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abstract

Let Pk and Ck respectively denote a path and a cycle on k vertices. In this paper, we give necessary

and su�cient conditions for the existence of a complete {P7, C6}- decomposition of the cartesian

product of complete graphs.
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1. Introduction

Unless stated otherwise all graphs considered here are �nite, simple, and undirected. For the standard

graph-theoretic terminology the readers are referred to [5]. Let Pk, Ck, Sk, Kk respectively denote a

path, cycle, star and complete graph on k vertices, and let Km,n denote the complete bipartite graph

with m and n vertices in the parts. A graph whose vertex set is partitioned into subsets V1, ..., Vm

such that the edge set is ∪i ̸=j∈[m]Vi × Vj is a complete m-partite graph, denoted as Kn1,...,nm , when

|Vi| = ni for all i. For G = K2n or Kn,n, the graph G − I denotes the graph G with a 1-factor I

removed. For any integer λ > 0, λG denotes λ edge-disjoint copies of G. The complement of the

graph G is denoted by G. For two graphs G and H we de�ne their Cartesian product, denoted by

G2H, as follows: the vertex set is V (G)× V (H) and its edge set is

E(G2H) = {(g, h)(g′, h′) : g = g′, hh′ ∈ E(H), or gg′ ∈ E(G), h = h′} .

It is well known that the Cartesian product is commutative and associative. For a graph G, a

partition of G into edge-disjoint sub graphs H1, · · · , Hk such that E(G) = E(H1) ∪ · · · ∪ E(Hk) is

called a decomposition of G and we write G as G = H1 ⊕ · · · ⊕Hk. For 1 ≤ i ≤ k, if Hi
∼= H, we say
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that G has a H-decomposition. If G has a decomposition into p copies of H1 and q copies of H2, then

we say that G has a {pH1, qH2}-decomposition. If such a decomposition exists for all possible values of

p and q satisfying trivial necessary conditions, then we say that G has a {H1, H2}{p,q}-decomposition

or complete {H1, H2}-decomposition.

The study of {H1, H2}{p,q}-decomposition of graphs is not new. Authors in [2, 4] completely

determined the values of n for which Kn(λ) admits a {pH1, qH2}-decomposition such that H1∪H2
∼=

Kt, when λ ≥ 1 and |V (H1)| = |V (H2)| = t, when t ∈ {4, 5}. Abueida and Daven [3] proved

that there exists a {pKk, qSk+1}-decomposition of Kn, for k ≥ 3 and n ≡ 0, 1(mod k). Abueida

and O'Neil [1] proved that for k ∈ {3, 4, 5}, there exists a {pCk, qSk}-decomposition of Kn(λ),

whenever n ≥ k + 1 except for the ordered triples (k, n, λ) ∈ {(3, 4, 1), (4, 5, 1), (5, 6, 1), (5, 6, 2),
(5, 6, 4), (5, 7, 1), (5, 8, 1)}. Farrell and Pike [7] shown that the necessary conditions are su�cient

for the existence of C6-decomposition of Km2Kn. Fu et al. [8] established necessary and su�cient

condition for the existence of {C3, S4}{p,q}-decomposition of Kn. Shyu [12] obtained a necessary and

su�cient condition on {p, q} for the existence of {P5, C4}{p,q}-decomposition ofKn. Priyadharsini and

Muthusamy [11] established necessary and su�cient condition for the existence of the {pGn, qHn}-
decomposition of Kn(λ) when Gn, Hn ∈ {Cn, Pn−1, Sn−1}. Jeevadoss and Muthusamy [9] obtained

some necessary and su�cient conditions for the existence of {Pk+1, Ck}{p,q}-decomposition of Km,n.

Jeevadoss and Muthusamy [10] obtained necessary and su�cient conditions for the existence of

{P5, C4}{p,q}-decomposition of Km×Kn, Km⊗Kn and Km2Kn. Pauline Ezhilarasi and Muthusamy

[6] have obtained necessary and su�cient conditions for the existence of a decomposition of product

graphs into paths and stars with three edges.

In this paper, we show that the necessary condition mn(m + n − 2) ≡ 0 (mod 12) is su�cient

for the existence of a {P7, C6}{p,q}-decomposition of Km2Kn. We abbreviate the {Pk+1, Ck}{p,q}-
decomposition as (k; p, q)-decomposition.

