_{2,6}x_{3,6}x_{8,6}x_{4,6}x_{5,6}x_{7,6}x_{2,6}) \}, \\ \{ (x_{2,8}x_{3,8}x_{8,8}x_{4,8}x_{5,8}x_{7,8}x_{2,8}), (x_{1,8}x_{6,8}x_{8,8}x_{5,8}x_{3,8}x_{7,8}x_{1,8}) \}, \end{cases}$	$\{(\mathbf{x_{6,2}x_{6,8}x_{6,3}x_{6,7}x_{6,9}x_{6,1}x_{6,2}}), \ (\mathbf{x_{6,2}x_{6,6}x_{6,5}x_{6,1}x_{6,8}x_{6,7}x_{6,2}})\},\$
$ \{ (\mathbf{x_{7,7}x_{7,1}x_{7,4}x_{7,8}x_{7,9}x_{7,2}x_{7,7}), (\mathbf{x_{7,7}x_{7,4}x_{7,5}x_{7,3}x_{7,1}x_{7,8}x_{7,7}) \}, \\ \{ (\mathbf{x_{8,6}x_{8,8}x_{8,5}x_{8,9}x_{8,3}x_{8,4}x_{8,6}), (x_{8,6}x_{8,5}x_{8,1}x_{8,8}x_{8,7}x_{8,2}x_{8,6}) \}, \\ \{ (\mathbf{x_{8,3}x_{8,1}x_{8,4}x_{8,8}x_{8,9}x_{8,2}x_{8,3}), (\mathbf{x_{8,3}x_{8,6}x_{8,1}x_{8,7}x_{8,4}x_{8,5}x_{8,3}) \}, \\ \{ (\mathbf{x_{3,1}x_{6,1}x_{4,1}x_{2,1}x_{8,1}x_{1,1}x_{3,1}), (x_{3,1}x_{8,1}x_{4,1}x_{5,1}x_{7,1}x_{2,1}x_{3,1}) \}, \\ \{ (\mathbf{x_{7,2}x_{6,2}x_{2,2}x_{5,2}x_{1,2}x_{4,2}x_{7,2}), (\mathbf{x_{7,2}x_{2,2}x_{3,2}x_{8,2}x_{4,2}x_{5,2}x_{7,2}) \}, \\ \{ (\mathbf{x_{2,3}x_{5,3}x_{1,3}x_{4,3}x_{7,3}x_{6,3}x_{2,3}), (\mathbf{x_{2,3}x_{3,3}x_{8,3}x_{4,3}x_{5,3}x_{7,3}x_{2,3}) \}, \\ \{ (x_{1,4}x_{6,4}x_{8,4}x_{5,4}x_{3,4}x_{7,4}x_{1,4}), (x_{1,4}x_{3,4}x_{6,4}x_{4,4}x_{2,4}x_{8,4}x_{1,4}) \}, \\ \{ (\mathbf{x_{1,5}x_{3,5}x_{6,5}x_{4,5}x_{2,5}x_{8,5}x_{1,5}), (x_{2,5}x_{3,5}x_{8,5}x_{4,5}x_{5,5}x_{7,5}x_{2,5}) \}, \\ \{ (\mathbf{x_{1,6}x_{4,6}x_{7,6}x_{6,6}x_{2,6}x_{5,6}x_{1,6}), (\mathbf{x_{2,6}x_{3,6}x_{8,6}x_{4,6}x_{5,6}x_{7,6}x_{2,6}) \}, \\ \{ (\mathbf{x_{2,8}x_{3,8}x_{8,8}x_{4,8}x_{5,8}x_{7,8}x_{2,8}), (x_{1,8}x_{6,8}x_{8,8}x_{5,8}x_{3,8}x_{7,8}x_{1,8}) \}, \end{cases}$	$\{(x_{6,4}\mathbf{x_{6,6}x_{6,8}x_{6,5}x_{6,9}x_{6,3}x_{6,4}}), (x_{6,4}x_{6,8}x_{6,9}x_{6,2}x_{6,3}x_{6,1}x_{6,4})\},\$
$ \{ (\mathbf{x}_{8,6}\mathbf{x}_{8,8}\mathbf{x}_{8,5}\mathbf{x}_{8,9}\mathbf{x}_{8,3}\mathbf{x}_{8,4}x_{8,6}), (x_{8,6}x_{8,5}x_{8,1}x_{8,8}x_{8,7}\mathbf{x}_{8,2}\mathbf{x}_{8,6}) \}, \\ \{ (\mathbf{x}_{8,3}\mathbf{x}_{8,1}\mathbf{x}_{8,4}\mathbf{x}_{8,8}\mathbf{x}_{8,9}\mathbf{x}_{8,2}x_{8,3}), (\mathbf{x}_{8,3}\mathbf{x}_{8,6}x_{8,1}x_{8,7}x_{8,4}x_{8,5}x_{8,3}) \}, \\ \{ (\mathbf{x}_{3,1}\mathbf{x}_{6,1}\mathbf{x}_{4,1}\mathbf{x}_{2,1}\mathbf{x}_{8,1}x_{1,1}x_{3,1}), (x_{3,1}x_{8,1}x_{4,1}x_{5,1}\mathbf{x}_{7,1}\mathbf{x}_{2,1}\mathbf{x}_{3,1}) \}, \\ \{ (\mathbf{x}_{7,2}\mathbf{x}_{6,2}\mathbf{x}_{2,2}\mathbf{x}_{5,2}\mathbf{x}_{1,2}x_{4,2}x_{7,2}), (\mathbf{x}_{7,2}\mathbf{x}_{2,2}\mathbf{x}_{3,2}x_{8,2}x_{4,2}x_{5,2}x_{7,2}) \}, \\ \{ (\mathbf{x}_{2,3}\mathbf{x}_{5,3}\mathbf{x}_{1,3}\mathbf{x}_{4,3}\mathbf{x}_{7,3}\mathbf{x}_{6,3}x_{2,3}), (\mathbf{x}_{2,3}\mathbf{x}_{3,3}x_{8,3}x_{4,3}x_{5,3}x_{7,3}x_{2,3}) \}, \\ \{ (\mathbf{x}_{1,4}\mathbf{x}_{6,4}\mathbf{x}_{8,4}\mathbf{x}_{5,4}\mathbf{x}_{3,4}\mathbf{x}_{7,4}x_{1,4}), (x_{1,4}x_{3,4}\mathbf{x}_{6,4}\mathbf{x}_{4,4}\mathbf{x}_{2,4}x_{8,4}x_{1,4}) \}, \\ \{ (\mathbf{x}_{1,5}\mathbf{x}_{3,5}\mathbf{x}_{6,5}\mathbf{x}_{4,5}\mathbf{x}_{2,5}x_{8,5}x_{1,5}), (x_{2,5}x_{3,5}x_{8,5}x_{4,5}\mathbf{x}_{5,5}\mathbf{x}_{7,5}\mathbf{x}_{2,5}) \}, \\ \{ (\mathbf{x}_{1,6}\mathbf{x}_{4,6}\mathbf{x}_{7,6}\mathbf{x}_{6,6}\mathbf{x}_{2,6}x_{5,6}x_{1,6}), (\mathbf{x}_{2,6}\mathbf{x}_{3,6}\mathbf{x}_{8,6}x_{4,6}x_{5,6}x_{7,6}x_{2,6}) \}, \\ \{ (\mathbf{x}_{5,7}\mathbf{x}_{1,7}\mathbf{x}_{4,7}\mathbf{x}_{7,7}\mathbf{x}_{6,7}\mathbf{x}_{2,7}x_{5,7}), (\mathbf{x}_{5,7}\mathbf{x}_{3,7}x_{7,7}x_{1,7}x_{6,7}x_{8,7}x_{5,7}) \}, \\ \{ (\mathbf{x}_{2,8}\mathbf{x}_{3,8}\mathbf{x}_{8,8}\mathbf{x}_{4,8}\mathbf{x}_{5,8}\mathbf{x}_{7,8}x_{2,8}), (x_{1,8}x_{6,8}x_{8,8}x_{5,8}x_{3,8}\mathbf{x}_{7,8}\mathbf{x}_{1,8}) \}, \end{cases}$	$\{(x_{7,2}\mathbf{x_{7,8}x_{7,3}x_{7,7}x_{7,9}x_{7,1}x_{7,2}}), \ (\mathbf{x_{7,2}x_{7,5}}x_{7,7}x_{7,6}x_{7,9}x_{7,4}x_{7,2})\},\$
$ \{ (\mathbf{x}_{8,3}\mathbf{x}_{8,1}\mathbf{x}_{8,4}\mathbf{x}_{8,8}\mathbf{x}_{8,9}\mathbf{x}_{8,2}x_{8,3}), (\mathbf{x}_{8,3}\mathbf{x}_{8,6}x_{8,1}x_{8,7}x_{8,4}x_{8,5}x_{8,3}) \}, \\ \{ (\mathbf{x}_{3,1}\mathbf{x}_{6,1}\mathbf{x}_{4,1}\mathbf{x}_{2,1}\mathbf{x}_{8,1}x_{1,1}x_{3,1}), (x_{3,1}x_{8,1}x_{4,1}x_{5,1}\mathbf{x}_{7,1}\mathbf{x}_{2,1}\mathbf{x}_{3,1}) \}, \\ \{ (\mathbf{x}_{7,2}\mathbf{x}_{6,2}\mathbf{x}_{2,2}\mathbf{x}_{5,2}\mathbf{x}_{1,2}x_{4,2}x_{7,2}), (\mathbf{x}_{7,2}\mathbf{x}_{2,2}\mathbf{x}_{3,2}x_{8,2}x_{4,2}x_{5,2}x_{7,2}) \}, \\ \{ (\mathbf{x}_{2,3}\mathbf{x}_{5,3}\mathbf{x}_{1,3}\mathbf{x}_{4,3}\mathbf{x}_{7,3}\mathbf{x}_{6,3}x_{2,3}), (\mathbf{x}_{2,3}\mathbf{x}_{3,3}x_{8,3}x_{4,3}x_{5,3}x_{7,3}x_{2,3}) \}, \\ \{ (x_{1,4}\mathbf{x}_{6,4}\mathbf{x}_{8,4}\mathbf{x}_{5,4}\mathbf{x}_{3,4}\mathbf{x}_{7,4}x_{1,4}), (x_{1,4}x_{3,4}\mathbf{x}_{6,4}\mathbf{x}_{4,4}\mathbf{x}_{2,4}x_{8,4}x_{1,4}) \}, \\ \{ (\mathbf{x}_{1,5}\mathbf{x}_{3,5}\mathbf{x}_{6,5}\mathbf{x}_{4,5}\mathbf{x}_{2,5}x_{8,5}x_{1,5}), (x_{2,5}x_{3,5}x_{8,5}x_{4,5}\mathbf{x}_{5,5}\mathbf{x}_{7,5}\mathbf{x}_{2,5}) \}, \\ \{ (\mathbf{x}_{1,6}\mathbf{x}_{4,6}\mathbf{x}_{7,6}\mathbf{x}_{6,6}\mathbf{x}_{2,6}x_{5,6}x_{1,6}), (\mathbf{x}_{2,6}\mathbf{x}_{3,6}\mathbf{x}_{8,6}x_{4,6}x_{5,6}x_{7,6}x_{2,6}) \}, \\ \{ (\mathbf{x}_{5,7}\mathbf{x}_{1,7}\mathbf{x}_{4,7}\mathbf{x}_{7,7}\mathbf{x}_{6,7}\mathbf{x}_{2,7}x_{5,7}), (\mathbf{x}_{5,7}\mathbf{x}_{3,7}x_{7,7}x_{1,7}x_{6,7}x_{8,7}x_{5,7}) \}, \\ \{ (\mathbf{x}_{2,8}\mathbf{x}_{3,8}\mathbf{x}_{8,8}\mathbf{x}_{4,8}\mathbf{x}_{5,8}\mathbf{x}_{7,8}x_{2,8}), (x_{1,8}x_{6,8}x_{8,8}x_{5,8}x_{3,8}\mathbf{x}_{7,8}\mathbf{x}_{1,8}) \}, \end{cases}$	$\{(\mathbf{x_{7,7}x_{7,1}x_{7,4}x_{7,8}x_{7,9}x_{7,2}x_{7,7}}), \ (\mathbf{x_{7,7}x_{7,4}x_{7,5}}x_{7,3}x_{7,1}x_{7,8}x_{7,7})\},\$
$ \{ (\mathbf{x_{3,1}x_{6,1}x_{4,1}x_{2,1}x_{8,1}x_{1,1}x_{3,1}), (x_{3,1}x_{8,1}x_{4,1}x_{5,1}\mathbf{x_{7,1}x_{2,1}x_{3,1}) \}, \\ \{ (\mathbf{x_{7,2}x_{6,2}x_{2,2}x_{5,2}x_{1,2}x_{4,2}x_{7,2}), (\mathbf{x_{7,2}x_{2,2}x_{3,2}x_{8,2}x_{4,2}x_{5,2}x_{7,2}) \}, \\ \{ (\mathbf{x_{2,3}x_{5,3}x_{1,3}x_{4,3}x_{7,3}x_{6,3}x_{2,3}), (\mathbf{x_{2,3}x_{3,3}x_{8,3}x_{4,3}x_{5,3}x_{7,3}x_{2,3}) \}, \\ \{ (x_{1,4}x_{6,4}x_{8,4}x_{5,4}x_{3,4}x_{7,4}x_{1,4}), (x_{1,4}x_{3,4}x_{6,4}x_{4,4}x_{2,4}x_{8,4}x_{1,4}) \}, \\ \{ (\mathbf{x_{1,5}x_{3,5}x_{6,5}x_{4,5}x_{2,5}x_{8,5}x_{1,5}), (x_{2,5}x_{3,5}x_{8,5}x_{4,5}x_{5,5}x_{7,5}x_{2,5}) \}, \\ \{ (\mathbf{x_{1,6}x_{4,6}x_{7,6}x_{6,6}x_{2,6}x_{5,6}x_{1,6}), (\mathbf{x_{2,6}x_{3,6}x_{8,6}x_{4,6}x_{5,6}x_{7,6}x_{2,6}) \}, \\ \{ (\mathbf{x_{5,7}x_{1,7}x_{4,7}x_{7,7}x_{6,7}x_{2,7}x_{5,7}), (\mathbf{x_{5,7}x_{3,7}x_{7,7}x_{1,7}x_{6,7}x_{8,7}x_{5,7}) \}, \\ \{ (\mathbf{x_{2,8}x_{3,8}x_{8,8}x_{4,8}x_{5,8}x_{7,8}x_{2,8}), (x_{1,8}x_{6,8}x_{8,8}x_{5,8}x_{3,8}x_{7,8}x_{1,8}) \}, \end{cases}$	$\{(\mathbf{x_{8,6}x_{8,8}x_{8,5}x_{8,9}x_{8,3}x_{8,4}x_{8,6}}), (x_{8,6}x_{8,5}x_{8,1}x_{8,8}x_{8,7}x_{8,2}x_{8,6})\},\$
$ \{ (\mathbf{x_{7,2}x_{6,2}x_{2,2}x_{5,2}x_{1,2}x_{4,2}x_{7,2}), (\mathbf{x_{7,2}x_{2,2}x_{3,2}x_{8,2}x_{4,2}x_{5,2}x_{7,2}) \}, \\ \{ (\mathbf{x_{2,3}x_{5,3}x_{1,3}x_{4,3}x_{7,3}x_{6,3}x_{2,3}), (\mathbf{x_{2,3}x_{3,3}x_{8,3}x_{4,3}x_{5,3}x_{7,3}x_{2,3}) \}, \\ \{ (x_{1,4}\mathbf{x_{6,4}x_{8,4}x_{5,4}x_{3,4}x_{7,4}x_{1,4}), (x_{1,4}x_{3,4}\mathbf{x_{6,4}x_{4,4}x_{2,4}x_{8,4}x_{1,4}) \}, \\ \{ (\mathbf{x_{1,5}x_{3,5}x_{6,5}x_{4,5}x_{2,5}x_{8,5}x_{1,5}), (x_{2,5}x_{3,5}x_{8,5}x_{4,5}x_{5,5}x_{7,5}x_{2,5}) \}, \\ \{ (\mathbf{x_{1,6}x_{4,6}x_{7,6}x_{6,6}x_{2,6}x_{5,6}x_{1,6}), (\mathbf{x_{2,6}x_{3,6}x_{8,6}x_{4,6}x_{5,6}x_{7,6}x_{2,6}) \}, \\ \{ (\mathbf{x_{5,7}x_{1,7}x_{4,7}x_{7,7}x_{6,7}x_{2,7}x_{5,7}), (\mathbf{x_{5,7}x_{3,7}x_{7,7}x_{1,7}x_{6,7}x_{8,7}x_{5,7}) \}, \\ \{ (\mathbf{x_{2,8}x_{3,8}x_{8,8}x_{4,8}x_{5,8}x_{7,8}x_{2,8}), (x_{1,8}x_{6,8}x_{8,8}x_{5,8}x_{3,8}x_{7,8}x_{1,8}) \}, \end{cases}$	$\{(\mathbf{x_{8,3}x_{8,1}x_{8,4}x_{8,8}x_{8,9}x_{8,2}x_{8,3}}), \ (\mathbf{x_{8,3}x_{8,6}}x_{8,1}x_{8,7}x_{8,4}x_{8,5}x_{8,3})\},\$
$ \{ (\mathbf{x_{2,3}x_{5,3}x_{1,3}x_{4,3}x_{7,3}x_{6,3}x_{2,3}), (\mathbf{x_{2,3}x_{3,3}}x_{8,3}x_{4,3}x_{5,3}x_{7,3}x_{2,3}) \}, \\ \{ (x_{1,4}\mathbf{x_{6,4}x_{8,4}x_{5,4}x_{3,4}x_{7,4}x_{1,4}), (x_{1,4}x_{3,4}\mathbf{x_{6,4}x_{4,4}x_{2,4}}x_{8,4}x_{1,4}) \}, \\ \{ (\mathbf{x_{1,5}x_{3,5}x_{6,5}x_{4,5}x_{2,5}x_{8,5}x_{1,5}), (x_{2,5}x_{3,5}x_{8,5}x_{4,5}x_{5,5}x_{7,5}x_{2,5}) \}, \\ \{ (\mathbf{x_{1,6}x_{4,6}x_{7,6}x_{6,6}x_{2,6}x_{5,6}x_{1,6}), (\mathbf{x_{2,6}x_{3,6}x_{8,6}}x_{4,6}x_{5,6}x_{7,6}x_{2,6}) \}, \\ \{ (\mathbf{x_{5,7}x_{1,7}x_{4,7}x_{7,7}x_{6,7}x_{2,7}x_{5,7}), (\mathbf{x_{5,7}x_{3,7}}x_{7,7}x_{1,7}x_{6,7}x_{8,7}x_{5,7}) \}, \\ \{ (\mathbf{x_{2,8}x_{3,8}x_{8,8}x_{4,8}x_{5,8}x_{7,8}x_{2,8}), (x_{1,8}x_{6,8}x_{8,8}x_{5,8}x_{3,8}x_{7,8}x_{1,8}) \}, \end{cases} $	$\{(\mathbf{x_{3,1}x_{6,1}x_{4,1}x_{2,1}x_{8,1}x_{1,1}x_{3,1}}), (x_{3,1}x_{8,1}x_{4,1}x_{5,1}x_{7,1}x_{2,1}x_{3,1})\},\$
