J. COMBIN. MATH. COMBIN. COMPUT. 124 (2025) 581-600

Journal of Combinatorial Mathematics ‘

and Combinatorial Computing

www.combinatorialpress.com/jcmcc
Combinatorial Press

Decomposition of the cartesian product of complete graphs
into paths and cycles of length six

A. Pauline Ezhilarasi’™ A. Muthusamy?

! Department of Mathematics, Jeppiaar Engineering College, Chennai-600119, India
2 Department of Mathematics, Periyar University, Salem-636011, India

ABSTRACT

Let P, and C} respectively denote a path and a cycle on k vertices. In this paper, we give necessary
and sufficient conditions for the existence of a complete {P;, Cg}- decomposition of the cartesian
product of complete graphs.
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1. Introduction

Unless stated otherwise all graphs considered here are finite, simple, and undirected. For the standard
graph-theoretic terminology the readers are referred to [5]. Let Py, Ck, Sk, K respectively denote a
path, cycle, star and complete graph on k vertices, and let K, ,, denote the complete bipartite graph
with m and n vertices in the parts. A graph whose vertex set is partitioned into subsets Vi,...,V;,
such that the edge set is Ujzjepn Vi X Vj is a complete m-partite graph, denoted as Ky, . n,, , when
|Vi] = n; for all i. For G = Ky, or K, ,, the graph G — I denotes the graph G with a 1-factor /
removed. For any integer A > 0, A\G denotes \ edge-disjoint copies of G. The complement of the
graph G is denoted by G. For two graphs G and H we define their Cartesian product, denoted by
GOH, as follows: the vertex set is V(G) x V(H) and its edge set is

B(GOH) = {(9,h)(g, ') : g = ¢/, hi € E(H), or gg' € E(G), h =N},

It is well known that the Cartesian product is commutative and associative. For a graph G, a
partition of G into edge-disjoint sub graphs Hy,---, Hy such that E(G) = E(H,) U---U E(Hy) is
called a decomposition of G and we write G as G = H; & ---@® Hy. For 1 <i <k, if H; = H, we say
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that G has a H-decomposition. If G has a decomposition into p copies of H; and ¢ copies of Hy, then
we say that G has a {pH;, ¢Hs}-decomposition. If such a decomposition exists for all possible values of
p and ¢ satisfying trivial necessary conditions, then we say that G has a {H;, Hg}{p’q}—decompositz’on
or complete { Hy, Hy}-decomposition.

The study of {Hl,Hg}{m}—decomposition of graphs is not new. Authors in [2, 4] completely
determined the values of n for which K,,(\) admits a {pH;, ¢H,}-decomposition such that H; U Hy =
Ky, when A\ > 1 and |V(H;)| = |V(H2)| = t, when ¢t € {4,5}. Abueida and Daven [3] proved
that there exists a {pKjy, ¢Sky1}-decomposition of K, for k£ > 3 and n = 0,1(mod k). Abueida
and O’Neil [1] proved that for £ € {3,4,5}, there exists a {pCy, ¢Sk }-decomposition of K, (A),
whenever n > k + 1 except for the ordered triples (k,n,\) € {(3,4,1), (4,5,1), (5,6,1), (5,6,2),
(5,6,4), (5,7,1), (5,8,1)}. Farrell and Pike [7] shown that the necessary conditions are sufficient
for the existence of Cg-decomposition of K,,0K,. Fu et al. [8] established necessary and sufficient
condition for the existence of {Cj, S}y, ,,-decomposition of K,,. Shyu [12] obtained a necessary and
sufficient condition on {p, ¢} for the existence of { P, C4}, ,-decomposition of K. Priyadharsini and
Muthusamy |[11] established necessary and sufficient condition for the existence of the {pG,, ¢H, }-
decomposition of K,(\) when G,, H, € {C,, P,_1,S,-1}. Jeevadoss and Muthusamy [9] obtained
some necessary and sufficient conditions for the existence of { Py 1, Cy} {p’q}—decomposition of Kyn.
Jeevadoss and Muthusamy [10] obtained necessary and sufficient conditions for the existence of
{Ps, 04}{p7q}—decomposition of K,, x K, K,, ® K,, and K,,0K,. Pauline Ezhilarasi and Muthusamy
[6] have obtained necessary and sufficient conditions for the existence of a decomposition of product
graphs into paths and stars with three edges.

In this paper, we show that the necessary condition mn(m +n —2) = 0 (mod 12) is sufficient
for the existence of a {P7,06}{p7q}—decomposition of K,,0K,. We abbreviate the {Pk+170k}{p,q}-
decomposition as (k; p, ¢)-decomposition.

To prove our results we state the following:

Theorem 1.1 (|9]). Let p, q be non-negative integers, k be an even integer and n > 4k be an odd

integer. If k(p+q) = (Z) and p # 1, then K, has a (k;p,q)-decomposition.

Theorem 1.2 (|9]). Let s,t > 0 be integers and k > 4 be an even integer. Then the graph K
has a (k; p, q)-decomposition.

Remark 1.3. If G and H have a (6; p, q)-decomposition, then G U H has a such decomposition. In
this paper, we denote GU H as G @ H.

Construction 1.4. Let C} and C? be two cycles of length 6, where Ct = (xor170973747570) and
C2 = (Yoy192y3Yaysyo)- If v is a common vertex of C¢ and C2 such that at least one neighbour of
v from each cycle (say, x; and y;) does not belong to the other cycle then we have two edge-disjoint
paths of length 6, say P} and P? from C§ and C? as follows:

P = (C§ — vz;) Uy,

and

P? = (CF — vy;) Uva,.
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2. Base Constructions

In this section we prove some basic lemmas which are used to prove our results. Throughout this
paper, we denote V(K,,) = {z; : 1 <i <n}.

Lemma 2.1. There ezists a (6;p, q)-decomposition of K7\E(K3), p # 1.
Proof. First we decompose K\ FE(K3) into 3Cs as follows:
{(roX5X1X4X3X6X2), (Tol4TeT123X7X2), (T1222325262721)}.
The bold edges (resp., ordinary edges) gives 2P; from first two cycles. Now, the 3P; are
{T4260701 092305, T7T3T6X1 X4 ToT 5, TrLoTelsT1T3Ty )

Hence K;\E(K3) has a (6; p, ¢)-decomposition. O

Lemma 2.2. There ezists a (6; p, q)-decomposition of Kg — I, p # 1.
Proof. First we decompose Kg — I into Cg’s as follows:
{(z1X5X8X2XeX7X1 ), (X1X3LoL72423%1) }, { (T5X7X3XgXeX4X5), (X5X2L4T1LeX3T5) }.

The last 3Cs can be decomposed into 3P, as follows:

{T528006701 T3, T3TT7T5T4 T8 L6, TeTX4T7TITITI T -

Now, using Construction 1.1 we get the required number of paths and cycles from the Cg-
decomposition given above. O]
Lemma 2.3. There ezists a (6; p, q)-decomposition of Ko, p # 1.

Proof. First we decompose Kg into Cg’s as follows:

{(I1X3X5X7X9X2X1), (X1X4$6$8I2$5$1)}; {($1X6X2X3X4X7X1)7

(X1X81’3$7$69€9$1)}, {(x4X5X6X3X9X8X4)7 (X4X2$7$8»’U59€9$4)}-
The last 3Cs can be decomposed into 3P, as follows:
{T128T3T76T9Ts, T5TT7T2T4T9T3, T3TEL5T4TILYLT } -
Now, using Construction 1.4 we get the required number of paths and cycles from the Cjy-

decomposition given above. O]

Lemma 2.4. There exists a (6;p, q)-decomposition of Kexa, k,l € ZT and p # 1.
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Proof. Let V(Kg4) = {x1,- -, 26} U{y1,---,ys}. First we decompose K4 into Cg’s as follows:

{(92X2Y3X3Y1X1Y2); (Y2X5y31?6y4964y2)}7 {(Y1X2y4961y3134y1), (y1X5Y4X3Y2X6Y1)}'

From the first 3Cs we can find 3P; as follows:

{3/19611939041925552/37 Y3TeYaT4Y1T2Y4, 3/43713/231723/3553%}-

Now, using Construction 1.4 we get a required number of paths and cycles from the Cg-decomposition
given above. Hence Kg 4 has a (6; p, ¢)-decomposition. Now, we can write K¢y 4 = kK¢ 4. Hence by
Remark 1.3, Ky 4 has a (6;p, g)-decomposition. ]

Lemma 2.5. There ezists a (6;p, q)-decomposition of
(i). K941\ E(2lCs) with p # 1 and
(ii). K2k \E(2kCs) with p > 6k, where 21Cs and 2kCq are vertex disjoint cycles and k,1 € Z+.