To prove our results we state the following:

Theorem 1.1 ([9]). Let p, q be non-negative integers, k be an even integer and n > 4k be an odd

integer. If k(p+ q) =
(
n
2

)
and p ̸= 1, then Kn has a (k; p, q)-decomposition.

Theorem 1.2 ([9]). Let s, t > 0 be integers and k ≥ 4 be an even integer. Then the graph Ksk,tk

has a (k; p, q)-decomposition.

Remark 1.3. If G and H have a (6; p, q)-decomposition, then G ∪H has a such decomposition. In

this paper, we denote G ∪H as G⊕H.

Construction 1.4. Let C1
6 and C2

6 be two cycles of length 6, where C1
6 = (x0x1x2x3x4x5x0) and

C2
6 = (y0y1y2y3y4y5y0). If v is a common vertex of C1

6 and C2
6 such that at least one neighbour of

v from each cycle (say, xi and yj) does not belong to the other cycle then we have two edge-disjoint

paths of length 6, say P 1
7 and P 2

7 from C1
6 and C2

6 as follows:

P 1
7 = (C1

6 − vxi) ∪ vyj,

and

P 2
7 = (C2

6 − vyj) ∪ vxi.
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2. Base Constructions

In this section we prove some basic lemmas which are used to prove our results. Throughout this

paper, we denote V (Kn) = {xi : 1 ≤ i ≤ n}.

Lemma 2.1. There exists a (6; p, q)-decomposition of K7\E(K3), p ̸= 1.

Proof. First we decompose K7\E(K3) into 3C6 as follows:

{(x2x5x1x4x3x6x2), (x2x4x6x1x3x7x2), (x1x2x3x5x6x7x1)}.

The bold edges (resp., ordinary edges) gives 2P7 from �rst two cycles. Now, the 3P7 are

{x4x6x7x1x2x3x5, x7x3x6x1x4x2x5, x7x2x6x5x1x3x4}.

Hence K7\E(K3) has a (6; p, q)-decomposition.

Lemma 2.2. There exists a (6; p, q)-decomposition of K8 − I, p ̸= 1.

Proof. First we decompose K8 − I into C6's as follows:

{(x1x5x8x2x6x7x1), (x1x3x2x7x4x8x1)}, {(x5x7x3x8x6x4x5), (x5x2x4x1x6x3x5)}.

The last 3C6 can be decomposed into 3P7 as follows:

{x5x8x2x6x7x1x3, x3x2x7x5x4x8x6, x6x4x7x3x8x1x5}.

Now, using Construction 1.4 we get the required number of paths and cycles from the C6-

decomposition given above.

Lemma 2.3. There exists a (6; p, q)-decomposition of K9, p ̸= 1.

Proof. First we decompose K9 into C6's as follows:

{(x1x3x5x7x9x2x1), (x1x4x6x8x2x5x1)}, {(x1x6x2x3x4x7x1),

(x1x8x3x7x6x9x1)}, {(x4x5x6x3x9x8x4), (x4x2x7x8x5x9x4)}.

The last 3C6 can be decomposed into 3P7 as follows:

{x1x8x3x7x6x9x5, x5x8x7x2x4x9x3, x3x6x5x4x8x9x1}.

Now, using Construction 1.4 we get the required number of paths and cycles from the C6-

decomposition given above.

Lemma 2.4. There exists a (6; p, q)-decomposition of K6k,4l, k, l ∈ Z+ and p ̸= 1.
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Proof. Let V (K6,4) = {x1, · · · , x6} ∪ {y1, · · · , y4}. First we decompose K6,4 into C6's as follows:

{(y2x2y3x3y1x1y2), (y2x5y3x6y4x4y2)}, {(y1x2y4x1y3x4y1), (y1x5y4x3y2x6y1)}.

From the �rst 3C6 we can �nd 3P7 as follows:

{y1x1y3x4y2x5y3, y3x6y4x4y1x2y4, y4x1y2x2y3x3y1}.

Now, using Construction 1.4 we get a required number of paths and cycles from the C6-decomposition

given above. Hence K6,4 has a (6; p, q)-decomposition. Now, we can write K6k,4l = klK6,4. Hence by

Remark 1.3, K6k,4l has a (6; p, q)-decomposition.