$ \{ (x_{1,4}\mathbf{x_{6,4}}\mathbf{x_{8,4}}\mathbf{x_{5,4}}\mathbf{x_{3,4}}\mathbf{x_{7,4}}x_{1,4}), (x_{1,4}x_{3,4}\mathbf{x_{6,4}}\mathbf{x_{4,4}}\mathbf{x_{2,4}}x_{8,4}x_{1,4}) \}, \\ \{ (\mathbf{x_{1,5}}\mathbf{x_{3,5}}\mathbf{x_{6,5}}\mathbf{x_{4,5}}\mathbf{x_{2,5}}x_{8,5}x_{1,5}), (x_{2,5}x_{3,5}x_{8,5}x_{4,5}\mathbf{x_{5,5}}\mathbf{x_{7,5}}\mathbf{x_{2,5}}) \}, \\ \{ (\mathbf{x_{1,6}}\mathbf{x_{4,6}}\mathbf{x_{7,6}}\mathbf{x_{6,6}}\mathbf{x_{2,6}}x_{5,6}x_{1,6}), (\mathbf{x_{2,6}}\mathbf{x_{3,6}}\mathbf{x_{8,6}}x_{4,6}x_{5,6}x_{7,6}x_{2,6}) \}, \\ \{ (\mathbf{x_{5,7}}\mathbf{x_{1,7}}\mathbf{x_{4,7}}\mathbf{x_{7,7}}\mathbf{x_{6,7}}\mathbf{x_{2,7}}x_{5,7}), (\mathbf{x_{5,7}}\mathbf{x_{3,7}}x_{7,7}x_{1,7}x_{6,7}x_{8,7}x_{5,7}) \}, \\ \{ (\mathbf{x_{2,8}}\mathbf{x_{3,8}}\mathbf{x_{8,8}}\mathbf{x_{4,8}}\mathbf{x_{5,8}}\mathbf{x_{7,8}}x_{2,8}), (x_{1,8}x_{6,8}x_{8,8}x_{5,8}x_{3,8}\mathbf{x_{7,8}}\mathbf{x_{1,8}}) \}, $	$\{(\mathbf{x_{7,2}x_{6,2}x_{2,2}x_{5,2}x_{1,2}x_{4,2}x_{7,2}}), \ (\mathbf{x_{7,2}x_{2,2}x_{3,2}x_{8,2}x_{4,2}x_{5,2}x_{7,2}})\},\$
$ \{ (\mathbf{x_{1,5}x_{3,5}x_{6,5}x_{4,5}x_{2,5}x_{8,5}x_{1,5}), (x_{2,5}x_{3,5}x_{8,5}x_{4,5}\mathbf{x_{5,5}x_{7,5}x_{2,5}}) \}, \\ \{ (\mathbf{x_{1,6}x_{4,6}x_{7,6}x_{6,6}x_{2,6}x_{5,6}x_{1,6}), (\mathbf{x_{2,6}x_{3,6}x_{8,6}x_{4,6}x_{5,6}x_{7,6}x_{2,6}) \}, \\ \{ (\mathbf{x_{5,7}x_{1,7}x_{4,7}x_{7,7}x_{6,7}x_{2,7}x_{5,7}), (\mathbf{x_{5,7}x_{3,7}x_{7,7}x_{1,7}x_{6,7}x_{8,7}x_{5,7}) \}, \\ \{ (\mathbf{x_{2,8}x_{3,8}x_{8,8}x_{4,8}x_{5,8}x_{7,8}x_{2,8}), (x_{1,8}x_{6,8}x_{8,8}x_{5,8}x_{3,8}x_{7,8}\mathbf{x_{1,8}}) \}, $	$\{(\mathbf{x_{2,3}x_{5,3}x_{1,3}x_{4,3}x_{7,3}x_{6,3}x_{2,3}}), \ (\mathbf{x_{2,3}x_{3,3}}x_{8,3}x_{4,3}x_{5,3}x_{7,3}x_{2,3})\},\$
$ \{ (\mathbf{x_{1,6}x_{4,6}x_{7,6}x_{6,6}x_{2,6}x_{5,6}x_{1,6}), \ (\mathbf{x_{2,6}x_{3,6}x_{8,6}x_{4,6}x_{5,6}x_{7,6}x_{2,6}) \}, \\ \{ (\mathbf{x_{5,7}x_{1,7}x_{4,7}x_{7,7}x_{6,7}x_{2,7}x_{5,7}), \ (\mathbf{x_{5,7}x_{3,7}x_{7,7}x_{1,7}x_{6,7}x_{8,7}x_{5,7}) \}, \\ \{ (\mathbf{x_{2,8}x_{3,8}x_{8,8}x_{4,8}x_{5,8}x_{7,8}x_{2,8}), \ (x_{1,8}x_{6,8}x_{8,8}x_{5,8}x_{3,8}x_{7,8}x_{1,8}) \}, $	$\{(x_{1,4}\mathbf{x_{6,4}x_{8,4}x_{5,4}x_{3,4}x_{7,4}}x_{1,4}), (x_{1,4}x_{3,4}\mathbf{x_{6,4}x_{4,4}x_{2,4}}x_{8,4}x_{1,4})\},\$
$\{(\mathbf{x_{5,7}x_{1,7}x_{4,7}x_{7,7}x_{6,7}x_{2,7}x_{5,7}}), (\mathbf{x_{5,7}x_{3,7}}x_{7,7}x_{1,7}x_{6,7}x_{8,7}x_{5,7})\}, \\ \{(\mathbf{x_{2,8}x_{3,8}x_{8,8}x_{4,8}x_{5,8}x_{7,8}x_{2,8}}), (x_{1,8}x_{6,8}x_{8,8}x_{5,8}x_{3,8}x_{7,8}x_{1,8})\}, $	$\{(\mathbf{x_{1,5}x_{3,5}x_{6,5}x_{4,5}x_{2,5}x_{8,5}x_{1,5}}), (x_{2,5}x_{3,5}x_{8,5}x_{4,5}x_{5,5}x_{7,5}x_{2,5})\},\$
$\{(\mathbf{x_{2,8}x_{3,8}x_{8,8}x_{4,8}x_{5,8}x_{7,8}x_{2,8}}), \ (x_{1,8}x_{6,8}x_{8,8}x_{5,8}x_{3,8}x_{7,8}x_{1,8})\},\$	$\{(\mathbf{x_{1,6}x_{4,6}x_{7,6}x_{6,6}x_{2,6}x_{5,6}x_{1,6}}), \ (\mathbf{x_{2,6}x_{3,6}x_{8,6}x_{4,6}x_{5,6}x_{7,6}x_{2,6}})\},\$
	$\{(\mathbf{x_{5,7}x_{1,7}x_{4,7}x_{7,7}x_{6,7}x_{2,7}x_{5,7}}), \ (\mathbf{x_{5,7}x_{3,7}x_{7,7}x_{1,7}x_{6,7}x_{8,7}x_{5,7}})\},\$
$\{(x_{1,9}\mathbf{x_{3,9}x_{6,9}x_{4,9}x_{2,9}x_{8,9}x_{1,9}}), (x_{1,9}x_{4,9}x_{7,9}x_{6,9}x_{2,9}x_{5,9}x_{1,9})\}.$	$\{(\mathbf{x_{2,8}x_{3,8}x_{8,8}x_{4,8}x_{5,8}x_{7,8}x_{2,8}}), (x_{1,8}x_{6,8}x_{8,8}x_{5,8}x_{3,8}x_{7,8}x_{1,8})\},\$
	$\{(x_{1,9}\mathbf{x_{3,9}x_{6,9}x_{4,9}x_{2,9}x_{8,9}x_{1,9}}), (x_{1,9}x_{4,9}x_{7,9}x_{6,9}x_{2,9}x_{5,9}x_{1,9})\}.$