Proof. (i). Let

{{($1X4X2X6X3X5X1), (X1X10$45E7$2$12I1)}, {($7X13X10X12X8X11X7)7 (X7X9$12$13$8$10$7)}7
{(568X2X10X3X7X1Xs) (X8X5$10$6$12$4$8)}, {(SU9X1X3X13X11X2X9), (X9X4$13$51711566$9)}>
)

)
{(3793711X1X13X2X5X9)7 (3?93333711364X6X13X9 }, (3735589665573?53312553)},

be the Cg-decomposition of K3\ E(2Cs), where 2Cs removed from K3 are given by (r129x314257621),
(r7x8T9T1071171277). The last 3Cs can be decomposed into 3P; as follows:

{$12$3$9$13$6$4$11, XT3X8TleX7T5T9x11, $3$119€1$13$2l’5$12}-

Now, using Construction 1.4 we get the required number of paths and cycles from the Cjp-
decomposition given above. Hence K13\ E(2Cs) has a (6; p, ¢)-decomposition, where the 2Cs removed
from K3 are vertex disjoint cycles. We can write K941 = Kiz0-1)+1 @ Kiz3 ® Kigg—1),12. Applying
this relation recursively to Ki9(-1)41 and using Theorem 1.2, we can have a (6;p, ¢)-decomposition
of K911\ F(20Cs), where the 21Cg removed from K941 are vertex disjoint cycles.

(ii). Since the degree of each vertex v € V(Ko \E(2kCs)) is odd, then p > 6k. Let

{$15U12$2$11$3$10$4, T3X9X 4L L7 LG, LaXalgXX10L1T5, L7L9l12X3LeX2X10, L9L11X1L3L5L10L12,

T11X4X7T10T6L127L8, {($1X8X3X7X2X9X1)7 (1’1$7$11$5$12X4X1)}, ($2I5$9$6$11$8$2)}7

be the {6 P;, 3Cgs}-decomposition of K9\ FE(2Cs), where the 2Cs removed from K5 are
(129324752671 ), (T728T9x10T1121227). For p = 7, we decompose the last cycle and the first path
into 2P; as follows:

{$1!L‘12!E2$11$6!L‘9$5,$5$2$8$11$3$10$4}'

Now, using Construction 1.4 we get the required number of paths and cycles from the decomposi-
tion given above. Hence K15\ E(2Cs) has a (6; p, g)-decomposition, where the 2Cg removed from K7
are vertex disjoint cycles. We can write Ko, = Kiop—1) @ K12® Kia—1),12. Applying this relation re-
cursively to Kia,—1) and using Theorem 1.2, we can have a (6; p, ¢)-decomposition of K19\ E(2kC),
where 2kCg removed from K9 are vertex disjoint cycles. O
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Lemma 2.6. There exists a (6;p, q)-decomposition of K,\F(K3),m = 3, 7 (mod 12), m > 3 and
p#1.

Proof. Let m = 12k + i, where ¢« = 3,7. We prove it in two cases.

Case 1. m = 12k + 3. When m = 15, Ki5\E(K;) = Ky & (K7\E(K3)) & Kgg. By Lemmas
2.1, 2.3 and 2.4 and Remark 1.3, K;5\E(K3) has a (6;p, ¢)-decomposition. For m > 15, we can
write I, \E(K3) = Kigg-1)11 ®© (Ki5\E(K3)) & Kigg—1a = Kioge—y41 @ (Ki5\E(K3)) @
Kist—1),6 ® Kiak-1),s- By Theorems 1.1, 1.2, Lemma 2.4 and Remark 1.3, K,,\ E(K3) has a (6;p, q)-
decomposition.

Case 2. m = 12k +7. We can write K,,\E(K3) = Kiopr1 @ (K7\E(K3)) @ Kok By Theorems
1.1, 1.2, Lemma 2.1 and Remark 1.3, K,,\ F(K3) has a (6; p, ¢)-decomposition.

]

Lemma 2.7. There exists a (6; p, q)-decomposition of K,,\E(C4) form = 5 (mod 12) and K,,\ E(C~)
form =11 (mod 12).

Proof.

Case 1. m = 5 (mod 12). When m = 17, Ki;\E(Cy) = Ks @ Ky & (Kszo\E(Cy)). Let

{(I1Y2X2Y4X3Y5X1), (X1Y1$3l’4y3$2x1)}7 {($5Y7X2Y6X4Y9X5), (X5X6y8$7$8y6I5)},
{(worsraz107X2X6), (T6X3X1X8X5X4X6) }, { (YsX2Y9XeYaX1Ys), (YsX5Y127Y6T3Ys) },
{(zsyrX6ysX2y1Xs), (XsysTayr7ysxs) }, { (y3X3y2Xe6YeX1Y3), (YaXryaZays25Y3) },
{(222571X6X77322), (XaXaXsX3X5X7Z4) }, { (T8Y5X7Y2X5YaXs), (X8YaTey174Yos)},

be the Cg-decomposition of Ky @& (Kgo\E(Cy)). The first 3Cs can be decomposed into 3P; as
follows:

{Isyﬂzyﬁstyb Y222YaT3Ys5X1Y1, $5?/9$4y3$2$1y2}.

Now, using Construction 1.4 we get the required number of paths and cycles from the Cjp-
decomposition of Kg@® (Ks9\E(Cy)) given above. Hence by Lemma 2.3 and Remark 1.3, K7\ E(Cy)
has a (6; p, ¢)-decomposition. When m > 17, we can write K,;,\ E(Cy) = K245\ E(Cs) = Kia(-1)11 ©
(K17\E(Cy)) @ Kizp-1),16- By Theorem 1.1 and Lemma 2.4, Kig;-1)41 and Kjop_1)16 have a
(6; p, q)-decomposition. Hence by Remark 1.3, K,,,\ F(Cj) has a (6;p, ¢)-decomposition.

Case 2. m = 11 (mod 12) We can write Km\E(C7) = K]QH_H\E(C7) = K121+1 D K121710 D
(Kll\E(C7)) and K121710 = K12l,6 ) 2lK6,4- Let

{(5E1X4X10X5X7X11X1) ) (X1X8$5$11$10$3$1)}, {($2X7X3X9X6X8X2)a (X2X11$3$5$1I10$2)},

{($9X4X11X6X10X7X9) ) (X9X11’6$4$8$10$9)}, {($9X8X3X6X2X5X9)> (X9X11$8$7$4$2$9)}7

be the Cg-decomposition of K1\E(C7). The first 3Cs can be decomposed into 3P; as follows:

{(I1$11$4I3$7$2$87 TL1T4X10X5X11 X7, $1$3$9$6$8$5$7}-
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Now, using Construction 1.4 we get the required number of paths and cycles from the Cp-
decomposition given above for Ki;\F(C7). By Theorems 1.1, 1.2, Lemma 2.4 and Remark 1.3,
K, \E(C%) has a (6; p, ¢)-decomposition. O

Lemma 2.8. There exists a (6;p, q)-decomposition of K,,, where m = 0, 4 (mod 12) and p > m/2.

Proof. Since the degree of each vertex v € V(K,,) is odd, then p > m/2. We prove the required
decomposition in two Cases.

Case 1. m = 0 (mod 12). Let m = 12k and

{$3$99€4$89€5I7$6, T1X12T2L11X3L10T4, L2X4LeL8L10L1L5, L7X9X12X3L6L2L10, L9L11X1X3X5L10L12,
T11X4T7T10T6L12T8, {(IIX8X3X7X2X9X1)7 ($1$7$11$5$12X4X1)}, {(X2X5X9X6X11X8$2);

(X2X3$4$5l’6$1«7€2)}, ($7$8$9$10$11x12$7)},

be a {6P;, 5Cg}-decomposition of Ki5. For p = 7, we decompose the last cycle and first path into
2P, as follows:

{$3$9$45E8I5$7$12, $6$7$8$9$109€11$12}-

Now, using Construction 1.4 we get the required number of paths and cycles from the Cj’s given
above for p > 8. When k > 1, K9, = K1) ® K2 ® Kig—1)12. Applying this relation
recursively to Ky5,—1) and using Theorem 1.2, we can prove that Ko has a (6; p, q)-decomposition.

Case 2. m = 4 (mod 12). Let m = 12k + 4 and

{5513355579343369683327 X3XeL7L2X5X8L4, L5L3L7LIL1X2X 6, L7X1XeL5TL4TL3Lg, L14X13X15L12L9L11L10,

T16L9T15L10L13L11L12, L13L16L15L11L14L10L9, $15$14$9$13$12I16$11}7

{(z3X9X5X11X2X10X3), (X3X12757107471173) },
{(zox2X12X1X15X8X9), (XoX4T16T6T13T7T9) },
{(1’13X3X15X5X16X2X13), (X13X4$15$7$11$1$13)},
{(

{(I14X6X10X7X16X8X14)7 (X14X2$15$6$12$4$14)};
{(1’1$3$141’12X10X16X1), (X1X14X16X3X29€4$1)}

be a {8P;, 12C¢}-decomposition of K.

$8X12X7X14X5X13X8)a (X8X11$6$9x1$10$8)}7

For p =9, we decompose the last cycle and last path into 2P; as follows:
{$15$14$9I13$12$161‘37 $3$2$4$1$14$16$11}.

Now, using Construction 1.4 we get the required number of paths and cycles from the Cjg’s given
above for p > 10. When k£ > 1, Kigp1q = Kia—1) @ Kis ® Kizk-1),16- By Lemma 2.4 and by
applying Case 1, Kjor14 has a (6; p, g)-decomposition. ]
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3. (6;p,q)-decomposition of K, 0K,

In this section we investigate the existence of (6;p, ¢)-decomposition of Cartesian product of complete
graphs. Throughout this paper, we denote V(K,,0K,) ={z;;: 1 <i<m,1 < j <n}.