Lemma 2.5. There exists a (6; p, q)-decomposition of

(i). K12l+1\E(2lC6) with p ̸= 1 and

(ii). K12k\E(2kC6) with p ≥ 6k, where 2lC6 and 2kC6 are vertex disjoint cycles and k, l ∈ Z+.

Proof. (i). Let

{{(x1x4x2x6x3x5x1), (x1x10x4x7x2x12x1)}, {(x7x13x10x12x8x11x7), (x7x9x12x13x8x10x7)},
{(x8x2x10x3x7x1x8), (x8x5x10x6x12x4x8)}, {(x9x1x3x13x11x2x9), (x9x4x13x5x11x6x9)},
{(x9x11x1x13x2x5x9), (x9x3x11x4x6x13x9)}, (x3x8x6x7x5x12x3)},

be the C6-decomposition ofK13\E(2C6), where 2C6 removed fromK13 are given by (x1x2x3x4x5x6x1),

(x7x8x9x10x11x12x7). The last 3C6 can be decomposed into 3P7 as follows:

{x12x3x9x13x6x4x11, x3x8x6x7x5x9x11, x3x11x1x13x2x5x12}.

Now, using Construction 1.4 we get the required number of paths and cycles from the C6-

decomposition given above. Hence K13\E(2C6) has a (6; p, q)-decomposition, where the 2C6 removed

from K13 are vertex disjoint cycles. We can write K12l+1 = K12(l−1)+1 ⊕ K13 ⊕ K12(l−1),12. Applying

this relation recursively to K12(l−1)+1 and using Theorem 1.2, we can have a (6; p, q)-decomposition

of K12l+1\E(2lC6), where the 2lC6 removed from K12l+1 are vertex disjoint cycles.

(ii). Since the degree of each vertex v ∈ V (K12k\E(2kC6)) is odd, then p ≥ 6k. Let

{x1x12x2x11x3x10x4, x3x9x4x8x5x7x6, x2x4x6x8x10x1x5, x7x9x12x3x6x2x10, x9x11x1x3x5x10x12,

x11x4x7x10x6x12x8, {(x1x8x3x7x2x9x1), (x1x7x11x5x12x4x1)}, (x2x5x9x6x11x8x2)},

be the {6P7, 3C6}-decomposition of K12\E(2C6), where the 2C6 removed from K12 are

(x1x2x3x4x5x6x1), (x7x8x9x10x11x12x7). For p = 7, we decompose the last cycle and the �rst path

into 2P7 as follows:

{x1x12x2x11x6x9x5, x5x2x8x11x3x10x4}.

Now, using Construction 1.4 we get the required number of paths and cycles from the decomposi-

tion given above. Hence K12\E(2C6) has a (6; p, q)-decomposition, where the 2C6 removed from K12

are vertex disjoint cycles. We can write K12k = K12(k−1)⊕K12⊕K12(k−1),12. Applying this relation re-

cursively to K12(k−1) and using Theorem 1.2, we can have a (6; p, q)-decomposition of K12k\E(2kC6),

where 2kC6 removed from K12k are vertex disjoint cycles.
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Lemma 2.6. There exists a (6; p, q)-decomposition of Km\E(K3),m ≡ 3, 7 (mod 12), m > 3 and

p ̸= 1.

Proof. Let m = 12k + i, where i = 3, 7. We prove it in two cases.

Case 1. m = 12k + 3. When m = 15, K15\E(K3) = K9 ⊕ (K7\E(K3)) ⊕ K8,6. By Lemmas

2.1, 2.3 and 2.4 and Remark 1.3, K15\E(K3) has a (6; p, q)-decomposition. For m > 15, we can

write Km\E(K3) = K12(k−1)+1 ⊕ (K15\E(K3)) ⊕ K12(k−1),14 = K12(k−1)+1 ⊕ (K15\E(K3)) ⊕
K12(k−1),6 ⊕ K12(k−1),8. By Theorems 1.1, 1.2, Lemma 2.4 and Remark 1.3, Km\E(K3) has a (6; p, q)-

decomposition.

Case 2. m = 12k+7. We can write Km\E(K3) = K12k+1 ⊕ (K7\E(K3)) ⊕ K12k,6. By Theorems

1.1, 1.2, Lemma 2.1 and Remark 1.3, Km\E(K3) has a (6; p, q)-decomposition.