For p = 37, we decompose the last path and first cycle into $2P_7$ as follows:

 $\left\{ x_{1,7}x_{1,2}x_{1,6}x_{1,5}x_{1,1}x_{1,8}x_{1,3}, \ x_{1,7}x_{1,8}x_{1,9}x_{6,9}x_{8,9}x_{5,9}x_{3,9} \right\}.$

Now, using Construction 1.4 we get the required number of paths and cycles from C_6 's for p > 37. So, we have the desired decomposition for $K_8 \Box K_9$.

Theorem 3.18. $K_m \Box K_n$ has a (6; p, q)-decomposition if and only if $mn(m+n-2) \equiv 0 \pmod{12}$.

Proof. Necessity. Since $K_m \Box K_n$ is (m + n - 2)-regular with mn vertices, $K_m \Box K_n$ has mn(m + n - 2)/2 edges. Now, assume that $K_m \Box K_n$ has a (6; p, q)-decomposition. Then the number of edges in the graph must be divisible by 6, i.e., 12|mn(m + n - 2)| and hence $mn(m + n - 2) \equiv 0 \pmod{12}$. **Sufficiency.** We construct the required decomposition in ten cases.

Case 1. $m \equiv 0 \pmod{6}$ and $n \equiv 0 \pmod{2}$.

Subcase 1.1. $m, n \equiv 0 \pmod{6}$.

Let m = 6k and n = 6l, where k, l > 0 are integers. We can write $K_m \Box K_n = kl(K_6 \Box K_6) \oplus 3kl(k+l-2)K_{6,6}$. By Theorem 1.2 and Lemma 3.8, $K_{6,6}$ and $K_6 \Box K_6$ have a (6; p, q)-decomposition. Hence by Remark 1.3, $K_m \Box K_n$ has a (6; p, q)-decomposition.

Subcase 1.2. $m \equiv 0 \pmod{6}$, $n \equiv 4 \pmod{6}$.

Let m = 6k and n = 6l + 4, where k, l are non-negative integers. We can write $K_m \Box K_n = (K_{6k} \Box K_{6l}) \oplus k(K_6 \Box K_4) \oplus 2k(k-1)K_{6,6} \oplus 6kK_{6l,4}$. By Theorem 1.2, Lemmas 3.7, and 2.4, Subcase 1.1 and Remark 1.3, $K_m \Box K_n$ has a (6; p, q)-decomposition.

Subcase 1.3. $m \equiv 0 \pmod{6}$, $n \equiv 2 \pmod{6}$.

When m = 6k and n = 2, $K_m \Box K_n = k(K_6 \Box K_2) \oplus k(k-1)K_{6,6}$. By Theorem 1.2, Lemma 3.6 and Remark 1.3, $K_m \Box K_n$ has a (6; p, q)-decomposition. When m = 6k and n = 8, $K_m \Box K_n = k(K_6 \Box K_8) \oplus 4k(k-1)K_{6,6}$. By Theorem 1.2, Lemma 3.9 and Remark 1.3, $K_m \Box K_n$ has a (6; p, q)-decomposition. When n > 8, let m = 6k, n = 6l + 8, where k, l are non-negative integers. We can write $K_m \Box K_n = (K_{6k} \Box K_{6l}) \oplus (K_{6k} \Box K_8) \oplus 6kK_{6l,8}$. By Theorem 1.2, Lemma 2.4, Subcase 1.1 and Remark 1.3, $K_m \Box K_n$ has a (6; p, q)-decomposition.

Case 2. $m, n \equiv 4 \pmod{6}$.

Let m = 6k + 4 and n = 6l + 4, where k, l are non-negative integers. We can write $K_m \Box K_n = kl(K_6 \Box K_6) \oplus (k+l)(K_6 \Box K_4) \oplus (K_4 \Box K_4) \oplus (3kl(k+l-2)+2k(k-1))K_{6,6} \oplus (12kl+4(l+k))K_{6,4}$. By Theorem 1.2, Lemmas 3.7, 3.8, 3.10 and 2.4 and Remark 1.3, $K_m \Box K_n$ has a (6; p, q)-decomposition.

Case 3. $m \equiv 0, 1, 4 \text{ or } 9 \pmod{12}, n \equiv 1 \text{ or } 9 \pmod{12}$.

When m is even, the degree of each vertex $v \in V(K_m \Box K_n)$ is odd, then $p \geq mn/2$. Now, $K_m \Box K_n = nK_m \oplus mK_n$. By Lemma 2.8 and Theorem 1.1, K_m and K_n have a (6; p, q)-decomposition (with $p \geq m/2$ whenever m is even). Hence by Remark 1.3, $K_m \Box K_n$ has the required decomposition.

Case 4. $m, n \equiv 3 \text{ or } 7 \pmod{12}$.

Subcase 4.1. $m, n \equiv i \pmod{12}, i = 3, 7.$

When m = n, if i = 3, then $K_m \Box K_n = nK_m \oplus mK_n = 2m(K_m \setminus E(K_3)) \oplus \frac{m}{3}(K_3 \Box K_3)$. If i = 7 let m = 12k+7, then $K_m \Box K_n = 2(m-7)(K_m \setminus E(K_3)) \oplus \frac{(m-7)}{3}(K_3 \Box K_3) \oplus 14(K_{12k+1} \oplus K_{12k,6}) \oplus K_7 \Box K_7$. By Lemmas 2.6, 3.1, 3.11, Theorems 1.1, 1.2 and Remark 1.3, $K_m \Box K_n$ has a (6; p, q)-decomposition.

When m < n, let n = m + h, where $h = 12l, l \in \mathbb{Z}^+$ m = 12k + i, i = 3, 7. We can write $K_m \Box K_n = (K_m \Box K_m) \oplus hK_m \oplus m(K_n \setminus E(K_m)) = (K_m \Box K_m) \oplus 12l(K_m \setminus E(K_3)) \oplus 12lK_3 \oplus m(K_{12l+1} \oplus K_{12l+1}) \oplus 12l(K_m \setminus E(K_m)) \oplus 12lK_3 \oplus m(K_{12l+1}) \oplus 12kK_3 \oplus m(K_{12l+1}) \oplus$

 $K_{12l,m-1}$). Now, the first three rows of $(K_m \Box K_n) \setminus (K_m \Box K_m)$ can be viewed as $(K_{12l+1} \setminus E(2lC_6)) \oplus K_{12l,m-1} \oplus 2lC_6$. As in the proof of Lemma 3.12, we can prove $12lK_3$ along with three rows of $2lC_6$ has a (6; p, q)-decomposition. By Lemmas 2.4 and 2.5 and Theorem 1.2, $K_{12l+1} \setminus E(2lC_6)$ and $K_{12l,m-1}$ have a (6; p, q)-decomposition. Hence by Remark 1.3, $K_m \Box K_n$ has a (6; p, q)-decomposition.

Subcase 4.2. $m \equiv 3 \pmod{12}$, $n \equiv 7 \pmod{12}$.

Let m = 12k + 3, n = 12l + 7. We can write $K_m \Box K_n = nK_m \oplus mK_n$.