Lemma 3.1. There ezists a (6;p, q)-decomposition of K3OK3, p # 1.

Proof. First we decompose K30K3 into Cg’s as follows:

{(561,1X1,2X3,2X3,3X2,3X1,3X1,1)7 (X1,1X2,15C2,35172,2»’C3,2$3,1$1,1), (561,2$1,3£U3,31173,15172,1$2,2$1,2)}-

The bold edges (resp., ordinary edges) gives 2P; from first two cycles. Also, we can decompose
the given graph into 3P, as follows:

{$1,2$1,3$3,3$3,2$3,1$1,1I2,1, T21X22T12%1,171,32023L3 3, $3,3$3,1$2,1$2,3$2,2$3,2$1,2}-

Hence K30K3 has a (6;p, ¢)-decomposition. ]

Lemma 3.2. There ezists a (6;p, q)-decomposition of K3sOK,, p # 1.

Proof. First we decompose K3OK7 into Cg’s as follows:

{ T1,6X26X3,6X3,5X15X12X16);, (L1,673,6L3,4L24T1,4X13X16) >,

( ): ( )}
{(1’ ,7X3,7X3,3X3,5X2 5X1,5X1 7), (X S 7X2,703,703113,471,471 7)}7
{(Xl 7X1,1X1,4X1,6X1,5X1,301 7), (1171 721,601,101,501,4X1,2X1 7)}7
{(Xz 7X2,6X2,1X24X2 5X2 3L2 7), (Xz 7X2,222 412 6X2 51212 7)}7
{($3 7X3,2X3,6X3,3X3,4X3,5X3 7), (Xs 7X3,603,1L3,5L3,2L3,4T3 7)}
{( ): ( )}
( ): ( )}

b

T1,3X3,3X31X2,1X22X1,2X1.3), (X1,3X2373,373271,201,1T1,3)f,

{ T22X2 6X23X24X2 7X25X22), (X22X3273121,102,102,372,2

The first 3Cs can be decomposed into 3P, as follows:

{96’1,3551,6$3,6$3,5$2,5$1,5$1,7, L1,723 723313 5L15L1,2L1,6, 96’1,61’2,6$3,6$3,4$2,4$1,4951,3}-

Now, using Construction 1.1 we get the required number of paths and cycles from the Cg-
decomposition given above. O]

Lemma 3.3. There ezists a (6; p, q)-decomposition of K3OKg, p > 12.

Proof. Since the degree of each vertex v € V(K30K3) is odd, then p > % = 12. For p = 12, the
required number of P;’s and Cg’s are constructed as follows:

L1,101,4T2 43 4T3 8L37X35, L1,2L1,1L15L1,8L1,3X3,3L23,
L1,302,3724L26L27L21L25, £1,421,3L1,6L1,5L1,7L3,7L2,7,
L1,521,321,121,721,81387L2,85 L1,6L1,7L1,2L1,4L3,4L3,123,8,
T1,7T27T2 5L23L22L2 81,8, L2,1L1,1L3,1L3,3L3,4L3,223,7,
T22T12L32L31L36L35L3,3, L24L2,1L22L27L28L26L3,6,
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L2,6L2,3728125L15L35L34, £3,1L2,1L2,3L2,7L24L22L3,2,
{(X1,2X1,5$1,4$1,8$1,15171,61"1,2), (5171,2X1,3X1,7X1,4X1,6X1,8X1,2)}7
{(I2,6X1,6X3,6X3,2X3,5X2,5X2,6), (X2,6X2,2I2,5$2,4$2,8$2,11?2,6)}7
{(5(73,3X3,6X3,7X3,1X3,5X3,8X3,3)7 ($3,3$3,7$3,4$3,6I3,8X3,2X3,3)}-

For p = 13, we decompose the last path and the first cycle into 2P; as follows:

{$2,6I2,3$2,8$2,5$1,596‘1,4951,8, xl,8I1,1$1,6$1,2$1,5$3,5953,4}-

Now, using Construction 1.4 we get the required number of paths and cycles from the Cy’s given
above for p > 14. O

Lemma 3.4. There ezists a (6;p, q)-decomposition of K3sOKyy, p # 1.
Proof. First we decompose K3OK;; into Cg’s as follows:

T1,2X1,1X1,8X1,3X1,9X1,10X1 2) (X1,2X1,4551,6131,156’1,7$1,9SU1,2)} )
T1,7X1,11X1,5X1,3X1,10X1,6X1 7) (CE1,7331,10$1,11$1,39€1,2X1,8X1,7)} )
T1,11X1,8X1,9X1,5X1,10X1,4X1 11) (5U1,111151,9$1,4$1,8$1,5X1,6X1,11)} )
T2,1X211X2 8X2 10X2,4X2 7X2 1) (Xz,1X2,2I2,4I2,5$2,6132,9$2,1)} )
T2,6X2 3X2 5X2 9X2 7X2 2X2 6) (X2,6X2,10332,9952,2302,5372,1332,6)} )
T2,11X2,6X2,8X2 3X210X2 5X2, 11) (X2,11X2,2$2,10$2,7$2,3$2,4$2,11)} ,
T3,1X3,11X3,8X3,7X3,9X3 4X3 1) X3,1X3,3963,10$3,11903,6133,956’3,1)} )
T3,1X3 2X311X3,3X3,8X3 6X3 1) xs3 1953,8173,4$3,111‘3,7X3,5X3,1)} )
T1,1X1,3X1,4X2 4X21X31X1 1) X1,1X1,573,573,372,302171 1)}
T2,11X3,11X3,9X1 9X2 9X2 3X211), (X2,11X1,115171,13?1,10553,105172,10332,11)} )

T15X1 7X2 7X3 7X3 4X1,4X1 5) X1,5X25X3523,11L1,117L1,221 5)}

(
)
(
(

T1,3X1,6X2,6X2,4X3 4X3 3X1 3) X1 3X1,7$3,7$3,2$2,2$2,3$1,3)} )

T2 8X3 8X1,8X1,10X2,10X2,1X2 s) (X2,8X2,4372,9£E2,11962,75172,5332,8)} )

23,10X3,4X3 5X32X3 6X3,7X3 10) (Xs,10X3,8$3,9$3,39€3,79€3,11’3,10)} )

{(

{(

{(

{(

{(

{(

{( (
{(5173 2X3 3X3 6X3,5X39X3,10X3 2) (X3,2X3,8$3,5$3,10333,6553,4553,2)} )
{( (
{(

{(

{(

{(

{(

{(

{(

T2,8X1,8X1,6X3,6X2,6X2,7X2 8) (X2,8X2,9$3,9$3,2$1,2$2,2372,8)} )

(351,1551,9551,6331,2351,737174961,1)-
The last 3Cs can be decomposed into 3P; as follows:
{1’1,11’1,9$1,6$1,8$2,8$2,9l’3,9, L1,101,4T1,701,221,6X3,6L2,6, 1’2,61’2,7$2,8$2,2$1,2953,2953,9}-
Now, using Construction 1.4 we get the required number of paths and cycles from the Cjp-

decomposition given above. O]

Lemma 3.5. There exists a (6;p, q)-decomposition of K3OKg, p > 24.
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Proof. Since the degree of each vertex v € V(K30K4) is odd, p > % = 24. For p = 24, the required
number of Cg’s and P;’s are constructed as follows:

{($1 1X1,14X71,3X1 7X71,4X1 8X1 1) (X1,1X1,165E1,31U1,2171,8£E1,6$1,1)} )

{(xl 3X1,9X1,5X1,11X1,2X1,10X1 3) (X1,3X1,12$1,51‘1,10$1,4$1,11$1,3)} )

{(iCl 9X1,2X1,12X1,1X1,15X1,8X1 9) (Xl,9X1,4$1,16$1,6551,13$1,7$1,9)} )

{($1 8X1,12X1,7X1,14X1,5X1,13X1 8) (XI,SXI,11I1,6x1,9$1,1$1,10x178)} )

{(xl 13X1,3X1,15X1,5X1,16X1,2X1 13) (X1,13X1,4$1,15$1,7I1,11I1,1$1,13)} )
{(95 14X1,6X1,10X1,7X1,16X1,8X1 14) (Xl,14X1,2351,15371,65171,12951,4951,14)} )
{($2 7X29X2 3X211X22X2 10X2 7) (X2,7X2,12332,3952,10$2,5$2,11$2,7)} )

{($2 9X22X212X24X215X2 8X2 9) (X2,9X2,5$2,16$2,6$2,13$2,1$2,9)} )

{(352 8X212X21X214X2 3X2 13X2 8) (X2,8X2,111U2,61U2,9$2,4$2,10372,8)} )

{(Iz 13X2,7X2 15X2 3X2 16X2 2X2 13), (X2,13X2,53527155172,1$2,11$2,41'2,13)} )
{($2 14X2,6X210X2,1X2 16X2,8X2 14), (Xz,14X2,2$2,15I2,6I2,121‘2,5I2,14)} )
{(352 4X214X2 7X2 X2 3X2 8X2 4) (X2,4X2,16$2,7$2,1513'2,85172,5372,4)} )