Lemma 2.7. There exists a (6; p, q)-decomposition of Km\E(C4) for m ≡ 5 (mod 12) and Km\E(C7)

for m ≡ 11 (mod 12).

Proof.

Case 1. m ≡ 5 (mod 12). When m = 17, K17\E(C4) = K8 ⊕ K9 ⊕ (K8,9\E(C4)). Let

V1 = V (K8) = {xi : 1 ≤ i ≤ 8} and V2 = V (K9) = {yi : 1 ≤ i ≤ 9}. So, V (K8,9) = V1 ∪ V2. Let

{(x1y2x2y4x3y5x1), (x1y1x3x4y3x2x1)}, {(x5y7x2y6x4y9x5), (x5x6y8x7x8y6x5)},
{(x6x8x4x1x7x2x6), (x6x3x1x8x5x4x6)}, {(y8x2y9x6y4x1y8), (y8x5y1x7y6x3y8)},
{(x8y7x6y5x2y1x8), (x8y8x4y7x7y9x8)}, {(y3x3y2x6y6x1y3), (y3x7y4x4y5x5y3)},
{(x2x5x1x6x7x3x2), (x4x2x8x3x5x7x4)}, {(x8y5x7y2x5y4x8), (x8y3x6y1x4y2x8)},

be the C6-decomposition of K8 ⊕ (K8,9\E(C4)). The �rst 3C6 can be decomposed into 3P7 as

follows:

{x5y7x2y6x4x3y1, y2x2y4x3y5x1y1, x5y9x4y3x2x1y2}.

Now, using Construction 1.4 we get the required number of paths and cycles from the C6-

decomposition of K8⊕ (K8,9\E(C4)) given above. Hence by Lemma 2.3 and Remark 1.3, K17\E(C4)

has a (6; p, q)-decomposition. Whenm > 17, we can writeKm\E(C4) = K12k+5\E(C4) = K12(k−1)+1 ⊕
(K17\E(C4)) ⊕ K12(k−1),16. By Theorem 1.1 and Lemma 2.4, K12(k−1)+1 and K12(k−1),16 have a

(6; p, q)-decomposition. Hence by Remark 1.3, Km\E(C4) has a (6; p, q)-decomposition.

Case 2. m ≡ 11 (mod 12). We can write Km\E(C7) = K12l+11\E(C7) = K12l+1 ⊕ K12l,10 ⊕
(K11\E(C7)) and K12l,10 = K12l,6 ⊕ 2lK6,4. Let

{(x1x4x10x5x7x11x1), (x1x8x5x11x10x3x1)}, {(x2x7x3x9x6x8x2), (x2x11x3x5x1x10x2)},
{(x9x4x11x6x10x7x9), (x9x1x6x4x8x10x9)}, {(x9x8x3x6x2x5x9), (x9x11x8x7x4x2x9)},

be the C6-decomposition of K11\E(C7). The �rst 3C6 can be decomposed into 3P7 as follows:

{(x1x11x4x3x7x2x8, x8x1x4x10x5x11x7, x1x3x9x6x8x5x7}.



586 ezhilarasi & muthusamy

Now, using Construction 1.4 we get the required number of paths and cycles from the C6-

decomposition given above for K11\E(C7). By Theorems 1.1, 1.2, Lemma 2.4 and Remark 1.3,

Km\E(C7) has a (6; p, q)-decomposition.

Lemma 2.8. There exists a (6; p, q)-decomposition of Km, where m ≡ 0, 4 (mod 12) and p ≥ m/2.

Proof. Since the degree of each vertex v ∈ V (Km) is odd, then p ≥ m/2. We prove the required

decomposition in two Cases.

Case 1. m ≡ 0 (mod 12). Let m = 12k and

{x3x9x4x8x5x7x6, x1x12x2x11x3x10x4, x2x4x6x8x10x1x5, x7x9x12x3x6x2x10, x9x11x1x3x5x10x12,

x11x4x7x10x6x12x8, {(x1x8x3x7x2x9x1), (x1x7x11x5x12x4x1)}, {(x2x5x9x6x11x8x2),

(x2x3x4x5x6x1x2)}, (x7x8x9x10x11x12x7)},

be a {6P7, 5C6}-decomposition of K12. For p = 7, we decompose the last cycle and �rst path into

2P7 as follows:

{x3x9x4x8x5x7x12, x6x7x8x9x10x11x12}.