When k = l, every column of $K_m \Box K_n$ can be viewed as $(K_m \setminus E(K_3)) \oplus K_3$ and every first (m-3)rows can be viewed as $(K_n \setminus E(K_3)) \oplus K_3$ and last three rows can be viewed as $(K_n \setminus E(K_7)) \oplus K_7$. Now, the K_3 's in first (m-3) rows and columns form $\frac{(m-3)}{3}(K_3 \Box K_3)$ and $K_n \setminus E(K_7)$ can be viewed as $K_{12l+1} \oplus K_{12l,6}$ and these graphs have a (6; p, q)-decomposition, by Theorems 1.1, 1.2. By Lemmas 2.6 and 3.1, $K_m \setminus E(K_3), K_n \setminus E(K_3)$ and $(K_3 \Box K_3)$ have a (6; p, q)-decomposition. By Lemma 3.2, the remaining graph $K_3 \Box K_7$ has a (6; p, q)-decomposition.

When k < l, every column of $K_m \Box K_n$ can be viewed as $(K_m \setminus E(K_3)) \oplus K_3$ and every first (m-3) rows can be viewed as $(K_n \setminus E(K_3)) \oplus K_3$. Now, the K_3 's in first (m-3) rows and columns form $\frac{(m-3)}{3}(K_3 \Box K_3)$. By Lemmas 2.6 and 3.1, $K_m \setminus E(K_3), K_n \setminus E(K_3)$ and $(K_3 \Box K_3)$ have a (6; p, q)-decomposition. Finally, we have to find a (6; p, q)-decomposition of the last three rows and 12(l-k) + 7 columns of $K_m \Box K_n$. Now, every 12(l-k) + 7 columns of $K_m \Box K_n$ can be viewed as $(K_m \setminus E(K_3)) \oplus (K_m \setminus V(K_{m-3}))$ and every last three rows of $K_m \Box K_n$ can be viewed as $K_{12k+1} \oplus K_7 \oplus K_{12k,6} \oplus K_{12(l-k),6} \oplus K_{12k,12(l-k)} \oplus (K_{12(l-k)+1} \setminus E(2(l-k)C_6)) \oplus 2(l-k)C_6$ and by Theorem 1.2, $K_{12k,6} \oplus K_{12(l-k),6} = K_{12l,6}$ has a (6; p, q)-decomposition. By Lemma 2.5, $K_{12(l-k)+1} \setminus E(2(l-k)C_6)$ has a (6; p, q)-decomposition. As in the proof of Lemma 3.12, we can prove $12(l-k)K_n \setminus V(K_{n-3})$ along with the three rows of $2(l-k)C_6$ has a (6; p, q)-decomposition. By Lemma 3.2, the remaining graph $K_3 \Box K_7$ has a (6; p, q)-decomposition.

By using similar proof, we can prove for the case k > l also. Hence $K_m \Box K_n$ has a (6; p, q)-decomposition.

Case 5. $m \equiv 3 \pmod{12}$, $n \equiv 11 \pmod{12}$.

Let m = 12k + 3, n = 12l + 11. We can write $K_m \Box K_n = nK_m \oplus mK_n$. Consider all columns as $(K_m \setminus E(K_3)) \oplus K_3$ except the columns 1, 3, 4 and 7 and consider these columns as $(K_m \setminus (E(K_3)) \oplus E(2kC_6)) \oplus K_3 \oplus 2kC_6$ and all rows can be viewed as $(K_n \setminus E(C_7)) \oplus C_7$ except the last three rows. The last three rows can be viewed as $(K_{12l+1} \setminus E(2lC_6)) \oplus K_{12l,10} \oplus 2lC_6 \oplus K_{11}$. In each column $K_m \setminus E(K_3)$ has a (6; p, q)-decomposition and in columns 1, 3, 4 and 7 the graph $(K_m \setminus (E(K_3)) \oplus E(2kC_6))$ has a (6; p, q)-decomposition, by Lemma 2.6. So the remaining edges in columns 1, 3, 4 and 7 form $K_3 \oplus 2kC_6$ and in other columns form K_3 . By Lemma 2.7 and Theorem 1.1, the graphs $K_n \setminus E(C_7)$ and K_{12l+1} have a (6; p, q)-decomposition and $K_{12l,10} = 2l(K_{6,6} \oplus K_{6,4})$ has a (6; p, q)-decomposition, by Theorem 1.2 and Lemma 2.4. So the remaining edges in the first (m-3) rows form $12kC_7$ and in the last three rows form $K_{11} \oplus 2lC_6$. The graph $12lK_3$ in the first 12l columns along with $2lC_6$ in the last three rows have a (6; p, q)-decomposition as in Lemma 3.15.

Now, the remaining edges $(K_3$'s) in the last 11 columns and $(K_{11}$'s) in the last 3 rows will form $K_3 \Box K_{11}$ which has a (6; p, q)-decomposition, by Lemma 3.4. Hence by Remark 1.3 $K_m \Box K_n$ has a (6; p, q)-decomposition.

Case 6. $m \equiv 5 \pmod{12}$, $n \equiv 9 \pmod{12}$.

Let m = 12k+5, n = 12l+9. We can write $K_m \Box K_n = nK_m \oplus mK_n = n((K_m \setminus E(C_4)) \oplus C_4) \oplus mK_n$. Consider the first 5 rows and the last 2 rows as $K_{12l+1} \oplus K_9 \oplus K_{12,8}$ and $(K_{12l+1} \setminus E(2lC_6)) \oplus 2lC_6 \oplus K_9 \oplus K_{12,8}$ respectively. The graph $(n-9)C_4$ in the first n-9 columns along with the last 2 rows of $2lC_6$ can be viewed as 2lG, where $G = 6C_4 \oplus 2C_6 = C_4^1 \oplus C_4^2 \oplus \cdots \oplus C_4^6 \oplus C_6^3 \oplus C_6^4$ with $V(G) = \{x_{i,j} | 1 \le i \le 4, \le j \le 2\}$ and $C_4^i = (x_{1,i}x_{2,i}x_{3,i}x_{4,i}x_{1,i}), 1 \le i \le 6, C_6^j = (x_{j,1}x_{j,2}x_{j,3}x_{j,4}x_{j,5}x_{j,6}x_{j,1}), j = 3, 4$ and G can be decomposed into C_6 's as follows:

$$\left\{ \left(x_{3,2i} \mathbf{x}_{3,(2i-1)} \mathbf{x}_{2,(2i-1)} \mathbf{x}_{1,(2i-1)} \mathbf{x}_{4,(2i-1)} \mathbf{x}_{4,2i} \mathbf{x}_{3,2i} \right), \left(\mathbf{x}_{3,2i} \mathbf{x}_{2,2i} x_{1,2i} x_{4,2i} x_{4,(2i+1)} x_{3,(2i+1)} x_{3,2i} \right) \right\}$$