{(I?, 1X3,9X3,3X3,11X3,5X3,10X3, 1) (X3,1X3,12353,3$3,10$3,4$3,11$3,1)} )

{($3 9X3 5X3,12X3,2X3,15X3,8X3 9) (X3,9X3,4$3,16$3,6$3,13I3,7$3,9)} )

{(553 8X3,12X3,7X3,14X3,3X3,13X3 8) (X3,8X3,11373,6373,9353,2553,10513'3,8)} )

{(I 13X3,1X3,15X3,3X3,16X3,5X3 13), (X3,13X3,4$3715903,7$3,11$3,2$3,13} )

{($3 14X3,6X3,10X3,7X3,16X3,8X3 14), (X3,14X3,5$3,15I3,6$3,121f3,4953,14} )

{(953 2X3,14X3,1X3,5X3,8X3,3X3 2) (X3,2X3,163€3,1$3,75U3,6$3,8$3,2)} )

{(Il 10X1,11X1,15X1,12X1,14X1,16X1 10) (X1,10X1,13$1,12$1,16$1,9$1,14$1,10)} )
{(x 14X1,14X3,14X3,10X3,13X2,13X2 14) (Xz,14X2,10$2,13$2,12I2,161‘2,9$2,14)} )
{(953 11X3,14X3,15X3,9X3,13X3,16X3 11) (963,111’3,15$3,12$3,14$3,16X3,10X3,11)} )
{(

X1,4215T25L22T26L1,6L1 4) ($3,2I3,5$3,7$3,89€3,49€3,6903,2)} )

L1,221,6L36L33L3,7L34L24,L1,1L1,2L1,5L1,801,303,302,3, L25L21L22L27L28L26L36,L2,6L2,1L24L1,421,1L1,523,5,

T2,1X1,173 123,313 43237, L1,4X1,3L1,6L1,5L1,7L3,7L2,7,L15L1,3L1,1L1,7L1,8L38L28,L22L12L32T31L3,6L35L3,3,

T3,1021T23L27T24222L3 2, L1 7L27L25T23L22T28L1,8,L1,6L1,701,201,4L34L3,1T38,L1,3L23L24T26L25T3 534,
L1,901,1222,12203,1223,162L3,1523,13, £1,10L1,901,13L1,16L1,11L3,11L2,11, L1,11L2,11L2,12L2,1412,15L2 9T2,13,
21,1201,1121,1421,13T1,152L3,15L2,15, L1,13L1,11L1,9L1,15L1,16L3,16L2,16, L1,14L1,15L1,10L1,12L3,12L3,9L3,16,
T1,1572,1522,1302,1112,1072,16 1,16, L2,9C1,9L3,9L3,113,12L3,10L3,15, L2,10L1,10L3,1073,9L3,14L3,13L 3,11,

X2,12%29T21072,15L2,16L2,14L3,14, L2,14L2,11L2,162L2,13L1,13L3,13L3,12, L3,9L2,9X211L2,15L2,12L2,10L3,10-
For p = 25, we decompose the last cycle and first path into 2P; as follows:
L1,271,673,6L3,3L3,7L3 43,8, L24L34L36L3,2L35L3,7L38-
For p = 26, we can decompose

{($1,4$1,5$2,5$2,2$2,6$1,69€1,4), $1,1$1,2$1,5$1,8$1,3$3,3$2,3};
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into 2P; in p = 25 as follows:

L1,1%1,221,522,5222L26L1,6,L1,6L1,4L1,5L1,821,3L3,322,3-

Now, using Construction 1.4 we get the required number of paths and cycles from paired Cg’s
given above for p > 27. So, we have the desired decomposition for K30Kg. O

Lemma 3.6. There ezists a (6;p, q)-decomposition of K¢OK,, p # 1.
Proof. First we decompose K¢OK5 into Cg’s as follows:

{(3U1,2X5,2X4,2X3,2X2,2X6,2X1,2), (X2,1X4,1$4,2$6,2$6,1$5,1$2,1)}7
{($3,2X6,2X5,2X2,2X4,2X1,2X3,2)7 (X3,2X3,1$6,1$1,1%,1355,2553,2)}7
{($1,1X2,1X6,1X4,1X5,1X3,1X1,1), (Xl,1X1,2$2,21U2,1~’L“3,1CC4,1551,1)}-

The last 3Cs can be decomposed into 3P, as follows:

{$2,1$3,1$5,1$4,1$1,1$1,2I2,2, L22T92121,1L6,1L31L32L52, 952,1$6,1$4,1$3,1$1,1$5,1$5,2}-

Now, using Construction 1.4 we get the required number of paths and cycles from the Cp-
decomposition given above. O]

Lemma 3.7. There ezists a (6; p, q)-decomposition of KgOKy, p # 1.
Proof. First we decompose K¢OK, into Cg’s as follows:

T3,3X1,3X2,3X24X3 4X32X33), (X33X43%44T6,4L6,3L53L3,3)f,

T1,3X1,1X1,2X2 2X2 414X 4X1.3), (X1,3X6,303,303,425,4L5,3%1,3

b

Ty 2X3 2X52X62X6,3X4,3X4,2), (X4,2X4123,126,106,4L6,2L4,2

b
T6,1X6,3X2,3X5,3X4,3X4,1X6,1 )

T31X1,1X4,1X21X23X33X31), (X3,1X51L52%1,276,2L3,2L3,1) 55

T1,4X6,4X54X52X42X44X14), (L1,4T54L44T2426,4X34X14

b

{( )
{( )
{( )
{(I1,2X3,2X2,2X2,1X1,1X1,4X1,2), X1,2X1,37043%023T22%42%1 2
{( )
{( )
{( )
( )

( )}
( )}
( )}
( )}
) (X6,1X1,1$5,1$5,4$2,4$2,1956,1)}
( )}
( )}
( )}

{ T51X21X3,1X34X44X41X51), (X51X6,1L6,202,2052L53T51

The first 3Cs can be decomposed into 3P; as follows:
{961,1$1,2l’2,2$2,4$1,4$1,3372,3, T2,302,434L32T33L43L4,4, $6,4$6,3$5,3$3,3$1,3$1,1}-
Now, using Construction 1.4 we get the required number of paths and cycles from the
Cg-decomposition given above. O]
Lemma 3.8. There ezists a (6;p, q)-decomposition of K¢OKg, p # 1.

Proof. First we decompose K¢OKjg into Cg’s as follows:
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( 1X1,2X2,2X3,2X6,2X6,1X1,1)7 (X1,1X3,1$4,1$5,1$6,1$2,1CU1,1)
(Xz 1X2204,204,304,4L4,1T2 1) (5172,1X3,1X6,1X4,1X1,1X5,1X2,1)
($1 2X1,4X1,1X1,3X3 3X3 2X1 2), ($1,2$1,3$4,3$4,1I4,2X6,2X1,2)

Y

Y

—~

($ ,3X5.3X5,1X5 2X6,2X6,3X1 3)7
(3U1 4X1 5X35X2 5X5 5X5 4X1 4),
($1 5X5,5X5,1X5,6X5,2X1,2X1 5),

($1 6X6,6X3,6X4,6X2,6X5,6X1 6)7
( )

X1,3X1,671,406,4L6,5%1,5L1,3

b

~~

bl

)
X1,4X4,4$5,4$2,4$6,4$3,4$1,4)
)

~~

X1,5X45%42%1221621,171,5

Y

}
}
}
}
}
}
}
2
}
}
}
}
}
}
}

—~

371,6374,6136,656’2,6562,5341,5X1,6)

—~

T3 3X2 3X6,3X53X54X34X3 3 X3,3X4,304,5%65%55%5313 3

)

~—~

(ZL"5 6X4,6X4,4X2 4X2 6X3,6X5 6), X5,6X6,6$6,4$4,4$4,5$5,59€5,6)

T3 4X35X45X46X4,2X44X34), (X34X247123726T1,6L3,6T3,4)f,

T6,3X6,4X5,4X5,6X5,3X4,3X6,3), (X6,3X3,303,526,526,1L6,6L6,3

( )
( ) ,
(xz 3X25X4,5X4,1X4,6X4,3X2 3),
( )
( )

)
T3,1X36X3,2X52X55X35X3 1), (X31X34X32T35736L33T3,1)f,

T6,2X6,4X6,1X6,3X6,5%X6,6X6,2 ),
{(ZU5,2X574X5,1X3,1X3,2X4,2X5,2),

b

{
{
{
{
{
{
{
{
{
{
{
{
{
{

T6,2L65L25T21126X2,2X6,2

P P

)
)
X2,3X2,2$2,5$2,4£U1,4131,3332,3)
)
)
)

X5,2X5 372 3221124L22T5 2

The first 3Cs can be decomposed into 3P, as follows:
{$4,4$4,3I4,2$2,21U3,2ZU6,2136,1, L4,4041T51206,1L1,102,1L22, $6,1$2,1I4,1$3,1$1,1$1,2132,2}-

Now, using Construction 1.4 we get the required number of paths and cycles from the Cjp-
decomposition given above. O]

Lemma 3.9. There exists a (6;p, q)-decomposition of K¢OKg, p # 1.