Now, using Construction 1.4 we get the required number of paths and cycles from the C6's given

above for p ≥ 8. When k > 1, K12k = K12(k−1) ⊕ K12 ⊕ K12(k−1),12. Applying this relation

recursively to K12(k−1) and using Theorem 1.2, we can prove that K12k has a (6; p, q)-decomposition.

Case 2. m ≡ 4 (mod 12). Let m = 12k + 4 and

{x1x5x7x4x6x8x2, x3x6x7x2x5x8x4, x5x3x7x8x1x2x6, x7x1x6x5x4x3x8, x14x13x15x12x9x11x10,

x16x9x15x10x13x11x12, x13x16x15x11x14x10x9, x15x14x9x13x12x16x11},

{(x3x9x5x11x2x10x3), (x3x12x5x10x4x11x3)},
{(x9x2x12x1x15x8x9), (x9x4x16x6x13x7x9)},
{(x13x3x15x5x16x2x13), (x13x4x15x7x11x1x13)},
{(x8x12x7x14x5x13x8), (x8x11x6x9x1x10x8)},
{(x14x6x10x7x16x8x14), (x14x2x15x6x12x4x14)},
{(x1x3x14x12x10x16x1), (x1x14x16x3x2x4x1)}

be a {8P7, 12C6}-decomposition of K16.

For p = 9, we decompose the last cycle and last path into 2P7 as follows:

{x15x14x9x13x12x16x3, x3x2x4x1x14x16x11}.

Now, using Construction 1.4 we get the required number of paths and cycles from the C6's given

above for p ≥ 10. When k > 1, K12k+4 = K12(k−1) ⊕ K16 ⊕ K12(k−1),16. By Lemma 2.4 and by

applying Case 1, K12k+4 has a (6; p, q)-decomposition.
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3. (6; p, q)-decomposition of Km2Kn

In this section we investigate the existence of (6; p, q)-decomposition of Cartesian product of complete

graphs. Throughout this paper, we denote V (Km2Kn) = {xi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Lemma 3.1. There exists a (6; p, q)-decomposition of K32K3, p ̸= 1.

Proof. First we decompose K32K3 into C6's as follows:

{(x1,1x1,2x3,2x3,3x2,3x1,3x1,1), (x1,1x2,1x2,3x2,2x3,2x3,1x1,1), (x1,2x1,3x3,3x3,1x2,1x2,2x1,2)}.

The bold edges (resp., ordinary edges) gives 2P7 from �rst two cycles. Also, we can decompose

the given graph into 3P7 as follows:

{x1,2x1,3x3,3x3,2x3,1x1,1x2,1, x2,1x2,2x1,2x1,1x1,3x2,3x3,3, x3,3x3,1x2,1x2,3x2,2x3,2x1,2}.

Hence K32K3 has a (6; p, q)-decomposition.

Lemma 3.2. There exists a (6; p, q)-decomposition of K32K7, p ̸= 1.

Proof. First we decompose K32K7 into C6's as follows:

{(x1,6x2,6x3,6x3,5x1,5x1,2x1,6), (x1,6x3,6x3,4x2,4x1,4x1,3x1,6)},
{(x1,7x3,7x3,3x3,5x2,5x1,5x1,7), (x1,7x2,7x3,7x3,1x3,4x1,4x1,7)},
{(x1,7x1,1x1,4x1,6x1,5x1,3x1,7), (x1,7x1,6x1,1x1,5x1,4x1,2x1,7)},
{(x2,7x2,6x2,1x2,4x2,5x2,3x2,7), (x2,7x2,2x2,4x2,6x2,5x2,1x2,7)},
{(x3,7x3,2x3,6x3,3x3,4x3,5x3,7), (x3,7x3,6x3,1x3,5x3,2x3,4x3,7)},
{(x1,3x3,3x3,1x2,1x2,2x1,2x1,3), (x1,3x2,3x3,3x3,2x1,2x1,1x1,3)},
{(x2,2x2,6x2,3x2,4x2,7x2,5x2,2), (x2,2x3,2x3,1x1,1x2,1x2,3x2,2)}.