where $1 \leq i \leq 6$ and the subscripts of x are taken modulo 6 with residues $\{1, \dots, 6\}$. The first three cycles can be decomposed into $3P_7$ as follows: $\{x_{1,2}x_{4,2}x_{4,1}x_{1,1}x_{2,1}x_{3,1}x_{3,2}, x_{3,2}x_{4,2}x_{4,3}x_{1,3}x_{2,3}x_{3,3}x_{3,4}, x_{3,4}x_{4,4}x_{4,3}x_{3,3}x_{3,2}x_{2,2}x_{1,2}\}$. Now, using Construction 1.4 we get the required number of paths and cycles from the C_6 -decomposition of G given above. By Theorem 1.1, Lemmas 2.3, 2.4 and 2.5, K_n , $K_{12l+1} \setminus E(2kC_6)$, K_9 and $K_{12,8}$ have a (6; p, q)-decomposition. Now, consider the remaining $9C_4$ with $5C_6$ from the first 5 rows in 5×9 block with vertex and edge set as follows:

$$V(G) = \{x_{i,j} | 1 \le i \le 5, \le j \le 6\}$$

and

$$C_4^i = (x_{1,i}x_{2,i}x_{3,i}x_{4,i}x_{1,i}), i = 3, 4, 8$$

and

$$\begin{split} C_4^1 &= (x_{1,1}x_{2,1}x_{4,1}x_{3,1}x_{1,1}), \\ C_4^2 &= (x_{2,2}x_{3,2}x_{4,2}x_{5,2}x_{2,2}), \\ C_5^4 &= (x_{1,5}x_{3,5}x_{5,5}x_{4,5}x_{1,5}), \\ C_4^6 &= (x_{1,6}x_{4,6}x_{2,6}x_{3,6}x_{1,6}), \\ C_4^7 &= (x_{1,7}x_{3,7}x_{5,7}x_{2,7}x_{1,7}), \\ C_4^9 &= (x_{1,9}x_{4,9}x_{3,9}x_{5,9}x_{1,9}), \\ C_6^1 &= (x_{1,1}x_{1,3}x_{1,5}x_{1,7}x_{1,9}x_{1,8}x_{1,1}), \\ C_6^2 &= (x_{2,1}x_{2,2}x_{2,3}x_{2,6}x_{2,7}x_{2,8}x_{2,1}), \\ C_6^3 &= (x_{3,1}x_{3,3}x_{3,4}x_{3,6}x_{3,5}x_{3,2}x_{3,1}), \\ C_6^5 &= (x_{5,2}x_{5,3}x_{5,5}x_{5,7}x_{5,9}x_{5,4}x_{5,2}). \end{split}$$

Now, this G can be decomposed into C_6 's as follows:

$$\{ (x_{1,8}\mathbf{x_{1,9}}\mathbf{x_{5,9}}\mathbf{x_{5,7}}\mathbf{x_{2,7}}\mathbf{x_{2,8}}\mathbf{x_{1,8}}), \ (\mathbf{x_{1,8}}\mathbf{x_{4,8}}x_{3,8}x_{2,8}x_{2,1}x_{1,1}x_{1,8}) \}, \\ \{ (x_{5,5}\mathbf{x_{4,5}}\mathbf{x_{1,5}}\mathbf{x_{1,7}}\mathbf{x_{3,7}}\mathbf{x_{5,7}}\mathbf{x_{5,5}}), \ (\mathbf{x_{5,5}}\mathbf{x_{5,3}}x_{5,2}x_{2,2}x_{3,2}x_{3,5}x_{5,5}) \}, \\ \{ (x_{3,3}\mathbf{x_{2,3}}\mathbf{x_{2,2}}\mathbf{x_{2,1}}\mathbf{x_{4,1}}\mathbf{x_{3,1}}\mathbf{x_{3,3}}), \ (\mathbf{x_{3,3}}\mathbf{x_{3,4}}x_{2,4}x_{1,4}x_{4,4}x_{4,3}x_{3,3}) \}, \\ \{ (x_{4,2}\mathbf{x_{3,2}}\mathbf{x_{3,1}}\mathbf{x_{1,1}}\mathbf{x_{1,3}}\mathbf{x_{4,3}}\mathbf{x_{4,2}}), \ (\mathbf{x_{4,2}}\mathbf{x_{5,2}}x_{5,4}x_{5,9}x_{3,9}x_{4,9}x_{4,2}) \}, \\ \{ (x_{4,6}\mathbf{x_{4,7}}\mathbf{x_{4,4}}\mathbf{x_{3,4}}\mathbf{x_{3,6}}\mathbf{x_{1,6}}\mathbf{x_{4,6}}), \ (\mathbf{x_{4,6}}\mathbf{x_{2,6}}x_{2,7}x_{1,7}x_{1,9}x_{4,9}x_{4,6}) \}, \\ (x_{1,3}x_{2,3}x_{2,6}x_{3,6}x_{3,5}x_{1,5}x_{1,3}). \end{cases}$$

The last $3C_6$ can be decomposed into $3P_7$ as follows:

 $\{x_{1,3}x_{2,3}x_{2,6}x_{4,6}x_{4,9}x_{1,9}x_{1,7}, x_{1,7}x_{2,7}x_{2,6}x_{3,6}x_{1,6}x_{4,6}x_{4,7}, x_{4,7}x_{4,4}x_{3,4}x_{3,6}x_{3,5}x_{1,5}x_{1,3}\}.$

Now, using Construction 1.4 we get the required number of paths and cycles from the C_6 -decomposition of G given above. Hence we have the desired decomposition of $K_m \Box K_n$.

Note 3.19. From Case 7 to Case 10 the degree of each vertex $v \in V(K_m \Box K_n)$ is odd and so $p \ge mn/2$.

Case 7. $m \equiv 0 \pmod{12}, n \equiv i \pmod{12}, i = 3, 5, 7, 11.$

Let m = 12k and n = 12l + i, $l, k \in Z^+$ and $i \in \{3, 5, 7, 11\}$. We can write $K_m \Box K_n = nK_m \oplus mK_n = (n-i)K_m \oplus k(K_i \Box K_{12}) \oplus i\frac{k(k-1)}{2}K_{12,12} \oplus m(K_n \setminus E(K_i)), i \in \{3, 5, 7, 11\}$. By Lemma 2.6, $K_n \setminus E(K_i)$ has a (6; p, q)-decomposition for i = 3. For $i \in \{5, 7, 11\}$, $K_n \setminus E(K_i)$ can be viewed as $K_{12l+1} \oplus K_{12l,i-1}$ and these graphs have a (6; p, q)-decomposition, by Theorems 1.1, 1.2 and Lemma 2.4. Also by Theorem 1.2 and Lemmas 3.12 to 3.15, $K_{12,12}$ and $K_i \Box K_{12}$, $i \in \{3, 5, 7, 11\}$ have a (6; p, q)-decomposition. Hence by Remark 1.3, $K_m \Box K_n$ has a (6; p, q)-decomposition.