Proof. By Lemma 2.2, Kg — I has a (6;p, ¢)-decomposition. We decompose 8 K¢ @& 61 into Cg’s as
follows:

{(z3,79,576 X4,§X5 X1,jX35), (X3Xs5X5,j+171,j4171,5T6,735) )
{(23j4172,j11X2,5X1,jX4jX3,5X3§11), (X8j11X4j41T5,j 1176, 4172, 4171,41T3,5+1) } 5

{<x4,j+1Xl,j+1X6,j+1X3,j+1X5,j+1X2,j+1X4,j+1)7 ) (X4,j+1X4,j$2,j9€5,j376,j$6,j+15€4,j+1)},

where j =1,3,---,7. The first 3Cs can be decomposed into 3P; as follows:

{35112 7412 3 jT6 jT1 jT1 41, T6,jTajT1 T3 jT5 5T5 4171 j+1, L6 j 25T jT5 jT4 T3 T3 j41 -

Now, using Construction 1.4 we get the required number of paths and cycles from the Cjp-
decomposition given above. O]

Lemma 3.10. There ezists a (6;p, q)-decomposition of K,OKy4, p # 1.

Proof. First we decompose K,;0K, into Cg’s as follows:

{<$2,1X471X1,1X1,2X2,2X2,3X2,17 X21X31734L32T22X24T21) 7,
($2,3X1,3X1,4X3,4X4,4X2,4X2,3

y \T1,171,202,24,204,1X31X1,1) s,

( )}

) (X2,3X3,3$3,1CU3,2ZU4,2$4,3$2,3)}7
T1,1X1,3X3,3X3,2X1,2X1,4X1.1 ( )}
( )}

~— — — ~—

T4,4X1,4X2 4X34X33X43X44 X4,4X42712%1,304304,1T44

)
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The first 3Cs can be decomposed into 3P; as follows:
{5E1,1I1,2$2,2$2,4$2,1$273$1,3, L1,301,423 423 2L22L23T2 4, €E1,1$4,1$2,1$3,1$3,4$4,4$2,4}'

Now, using Construction 1.4 we get the required number of paths and cycles from the Cp-
decomposition given above. O

Lemma 3.11. There ezists a (6; p, q)-decomposition of K;OK7, p # 1.

Proof. We can write K;OK; = TK;\E(K3) ® K3 & TK;\F(K3) & K;. By Lemma 2.1, K7\ E(K3)
has a (6; p, ¢)-decomposition. Now, we can view TK3 & TKzas K3 & --- & K1 & (K3) & -+ & (K3)
with K% = (2;; 9% 10T 2), for i = 1,--+, 7 and (K}) = (T;%i41:%Tir0:%i4), for ¢ = 1,7,
where the subscripts of x are taken modulo 7 with residues {1,---,7}. The Cg-decomposition of
TK3 & T7Kj is given below:

{($3,1X1,1X2,1X2,7X2,2X3,2X371)7 (Xs,1X3,3$3,2$4,2$2,2$2,1$3,1)},
{($4,4X4,2X4,3X3,3X5,3X5,4X4,4), (X4,4X6,4$5,4I5,5I5,3I4,3334,4)};
{(X7,7X1,7X1,6X6,6X6,5X7,5$7,7), (X7,7X2,7$1,7$1,1$1,6$7,6$7,7)},

($5,5$6,5$6,4$6,6907,6957,5$5,5)-

The last 3Cs can be decomposed into 3P, as follows:

{$1,1$1,7I2,7$7,79€7,6$7,5$5,5, T552L6,506,4L6,6L76L1,6L1,7, $1,1$1,6I6,6$6,59€7,5$7,7$1,7}-

Now, using Construction 1.4 we get the required number of paths and cycles from the Cy-
decomposition given above. O]

Lemma 3.12. There ezists a (6;p, q)-decomposition of K3OKis, p > 18.

Proof. Since the degree of each vertex v € V(K30Ks) is odd, then p > % = 18. We can write
K30Kyy = 12K3 @& 3Ky = 12K3 & 3((K12\FE(2Cs)) @& 2Cs). The graph 12K3 along with
three rows of 2Cs can be viewed as 2G, where G = 6K3; @& C} @ C2 @ C? with V(G) =
{2,;:1<i<3,1<j <6} and Cf = (21121271571 4216013711, Cq = (T21T22024%2 T2 3T2,6T21),
C3 = (3173273673473 3735731) and decompose G into Cg’s as follows:

{($1,1X1,2X1,5X2,5X2,3X1,3X1,1), (X1,1X2,1$2,2$1,2$3,2$3,1$1,1)}7
{(Il,6X1,4X2,4X2,2X3,2X3,6X1,6)7 (X1,6X2,6$3,6$3,4$3,3$1,3$1,6)}7
{($3,5X2,5X2,4X3,4X1,4X1,5X3,5)7 (X3,5X3,1$2,1$2,6$2,3$3,3$3,5)}-

The first 3Cs can be decomposed into 3P, as follows:
{$2,1$2,2I1,2I1,1I3,1133,2333,6, L2,121,121,322,3225L1,5L1,2, xl,2$3,2I2,2I2,3I1,3131,6333,6}-

Now, using Construction 1.4 we get the required number of paths and cycles from the Cjp-
decomposition given above. So, G has a (6;p,q)-decomposition. By Lemma 2.5, the remaining
edges has a (6; p, ¢)-decomposition. ]
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Lemma 3.13. There ezists a (6;p, q)-decomposition of KsOKis, p > 30.

Proof. Since the degree of each vertex v € V(K5OKjs) is odd, then p > 30. We can write KzOKo
= 12K5 D 5K12 = ].2K5 D 5((K12\E(206)) D 206) By Lemma 257 K12\E(2C6) has a (6,]?, q)—
decomposition. Let 12K5 & 10Cs = G; & Ga, where G; = (6K5 & C} & -+ & CF) 2 Gy
with

1 2

06 = (9U1,1$1,2$1,4$1,6$1,5$1,3$1,1), CG = ($2,1$2,5$2,35L‘2,6!E2,25U2,49U2,1)7
3 _ 4 _

06 = ($3,1$3,3$3,5$3,2$3,6$3,4133,1), Cﬁ = (I4,1I4,5$4,2$4,4954,6364,3SC4,1)7
5

06 = (375,1$5,2$5,4$5,6$5,5335,3$5,1)-

The graph G; decomposes into required number of Cy as follows:

{ T1,2X1,4X54X44X4 2X32X12), (X1,2X22T24T34L54T52T1,2 }7

{ T1,6X26X3,6X3,4X4,4X1,4X16),

( ): ( )
( ) ($1,6$3,6$5,61’5,5952,5X1,5X1,6)},
( ): ( )
{(Iz,1X2,5X3,5X4,5X4,1X1,1X2,1), (Xz,1X2,4I1,4$3,4$3,1$4,1$2,1)},
( ); ( )
( ): ( )
( ): ( )

T1,3X23X26X56X4,6%X4,3X1,3), (X1,3X15L55735233L53%1,3 },
{ T42X52X51X31X1,1X12X42), (X42X22T32T35L1,5L4,5L4,2 },
{ T4,6X3,6X3,2X52X22X26X46), (X4,6X1,615,6754L24T44T46 },
{ T3,3X4,3X41X5,1X1,1X1,3X3,3), (X3,3X23753751712,173173,3 },

($2,3$2,5$4,59€5,5$5,3$4,31’2,3)-

The last 3Cs can be decomposed into 3P; as follows:

{$5,5$5,3$2,3374,3134,1335,11’2,1, T2,13,1733%1,321,1%5,1T5,3, $5,3$4,3$3,3372,3132,5334,5CU5,5}-

Now, using Construction 1.1 we get the required number of paths and cycles from the Cg-
decomposition given above. Hence GG; has a (6; p, ¢)-decomposition and so the graph Gs. O

Lemma 3.14. There ezists a (6; p, q)-decomposition of K;OKis, p > 42.

Proof. Since the degree of each vertex v € V(K;0Kj3) is odd, then p > 42. We can write K;OK1s =
12K; @ 7Ky = 12(K/\F(K3)) @& 4K @& (K30Kj,). By Lemmas 2.1, 2.8 and 3.12, the given
graph has a (6; p, ¢)-decomposition. ]

Lemma 3.15. There ezists a (6; p, q)-decomposition of K110K15, p > 66.