The �rst 3C6 can be decomposed into 3P7 as follows:

{x1,3x1,6x3,6x3,5x2,5x1,5x1,7, x1,7x3,7x3,3x3,5x1,5x1,2x1,6, x1,6x2,6x3,6x3,4x2,4x1,4x1,3}.

Now, using Construction 1.4 we get the required number of paths and cycles from the C6-

decomposition given above.

Lemma 3.3. There exists a (6; p, q)-decomposition of K32K8, p ≥ 12.

Proof. Since the degree of each vertex v ∈ V (K32K8) is odd, then p ≥ 24
2
= 12. For p = 12, the

required number of P7's and C6's are constructed as follows:

x1,1x1,4x2,4x3,4x3,8x3,7x3,5, x1,2x1,1x1,5x1,8x1,3x3,3x2,3,

x1,3x2,3x2,4x2,6x2,7x2,1x2,5, x1,4x1,3x1,6x1,5x1,7x3,7x2,7,

x1,5x1,3x1,1x1,7x1,8x3,8x2,8, x1,6x1,7x1,2x1,4x3,4x3,1x3,8,

x1,7x2,7x2,5x2,3x2,2x2,8x1,8, x2,1x1,1x3,1x3,3x3,4x3,2x3,7,

x2,2x1,2x3,2x3,1x3,6x3,5x3,3, x2,4x2,1x2,2x2,7x2,8x2,6x3,6,
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x2,6x2,3x2,8x2,5x1,5x3,5x3,4, x3,1x2,1x2,3x2,7x2,4x2,2x3,2,

{(x1,2x1,5x1,4x1,8x1,1x1,6x1,2), (x1,2x1,3x1,7x1,4x1,6x1,8x1,2)},
{(x2,6x1,6x3,6x3,2x3,5x2,5x2,6), (x2,6x2,2x2,5x2,4x2,8x2,1x2,6)},
{(x3,3x3,6x3,7x3,1x3,5x3,8x3,3), (x3,3x3,7x3,4x3,6x3,8x3,2x3,3)}.

For p = 13, we decompose the last path and the �rst cycle into 2P7 as follows:

{x2,6x2,3x2,8x2,5x1,5x1,4x1,8, x1,8x1,1x1,6x1,2x1,5x3,5x3,4}.

Now, using Construction 1.4 we get the required number of paths and cycles from the C6's given

above for p ≥ 14.

Lemma 3.4. There exists a (6; p, q)-decomposition of K32K11, p ̸= 1.

Proof. First we decompose K32K11 into C6's as follows:

{(x1,2x1,1x1,8x1,3x1,9x1,10x1,2), (x1,2x1,4x1,6x1,1x1,7x1,9x1,2)} ,
{(x1,7x1,11x1,5x1,3x1,10x1,6x1,7), (x1,7x1,10x1,11x1,3x1,2x1,8x1,7)} ,
{(x1,11x1,8x1,9x1,5x1,10x1,4x1,11), (x1,11x1,9x1,4x1,8x1,5x1,6x1,11)} ,
{(x2,1x2,11x2,8x2,10x2,4x2,7x2,1), (x2,1x2,2x2,4x2,5x2,6x2,9x2,1)} ,
{(x2,6x2,3x2,5x2,9x2,7x2,2x2,6), (x2,6x2,10x2,9x2,2x2,5x2,1x2,6)} ,
{(x2,11x2,6x2,8x2,3x2,10x2,5x2,11), (x2,11x2,2x2,10x2,7x2,3x2,4x2,11)} ,
{(x3,1x3,11x3,8x3,7x3,9x3,4x3,1), (x3,1x3,3x3,10x3,11x3,6x3,9x3,1)} ,
{(x3,2x3,3x3,6x3,5x3,9x3,10x3,2), (x3,2x3,8x3,5x3,10x3,6x3,4x3,2)} ,
{(x3,1x3,2x3,11x3,3x3,8x3,6x3,1), (x3,1x3,8x3,4x3,11x3,7x3,5x3,1)} ,
{(x1,1x1,3x1,4x2,4x2,1x3,1x1,1), (x1,1x1,5x3,5x3,3x2,3x2,1x1,1)} ,
{(x2,11x3,11x3,9x1,9x2,9x2,3x2,11), (x2,11x1,11x1,1x1,10x3,10x2,10x2,11)} ,
{(x1,5x1,7x2,7x3,7x3,4x1,4x1,5), (x1,5x2,5x3,5x3,11x1,11x1,2x1,5)} ,
{(x1,3x1,6x2,6x2,4x3,4x3,3x1,3), (x1,3x1,7x3,7x3,2x2,2x2,3x1,3)} ,
{(x2,8x3,8x1,8x1,10x2,10x2,1x2,8), (x2,8x2,4x2,9x2,11x2,7x2,5x2,8)} ,
{(x3,10x3,4x3,5x3,2x3,6x3,7x3,10), (x3,10x3,8x3,9x3,3x3,7x3,1x3,10)} ,
{(x2,8x1,8x1,6x3,6x2,6x2,7x2,8), (x2,8x2,9x3,9x3,2x1,2x2,2x2,8)} ,
(x1,1x1,9x1,6x1,2x1,7x1,4x1,1).