Case 8. $m \equiv 4 \pmod{12}$, $n \equiv 3 \text{ or } 7 \pmod{12}$.

Let m = 12k + 4. Then $K_m \Box K_n = nK_m \oplus mK_n = nK_m \oplus m((K_n \setminus E(K_3)) \oplus K_3)$. By Lemmas 2.6 and 2.8, K_m has a (6; p, q)-decomposition with $p \ge m/2$ and $K_n \setminus E(K_3)$ has a (6; p, q)decomposition. Now, the last three columns can be viewed as $(K_{12(k-1)} \setminus E(2(k-1)C_6)) \oplus 2(k-1)C_6 \oplus K_{16} \oplus K_{12(k-1),16}$. By Lemmas 2.5 and 2.4, $K_{12(k-1)} \setminus E(2(k-1)C_6)$ and $K_{12(k-1),16}$ have a (6; p, q)decomposition. The graph $12(k-1)K_3$ in the first 12(k-1) rows along with the last 3 columns of $2(k-1)C_6$ can be viewed as $2(k-1)(6K_3 \oplus 3C_6)$. We can prove this has a (6; p, q)-decomposition as in Lemma 3.12. Now, K_{16} 's of last 3 columns and K_3 's of last 16 rows form $K_3 \Box K_{16}$ and this has a (6; p, q)-decomposition, by Lemma 3.5.

Case 9. $m \equiv 8 \pmod{12}$, $n \equiv 3 \pmod{12}$.

Let m = 12k + 8 and n = 12l + 3. We can write $K_m \Box K_n = nK_m \oplus mK_n = n((K_{12k} \oplus 2C_6) \oplus (K_8 \setminus E(2C_6)) \oplus K_{12k,8}) \oplus m((K_n \setminus E(K_3)) \oplus K_3)$, where $2C_6$ are $(x_{2,i}x_{3,i}x_{7,i}x_{4,i}x_{6,i}x_{8,i}x_{2,i})$,

 $(x_{2,i}x_{5,i}x_{4,i}x_{8,i}x_{1,i}x_{6,i}x_{2,i}), 1 \leq i \leq n$. Last three columns can be viewed as $(K_{12k} \setminus E(2kC_6)) \oplus 2kC_6 \oplus K_8 \oplus K_{12k,8}$ and first three rows can be viewed as $(K_m \setminus E(2lC_6 \oplus K_3)) \oplus 2lC_6 \oplus K_3$. The graph $12kK_3$ in the last 12k rows along with the last 3 columns of $2kC_6$ can be viewed as $2k(6K_3 \oplus 3C_6)$. We can prove this has a (6; p, q)-decomposition as in Lemma 3.12. Now, K_8 's in last three columns and K_3 's in the first 8 rows forms $K_8 \square K_3$ and by Lemma 3.3, which has a (6; p, q)-decomposition. Also by Lemma 2.8, $K_{12k} \oplus 2C_6$ in the first (n-3) columns has a (6; p, q)-decomposition. The remaining edges $K_8 \setminus E(2C_6)$ in the first 12l columns and $2lC_6$ in first 3 rows form $(K_8 \setminus E(2C_6)) \square C_6$ which has a (6; p, q)-decomposition, by Lemma 3.16.

Case 10. $m \equiv 8 \pmod{12}$, $n \equiv 9 \pmod{12}$.

Let m = 12k + 8 and n = 12l + 9. We can write $K_m \Box K_n = nK_m \oplus mK_n = (n-9)((K_{12k} \oplus 2C_6) \oplus (K_8 \setminus E(2C_6)) \oplus K_{12k,8}) \oplus 9(K_{12k} \oplus K_8 \oplus K_{12k,8}) \oplus mK_n$. The last 8 rows can be viewed as $K_{12l+1} \setminus E(2lC_6) \oplus 2lC_6 \oplus K_9 \oplus K_{12l,8}$. Now, the graph $K_8 \setminus E(2C_6)$ in each (n-9) columns along with $2lC_6$ in last 8 rows forms $2l((K_8 \setminus E(2C_6)) \Box C_6)$ which has a (6; p, q)-decomposition, by Lemma 3.16 and the graph K_8 's in last 9 columns and K_9 's in last 8 rows will form $K_8 \Box K_9$ which has a (6; p, q)-decomposition, by Lemma 3.17. By Lemmas 2.4, 2.5 and 2.8, the remaining edges have a (6; p, q)-decomposition.

Acknowledgement:

The authors thank the Department of Science and Technology, Government of India, New Delhi for its financial support through the Grant No. DST/ SR/ S4/ MS:828/13. The second author thank the University Grant Commission for its support through the Grant No. F.510/7/DRS-I/2016(SAP-I).

References

- A. Abueida and T. O'Neil. Multidecomposition of λkm into small cycles and claws. Bulletin of the Institute of Combinatorics and its Applications, 49:32–40, 2007.
- [2] A. A. Abueida and M. Daven. Multidesigns for graph-pairs of order 4 and 5. Graphs and Combinatorics, 19:433-447, 2003. https://doi.org/10.1007/s00373-003-0530-3.
- [3] A. A. Abueida and M. Daven. Multidecompositions of the complete graph. Ars Combinatoria, 72:17– 22, 2004.
- [4] A. A. Abueida, M. Daven, and K. J. Roblee. Multidesigns of the λ -fold complete graph for graph-pairs of orders 4 and 5. The Australasian Journal of Combinatorics, 32:125–136, 2005.
- [5] J. Bondy. Urs murty graph theory with applications the macmillan press ltd. New York, 1976.
- [6] A. P. Ezhilarasi and A. Muthusamy. Decomposition of product graphs into paths and stars with three edges. Bulletin of the Institute of Combinatorics and its Applications, 87:47–74, 2019.
- K. A. Farrell and D. A. Pike. 6-cycle decompositions of the cartesian product of two complete graphs. Utilitas Mathematica:115-128, 2003.
- C.-M. Fu, Y.-L. Lin, S.-W. Lo, and Y.-F. Hsu. Decomposition of complete graphs into triangles and claws. *Taiwanese Journal of Mathematics*, 18(5):1563-1581, 2014. https://doi.org/10.11650/tjm. 18.2014.3169.
- S. Jeevadoss and A. Muthusamy. Decomposition of complete bipartite graphs into paths and cycles. Discrete Mathematics, 331:98-108, 2014. https://doi.org/10.1016/j.disc.2014.05.009.
- [10] S. Jeevadoss and A. Muthusamy. Decomposition of product graphs into paths and cycles of length four. Graphs and Combinatorics, 32:199-223, 2016. https://doi.org/10.1007/s00373-015-1564-z.
- [11] H. Priyadharsini and A. Muthusamy. Multidecomposition of km, m (λ). Bulletin of the Institute of Combinatorics and its Applications, 66:42–48, 2012.
- T.-W. Shyu. Decomposition of complete graphs into paths and stars. Discrete Mathematics, 310(15-16):2164-2169, 2010. https://doi.org/10.1016/j.disc.2010.04.009.