Proof. Since the degree of each vertex v € V(K;;0Kjs) is odd, then p > 66. We can write
KOKs = 12K @ 11Ky, = 12(K3\E(C7)) @ 11K;5. Consider Kjs in rows 1, 3, 4, 7 as
(K12\FE(2Cs)) @ 2Cs, where 2C are vertex disjoint cycles. Now, these 8Cg along with 12C; in
columns form a graph G = (4Cs @ 6C7) ® (4Cs ® 6C;) = Gy @& Go, G1 = Gy Let G =
Cto @ CidCHad -+ & C8 where
C(} = (xl,lx1,2x1,5x1,6$174$173$171), C(? = (333,1353,2333,3%3,6903,4%3,5953,1)>
i =

4
(904,1$4,2$4,5$4,6$4,4$4,3$4,1), CG = ($7,1$7,2$7,35137,4$7,59€7,6177,1)7
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and

1 2

07 = (201,1ZE2,1$4,1$7,1$3,1$5,1$6,1$1,1), 07 = ($1,2$3,2I7,25136,2$5,2!E4,2$2,2$1,2),
3 4

C; = (xl,3xs,3I5,3I6,3$7,3$4,3$2,3$1,3), C7 = ($1,4$2,4$3,4l‘7,4$6,4$5,4$4,4$1,4),

5 6
07 = (951,596’3,5$5,5$6,5$7,5$4,5$2,59€1,5), C7 = (-Tl,61'2,6$3,6$4,6x5,6x6,6x7,6x1,6)-

This can be decomposed into required number of Cy as follows:

T1,2X32X31X51X6,1X1,1X1,2), (X1,2X1,502524,5L4,2022L1,2

9

T72X71X41X4,2X5 2X62X72), \X72X32733%53%6,307,307,2

3

T76X75X45X46X56X6,6X7,6), \X7,6X7,1L3,1135L1,52L1,6L7,6

9

{( ): ( )}
{( ): ( )}
{($7,4X773X4,3X4,4X5,4X6,4X7,4)7 (X7,4X374353,5555,5%6,5337,5337,4)},
{( ): ( )}
{( ): ( )}

T1,3X1,4X24X34X3 6X3,3X1,3), (X1,3X23L4,304,172,171,171,3

?

(xl,4371,6332,637376x4,6374,4331,4)-

The last 3Cs can be decomposed into 3P, as follows:

{I4,1$2,1$1,1$1,3$1,4$1,6$2,6, T2,6X3,6L4,6L4,401,4X24T3 4, $3,4$3,6$3,3$1,3$2,3$4,3964,1}-

Now, using Construction 1.4 we get the required number of paths and cycles from the Cjy-
decomposition given above. Hence G also has a (6;p, ¢)-decomposition and so the graph Gy. Also
by Lemmas 2.5, 2.7, K1;\E(C7) and Kj5\FE(Cs) have a (6;p, ¢)-decomposition. Hence by Remark
1.3, K110K5 has a (6; p, ¢)-decomposition. O]

Lemma 3.16. There ezists a (6;p, q)-decomposition of C¢O(Kg\E(2Cs)), where p = 24 and the 2C

are {(T2,23,;27,04,%6,T8,%2;),
(X2, %5, %4, %8,:T1,T6,:T2:)}, 1 < i <6.

Proof. Let V(G = CsO(Ks\E(2Cs))) = {x;;:1<i<6,1 <j <8} Since the degree of each
vertex v € V(G) is odd and |E(G)| = 144, then p = 24. Now, the 24P; are given below:
{%’,1$i+1,1$z'+1,5£Ei+1,3$z'+1,8$i+1,7%’,7, Tj2%441,20i41,1T441,3Ti+1,6Li+1,504,5, L4,30i41,3Ti4-1,4Ti41,2Ti+1,7

Tit1,6%i6, TiaTit14Tit11%i+1,7%i+1,5%i+1,8%;8, where 1 < ¢ < 6 and the first coordinate of subscripts
of x are taken modulo 6 with residues {1,---,6}}. O

Lemma 3.17. There ezists a (6;p, q)-decomposition of KsOKy, p > 36.

Proof. Since the degree of each vertex v € V(KgOKy) is odd, then p > % = 36. For p = 36, the
required number of P;’s and Cg’s are constructed as follows:

{1‘1,1$1,3$1,2I6,2I5,2$3,2$4,27 L1,221,901,702,7L3 713,206 2,
T5,706,706,1X1,1L71X76L7,3, L1,5L55L65L85L82X1,2L3 2,
L1,623,6L32L72L12L22L24, £1,701,3L2,3L2,9L25L6,5L6,3,
L1,8758%56L8,6189L87L7,7, £1,901,1L2,1L6,1L8,1L8,2L8,8,
T21T5101,104,1L42L62L82, L22L82L84L34L24L2,6L2,7,
L2302 4L64X74L76L1,6L6,65 L2,5L22L42L45L35L55L8 5,
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and

T2,6X29T2 45 4T51X31L7,1,
L2,9T1,9079L7 3L8 32 34,3,
T33206,304,304,8T3 8L3,1L4,1,
X35L31L37L4,7043233L36,
T38L3,7L87X47L45%1 575,
T45T75L35L36L6,6L5,6L5,4,
T4,871,871,2%1,101,4T5,4L6 4,
T532L5,2%59L55L58128L68,
T5623,6L4,6L6,6L86X8,7L8 3,
T65L6,706,6L6,3L53%51L8 1,
T8,4L4,4T14%1 8T28%2 6186,
L1,422,4T7 4T7,3L72L82L5 2,

{(X177X1,2IE1,65E1,5$1,1$1,8$1,7)7

{(X1,7X3,79€6,7x4,7$2,7$8,7$1,7),

{(56'1,3X1,4X1,6X1,8X1,5X1,9X1,3)7
{(X2,1X2,2X2,8X2,3X2,7X2,9$2,1),
{(5(72,1X2,4X2,8X2,9X2,2X2,3X2,1)7
{(5173,2X3,8X3,3X3,7X3,9X3,1X3,2),
{(X3,4X3,8X3,9X3,2X3,3X3,1$3,4)7
{(X4,4X4,6X4,85€4,5SC4,9SU4,3$4,4)7

{(174,9X4,2X4,3X4,1X4,4X4,8X4,9)7
{(X4,8X4,7X4,2X4,6X4,5X4,1$4,8),
{($5,2X578X5,3X5,7X5,9X5,1X5,2)7
{($5,5X5,1X5,8X5,7X5,2X5,6X5,5)7
{(X6,2X6,8X6,3X6,7X6,9l‘6,1136,2),
{($6,4X6,6X6,8X6,5X6,9X6,3X6,4),
{ ($7,2X7,8X7,3X7,7X7,9X7,1X7,2) )
{(X7,7X7,1X7,4X7,8X7,9337,2357,7),
{(Xs,6Xs,8X8,5X8,9X8,3X8,4378,6) )
{(X8,3X8,1X8,4X8,8X8,9X8,2$8,3)7
{(X3,1X6,1X4,1X2,1X8,1331,1x3,1)7
{(X772X6,2X2,2X5,2X1,2$4,2$772),
{(X2,3X5,3X1,3X4,3X7,3X6,3$2,3)7
{($1,4X6,4X8,4X5,4X3,4X7,4£C1,4),
{(Xl,5X3,5X6,5X4,5X2,5$8,5l‘1,5),
{(Xl,6X4,6X7,6X6,6X2,6$5,6$1,6),
{(X5,7X1,7X4,7X7,7X6,7X2,7ZE5,7)7
{(X2,8X3,8X8,8X4,8X5,8X7,8$2,8) )
{($1,9X3,9X6,9X4,9X2,9X8,9X1,9)7

T28L2 5L 7X77L5 74 7146,
T31T3,6L7,6L7,5L7,1L8,1L8,95
L34L35%3 321,308 3L88L7 8,
X3,7034L44X74L54X58L59,
L4425 4T53L59L69L6,6L6,1,
T, 7049T44042T48L7 87,6,
L4,9T4,6T26L1,6L8,6L7,617,25
T55025%1,506,5L6,2L6,4L6,7,
T58L6,8L7 8 7516 5X6,4L6,9,
T74X8 48 9X7 9L7 5X8 5L8 7,
T7.9X39T49L41T71%6,1T5,1,
131,3561,8$1,9$6,9$8,9375,9$3,9}

($1,7X1,4X1,5X1,3X1,6X1,1X1,7 )
($1,7X1,6X1,9X1,4X1,2X1,5X1,7 )
X1,3X6,378,305,323317,3L1,3),

T21T2,7X24T2 5T2 3X2 6X2 1

b
b

Y

(
(
(xz,1$2,8$2,7!E2,2I2,6X2,5X2,1
(X3,2X3,55173,7553,6$3,9$3,4$3,2
(

X3,4X3 613813513 9X33T34)7,
(X4,4X4,5X4,3X4,6X4,1154,7334,4 )
X4,9X59L79L2 9L3 9L 9L49) 55
?