The last 3C6 can be decomposed into 3P7 as follows:

{x1,1x1,9x1,6x1,8x2,8x2,9x3,9, x1,1x1,4x1,7x1,2x1,6x3,6x2,6, x2,6x2,7x2,8x2,2x1,2x3,2x3,9}.

Now, using Construction 1.4 we get the required number of paths and cycles from the C6-

decomposition given above.

Lemma 3.5. There exists a (6; p, q)-decomposition of K32K16, p ≥ 24.



Decomposition of the cartesian product 589

Proof. Since the degree of each vertex v ∈ V (K32K16) is odd, p ≥ 48
2
= 24. For p = 24, the required

number of C6's and P7's are constructed as follows:

{(x1,1x1,14x1,3x1,7x1,4x1,8x1,1), (x1,1x1,16x1,3x1,2x1,8x1,6x1,1)} ,
{(x1,3x1,9x1,5x1,11x1,2x1,10x1,3), (x1,3x1,12x1,5x1,10x1,4x1,11x1,3)} ,
{(x1,9x1,2x1,12x1,1x1,15x1,8x1,9), (x1,9x1,4x1,16x1,6x1,13x1,7x1,9)} ,
{(x1,8x1,12x1,7x1,14x1,5x1,13x1,8), (x1,8x1,11x1,6x1,9x1,1x1,10x1,8)} ,
{(x1,13x1,3x1,15x1,5x1,16x1,2x1,13), (x1,13x1,4x1,15x1,7x1,11x1,1x1,13)} ,
{(x1,14x1,6x1,10x1,7x1,16x1,8x1,14), (x1,14x1,2x1,15x1,6x1,12x1,4x1,14)} ,
{(x2,7x2,9x2,3x2,11x2,2x2,10x2,7), (x2,7x2,12x2,3x2,10x2,5x2,11x2,7)} ,
{(x2,9x2,2x2,12x2,4x2,15x2,8x2,9), (x2,9x2,5x2,16x2,6x2,13x2,1x2,9)} ,
{(x2,8x2,12x2,1x2,14x2,3x2,13x2,8), (x2,8x2,11x2,6x2,9x2,4x2,10x2,8)} ,
{(x2,13x2,7x2,15x2,3x2,16x2,2x2,13), (x2,13x2,5x2,15x2,1x2,11x2,4x2,13)} ,
{(x2,14x2,6x2,10x2,1x2,16x2,8x2,14), (x2,14x2,2x2,15x2,6x2,12x2,5x2,14)} ,
{(x2,4x2,14x2,7x2,6x2,3x2,8x2,4), (x2,4x2,16x2,7x2,1x2,8x2,5x2,4)} ,
{(x3,1x3,9x3,3x3,11x3,5x3,10x3,1), (x3,1x3,12x3,3x3,10x3,4x3,11x3,1)} ,
{(x3,9x3,5x3,12x3,2x3,15x3,8x3,9), (x3,9x3,4x3,16x3,6x3,13x3,7x3,9)} ,
{(x3,8x3,12x3,7x3,14x3,3x3,13x3,8), (x3,8x3,11x3,6x3,9x3,2x3,10x3,8)} ,
{(x3,13x3,1x3,15x3,3x3,16x3,5x3,13), (x3,13x3,4x3,15x3,7x3,11x3,2x3,13} ,
{(x3,14x3,6x3,10x3,7x3,16x3,8x3,14), (x3,14x3,5x3,15x3,6x3,12x3,4x3,14} ,
{(x3,2x3,14x3,1x3,5x3,8x3,3x3,2), (x3,2x3,16x3,1x3,7x3,6x3,8x3,2)} ,
{(x1,10x1,11x1,15x1,12x1,14x1,16x1,10), (x1,10x1,13x1,12x1,16x1,9x1,14x1,10)} ,
{(x2,14x1,14x3,14x3,10x3,13x2,13x2,14), (x2,14x2,10x2,13x2,12x2,16x2,9x2,14)} ,
{(x3,11x3,14x3,15x3,9x3,13x3,16x3,11), (x3,11x3,15x3,12x3,14x3,16x3,10x3,11)} ,
{(x1,4x1,5x2,5x2,2x2,6x1,6x1,4), (x3,2x3,5x3,7x3,8x3,4x3,6x3,2)} ,