X5,2X5 515 7L56159L54L5 2

(
(X4,8X2,8$8,8$1,8$3,8$6,8$4,8
( :
(

X5,5X53%56L5,1L57L54T55) 1,
9

}
}
}
}
}
}
}
}
}
}
}
}
}
2
}
}
}
}
}
}
}
}
}
}
}
}
}

(X6,2X6,6X6,55€6,1376,81136,7336,2
(
(X7,2X7,5$7,7$7,6$7,9I7,4$7,2 )
(X7 7X7.4X7 5X73L71X78L77) 5,
(5178,6958,5338,191?8,8«758,7X8,2X8,6 )
(X8,3X8,6$8,1$8,7$8,49€8,5$&3
($3 1281741751 X7,1X21X31

(X7 2X2 2X3 278 2L42L52L7,2

7
?
?
( 2,3X3,308374,3053L73%23) 7,
(551 473 4X6,4X44X24T84T14)
(96‘2 523,5L8,5L45X5 5X7 5X2 5

b

(Xz 6X3,6X8674,6L5,6L76L2,6) S,
X5 7X37L7 701,726 7X87L57)
y

X1,9C49T7.926,972,9X59X1.9

)
)
)
)
)
)
)
)
)
)
)
)
)
$6,4«’E6,8$6,9906,2I6,3X6,1X6,4)
)
)
)
)
)
)
)
)
)
)
)
)
)

(
($1 826,818 8058 3 8X7 8X1 8
(

For p = 37, we decompose the last path and first cycle into 2P as follows:

{$1,7$1,2$1,6$1,5$1,1I1,8$1,37

xl,7$1,8$1,9$6,9$8,9$5,9I3,9} .
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Now, using Construction 1.4 we get the required number of paths and cycles from Cg’s for p > 37.
So, we have the desired decomposition for KgOKj. O

Theorem 3.18. K,,0K, has a (6;p, q)-decomposition if and only if mn(m+mn—2) = 0 (mod 12).

Proof. Necessity. Since K,,0K,, is (m + n — 2)-regular with mn vertices, K,,0K,, has mn(m +
n —2)/2 edges. Now, assume that K,,0K,, has a (6;p, ¢)-decomposition. Then the number of edges
in the graph must be divisible by 6, i.e., 12|mn(m +n —2) and hence mn(m+n—2) = 0 (mod 12).
Sufficiency. We construct the required decomposition in ten cases.

Case 1. m= 0 (mod 6) and n = 0 (mod 2).

Subcase 1.1. m,n= 0 (mod 6) .

Let m = 6k and n = 6l, where k,I > 0 are integers. We can write K,,0K, = kl(K;OKs) @
3kl(k+1—2)Kss. By Theorem 1.2 and Lemma 3.8, K¢ and K¢OKg have a (6; p, ¢)-decomposition.
Hence by Remark 1.3, K,,0K,, has a (6;p, ¢)-decomposition.

Subcase 1.2. m = 0 (mod 6), n= 4 (mod 6) .

Let m = 6k and n = 6] + 4, where k,[ are non-negative integers. We can write K,,0K, =
(KekOKeg) @ k(KeDOKy) @ 2k(k—1)Keg @ 6kKga. By Theorem 1.2, Lemmas 3.7, and 2.4,
Subcase 1.1 and Remark 1.3, K,,0K,, has a (6; p, ¢)-decomposition.

Subcase 1.3. m = 0 (mod 6), n = 2 (mod 6) .

When m = 6k and n = 2, K,,0K,, = k(K¢OKy) @ k(k— 1)Kgg. By Theorem 1.2, Lemma
3.6 and Remark 1.3, K,,0K,, has a (6;p, q)-decomposition. When m = 6k and n = 8, K,,0K,, =
k(KsOKs) @ 4k(k —1)Kgg. By Theorem 1.2, Lemma 3.9 and Remark 1.3, K,,0K, has a (6;p, q)-
decomposition. When n > 8, let m = 6k, n = 6/ + 8, where k,[ are non-negative integers. We can
write K,,,0K,, = (Ke,OKg) @& (KeOKs) & 6kKgs. By Theorem 1.2, Lemma 2.4, Subcase 1.1
and Remark 1.3, K,,0K, has a (6; p, q)-decomposition.

Case 2. myn =4 (mod 6).

Let m = 6k + 4 and n = 6] + 4, where k,[ are non-negative integers. We can write K,,0K, =
kl(KsOKg) @ (k+1)(Ke¢OKy) & (K4OKy) @ (3kl(k+1—2)+2k(k—1))Ke 6 © (12k14+4(1+k))Ks4. By
Theorem 1.2, Lemmas 3.7, 3.8, 3.10 and 2.1 and Remark 1.3, K,,0K, has a (6;p, ¢)-decomposition.

Case 3. m= 0,1,40r 9 (mod 12), n= 10r 9 (mod 12).

When m is even, the degree of each vertex v € V(K,,0K,) is odd, then p > mn/2. Now,
K, 0K, =nK,, ® mK,. By Lemma 2.8 and Theorem 1.1, K,, and K,, have a (6; p, ¢)-decomposition
(with p > m/2 whenever m is even). Hence by Remark 1.3, K,,0K,, has the required decomposition.

Case 4. m,n =3 or 7 (mod 12).

Subcase 4.1. m,n =i (mod 12), i =3, 7.

When m = n, if i = 3, then K,,0K,, = nK,, ® mK, = 2m(K,,\E(K3)) © F(K3O0K3). If i = 7let
m = 12k+7, then K,,0K,, = 2(m—7)(K,,\E(K3)) ® "2 (K30K3) @ 14(Kioj1 S Kiak6) © K7OK7.
By Lemmas 2.6, 3.1, 3.11, Theorems 1.1, 1.2 and Remark 1.3, K,,0K,, has a (6; p, ¢)-decomposition.

When m < n, let n = m+h, where h = 12[,1 € Z* m = 12k +1, 1 = 3,7. We can write K,,0K,, =

(K,O0K,,) & hK,, ® m(K,\E(K,)) =(K,0K,) & 120(K,\FE(K3)) & 121K3 & m(Kiy1 P
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Ki91,m—1). Now, the first three rows of (K,,0K,)\(K,,0K,,) can be viewed as (Kj94+1\E(2lCs)) &
Kigim—1 @ 2lCs. As in the proof of Lemma 3.12, we can prove 121K3 along with three rows of
21Cs has a (6;p, q)-decomposition. By Lemmas 2.4 and 2.5 and Theorem 1.2, K911\ F(2ICs) and
Ki91,m—1 have a (6; p, ¢)-decomposition. Hence by Remark 1.3, K,,,0K,, has a (6; p, ¢)-decomposition.

Subcase 4.2. m= 3 (mod 12), n= 7 (mod 12).

Let m = 12k + 3,n = 12l + 7. We can write K,,0K, = nkK,, & mkK,.

When k = [, every column of K,,0K,, can be viewed as (K,,\E(K3)) & K3 and every first (m —3)
rows can be viewed as (K, \E(K3)) @& K3 and last three rows can be viewed as (K,\E(K7)) & K.
Now, the K3’s in first (m—3) rows and columns form @(KP,DK;;) and K,\E(K7) can be viewed as
K941 & Ki96 and these graphs have a (6; p, ¢)-decomposition, by Theorems 1.1, 1.2. By Lemmas
2.6 and 3.1, K,,\E(K3), K,\F(K3) and (K30K3) have a (6;p, ¢)-decomposition. By Lemma 3.2, the
remaining graph K30K; has a (6;p, ¢)-decomposition.

When k < [, every column of K,,0K, can be viewed as (K,,\E(K3)) & K3 and every first
(m — 3) rows can be viewed as (K,\F(K3)) @& Kj. Now, the Kj3’s in first (m — 3) rows and
columns form @(K};DK?)). By Lemmas 2.6 and 3.1, K,,\ E(K3), K,\F(K3) and (K30K3) have
a (6;p,q)-decomposition. Finally, we have to find a (6;p, q)-decomposition of the last three rows
and 12(I — k) + 7 columns of K,,0K,. Now, every 12(l — k) + 7 columns of K,,0K, can be
viewed as (K,,\F(K3)) & (K,,\V(K,,—3)) and every last three rows of K,,0K,, can be viewed as
Kipr1 ©@ K7 ® Kok © Kisgerye © Kiokaog—r) © (Kiog-w+1\EQ2(1 — k)Cs)) & 2(1 — k)C
and by Theorem 1.2, Ko @ Kizu—k)e = Kiue has a (6;p, q)-decomposition. By Lemma 2.5,
Ki20-1)+1\E(2(l — k)Cs) has a (6; p, ¢)-decomposition. As in the proof of Lemma 3.12, we can prove
12(1 — k)K,\V (K,—3) along with the three rows of 2(I — k)Cs has a (6;p, ¢)-decomposition. By
Lemma 3.2, the remaining graph K3OK7; has a (6; p, ¢)-decomposition.

By using similar proof, we can prove for the case k > [ also. Hence K,,0K, has a (6;p,q)-
decomposition.

Case 5. m= 3 (mod 12), n= 11 (mod 12).

Let m = 12k + 3,n = 12l + 11. We can write K,,0K, = nK,, & mkK,. Consider all columns as
(Kn\E(K3)) @ Kj except the columns 1, 3, 4 and 7 and consider these columns as (K,,,\(F(K3)) ®
E(2kCg))® K3 @ 2kCg and all rows can be viewed as (K,,\ E(C7)) @ C; except the last three rows. The
last three rows can be viewed as (K941 \E(21Cs)) @ Ki21,10 @ 2(Cs @ Ki;. In each column K, \ E(K3)
has a (6;p, q)-decomposition and in columns 1, 3, 4 and 7 the graph (K,,\(E(K3)) ®& E(2kCs))
has a (6;p, ¢)-decomposition, by Lemma 2.6. So the remaining edges in columns 1, 3, 4 and 7 form
K3 @ 2kCs and in other columns form K3. By Lemma 2.7 and Theorem 1.1, the graphs K,\ E(C7)
and K941 have a (6; p, ¢)-decomposition and K910 = 21(Kse @ Kga) has a (6;p, ¢)-decomposition,
by Theorem 1.2 and Lemma 2.4. So the remaining edges in the first (m — 3) rows form 12kC'; and
in the last three rows form Ky @ 2(Cs. The graph 12/ K3 in the first 12/ columns along with 2ICy in
the last three rows have a (6;p, ¢)-decomposition as in Lemma 3.12. Also, the edges of 12kC along
with four columns of 2kCy can have a (6; p, ¢)-decomposition as in Lemma 3.15.

Now, the remaining edges (K3’s) in the last 11 columns and (K;;’s) in the last 3 rows will form
K30K7, which has a (6;p, ¢)-decomposition, by Lemma 3.4. Hence by Remark 1.3 K,,0K, has a
(6; p, q)-decomposition.

Case 6. m=5 (mod 12), n=9 (mod 12).
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Let m = 12k +5, n = 12014+ 9. We can write K,,0K,, = nK,, & mK, = n((K,\E(Cy)) & Cy) &
mik,. Consider the first 5 rows and the last 2 rows as K941 @& Ko @& Kiog and (Kq941\E(20Cs)) &
21Cs @ Ky @ Kiag respectively. The graph (n — 9)Cy in the first n — 9 columns along with the
last 2 rows of 2ICy can be viewed as 2IG, where G = 6C; & 20, =C; & C; @ --- & C &
C3 @ Cg with V(G) = {z;;]1 <i<4,<j <2} and C} = (21,29,23,x4,71;), 1 < i <6, C’g =
(Xj12;2%4 37425 5%6%51), J = 3,4 and G can be decomposed into Cg’s as follows:

{(-773,2ix3,(2i71)X2,(2i71)X1,(2i71)X4,(2i71)x4,2ix3,2i) ) (X3,2iX2,2ix1,2i$4,2i$4,(2i+1)x3,(2i+1)553,21‘)} )

where 1 <1 < 6 and the subscripts of x are taken modulo 6 with residues {1,---,6}. The first three
cycles can be decomposed into 3P; as follows: {1924 2%412011021%31%3,2, T32%4 224321 372 3L33%3 4,
T3 4%4 474,33 303202221 2. Now, using Construction 1.1 we get the required number of paths and
cycles from the Cs-decomposition of G given above. By Theorem 1.1, Lemmas 2.3, 2.4 and 2.5, K,
K941\ E(2kCs), Ky and Kja8 have a (6; p, ¢)-decomposition. Now, consider the remaining 9C, with
5C¢ from the first 5 rows in 5 x 9 block with vertex and edge set as follows:

and
Cl = (21,%9,%3,%4,%1,),7 = 3,4,8
and
Ci ($1 122,124,123,1L1 1),
Cz = (xz 2X32X4,2%52T2 2>,
05 = ($1 523 5L55L4 501 5),
06 = ($1 624,622,673 611 6)7
C7 = (xl 7X375,7C2 721 7)7
09 = (351 9T4913,9T5 91 9)
Ol = ($1 121,321,521,721,921,871 1),
02 = (xz 112,202 312,6L2,712,8T2, 1),
03 = (333 103,303 413,6L3513,2X3 1),
04 = ($4 204,304,4%47246L49T4 2),
Cs = ( 2$5,3375,5135,7135,9175,4565,2)-

Now, this GG can be decomposed into Cy’s as follows:

T1,8X1,9X5,9X5 7X2 7X28X1.8), (X1,8X48738%28%2,1%1,1L1,8

Y

T55X4,5X1,5X1,7X3,7X57X55), \X55X53L52L22T32L35T55)7 ,

{( ): ( )}
{( ); ( )}
{($3,3X2,3X2,2X2,1X4,1X3,1X3,3), (X3,3X3,4$2,4$1,4$4,4$4,3$3,3)},
{( ): ( )}
{( ); ( )}

T4,2X32X31X1,1X13X43X42), (X42X52T54L59L3,9L4,924,2

Y

T4,6X4,7X4,4X3 4X3,6X1,6X4,6); (X4,6X2612,701,701,9049T46) »

($1,3$2,3$2,6$3,69€3,5901,5951,3)-
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The last 3Cs can be decomposed into 3P; as follows:

{I1,3I2,3I2,6$4,69€4,9J31,9131,7, T1,702,722623,6L1,6L4,6L4,7, $4,7I4,4I3,4$3,6963,5151,59131,3}-

Now, using Construction 1.4 we get the required number of paths and cycles from the Cjp-
decomposition of GG given above. Hence we have the desired decomposition of K, 0K,.

Note 3.19. From Case 7 to Case 10 the degree of each vertex v € V(K,0K,) is odd and so
p > mn/2.

Case 7. m = 0 (mod 12), n = ¢ (mod 12),7=3,5,7,11.

Let m = 12k and n = 121 +4, [,k € ZT and i € {3,5,7,11}. We can write K,,0K,, = nK,, ®
mK, = (n—i)K,, ® k(K,0Kp) @ i"DKy, @ m(K,\E(K;)), i € {3,5,7,11}. By Lemma
2.6, K,\E(K;) has a (6;p, g)-decomposition for i = 3. Fori € {5,7,11}, K,,\ E(K;) can be viewed as
K941 @ K911 and these graphs have a (6; p, ¢)-decomposition, by Theorems 1.1, 1.2 and Lemma
2.4. Also by Theorem 1.2 and Lemmas 3.12 to 3.15, Kys1o and K;0K5,, @ € {3,5,7,11} have a

(6; p, q)-decomposition. Hence by Remark 1.3, K,,0K,, has a (6;p, ¢)-decomposition.

Case 8. m =4 (mod 12), n= 3 or 7 (mod 12).

Let m = 12k + 4. Then K,,0K, = nK,, & mK, = nK,, & m((K,\E(K3)) ®K3). By
Lemmas 2.6 and 2.8, K,, has a (6;p, q)-decomposition with p > m/2 and K,\E(K3) has a (6; p, q)-
decomposition. Now, the last three columns can be viewed as (Kio4.—1)\E(2(k—1)Cs))®2(k—1)Cs @
Ki¢ @ Kia-1)16- By Lemmas 2.5 and 2.4, Ki54,_1)\E(2(k — 1)Cs) and Kiax-1),16 have a (6;p, q)-
decomposition. The graph 12(k — 1) K3 in the first 12(k — 1) rows along with the last 3 columns of
2(k —1)Cg can be viewed as 2(k — 1)(6K3 @& 3Cs). We can prove this has a (6; p, ¢)-decomposition as
in Lemma 3.12. Now, Kig’s of last 3 columns and K3’s of last 16 rows form K30Kg and this has a
(6; p, q)-decomposition, by Lemma 3.5.

Case 9. m = 8 (mod 12), n= 3 (mod 12).

Let m = 12k 4+ 8 and n = 12] + 3. We can write K,,0K,, = nK,, ® mK, =n((Ky & 2Cs) &
(Ks\E(2Cs)) & Kiors) & m((K,\E(Ks3)) ® K3), where 2Cq are (r2,23,T7,T4,T6:TsiT2,),
(@9,i%5, %4, %8, %1,:T6,:T2;), 1 <1 < n. Last three columns can be viewed as (K2, \E(2kCs)) & 2kCs @
Kg @ Kjas and first three rows can be viewed as (K,,\E(2ICs & Kj3)) @ 2(Cs @ K3. The graph
12k K3 in the last 12k rows along with the last 3 columns of 2kCy can be viewed as 2k(6K3 @& 3Cp).
We can prove this has a (6; p, ¢)-decomposition as in Lemma 3.12. Now, Ky’s in last three columns
and K3’s in the first 8 rows forms KgOK3 and by Lemma 3.3, which has a (6; p, ¢)-decomposition.
Also by Lemma 2.8, K9, @ 2Cs in the first (n — 3) columns has a (6;p, ¢)-decomposition. The
remaining edges Kg\E(2Cs) in the first 12/ columns and 2/Cy in first 3 rows form (Kg\E(2Cs))0Cs
which has a (6;p, ¢)-decomposition, by Lemma 3.16.

Case 10. m= 8 (mod 12), n =9 (mod 12).

Let m = 12k + 8 and n = 121 + 9. We can write K,,,0K,, = nK,, & mK, = (n — 9)((Ki2 &
2Cs) @ (K\E(2Cs)) © Kioks) @ 9(Kior @ Ks @ Kiorg) & mK,. The last 8 rows can be viewed
as K911\ F(2lCs) & 20Cs & Ky & Kigs. Now, the graph Kg\E(2Cs) in each (n —9) columns
along with 2(Cy in last 8 rows forms 2{((Kg\E(2Cs))0Cs) which has a (6;p, ¢)-decomposition, by
Lemma 3.16 and the graph Kj’s in last 9 columns and Ky’s in last 8 rows will form KgOKgy which
has a (6; p, ¢)-decomposition, by Lemma 3.17. By Lemmas 2.4, 2.5 and 2.8, the remaining edges have
a (6;p, g)decomposition.
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