x1,2x1,6x3,6x3,3x3,7x3,4x2,4, x1,1x1,2x1,5x1,8x1,3x3,3x2,3, x2,5x2,1x2,2x2,7x2,8x2,6x3,6, x2,6x2,1x2,4x1,4x1,1x1,5x3,5,

x2,1x1,1x3,1x3,3x3,4x3,2x3,7, x1,4x1,3x1,6x1,5x1,7x3,7x2,7, x1,5x1,3x1,1x1,7x1,8x3,8x2,8, x2,2x1,2x3,2x3,1x3,6x3,5x3,3,

x3,1x2,1x2,3x2,7x2,4x2,2x3,2, x1,7x2,7x2,5x2,3x2,2x2,8x1,8, x1,6x1,7x1,2x1,4x3,4x3,1x3,8, x1,3x2,3x2,4x2,6x2,5x3,5x3,4,

x1,9x1,12x2,12x3,12x3,16x3,15x3,13, x1,10x1,9x1,13x1,16x1,11x3,11x2,11, x1,11x2,11x2,12x2,14x2,15x2,9x2,13,

x1,12x1,11x1,14x1,13x1,15x3,15x2,15, x1,13x1,11x1,9x1,15x1,16x3,16x2,16, x1,14x1,15x1,10x1,12x3,12x3,9x3,16,

x1,15x2,15x2,13x2,11x2,10x2,16x1,16, x2,9x1,9x3,9x3,11x3,12x3,10x3,15, x2,10x1,10x3,10x3,9x3,14x3,13x3,11,

x2,12x2,9x2,10x2,15x2,16x2,14x3,14, x2,14x2,11x2,16x2,13x1,13x3,13x3,12, x3,9x2,9x2,11x2,15x2,12x2,10x3,10.

For p = 25, we decompose the last cycle and �rst path into 2P7 as follows:

x1,2x1,6x3,6x3,3x3,7x3,4x3,8, x2,4x3,4x3,6x3,2x3,5x3,7x3,8.

For p = 26, we can decompose

{(x1,4x1,5x2,5x2,2x2,6x1,6x1,4), x1,1x1,2x1,5x1,8x1,3x3,3x2,3},
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into 2P7 in p = 25 as follows:

x1,1x1,2x1,5x2,5x2,2x2,6x1,6, x1,6x1,4x1,5x1,8x1,3x3,3x2,3.

Now, using Construction 1.4 we get the required number of paths and cycles from paired C6's

given above for p ≥ 27. So, we have the desired decomposition for K32K16.

Lemma 3.6. There exists a (6; p, q)-decomposition of K62K2, p ̸= 1.

Proof. First we decompose K62K2 into C6's as follows:

{(x1,2x5,2x4,2x3,2x2,2x6,2x1,2), (x2,1x4,1x4,2x6,2x6,1x5,1x2,1)},
{(x3,2x6,2x5,2x2,2x4,2x1,2x3,2), (x3,2x3,1x6,1x1,1x5,1x5,2x3,2)},
{(x1,1x2,1x6,1x4,1x5,1x3,1x1,1), (x1,1x1,2x2,2x2,1x3,1x4,1x1,1)}.

The last 3C6 can be decomposed into 3P7 as follows:

{x2,1x3,1x5,1x4,1x1,1x1,2x2,2, x2,2x2,1x1,1x6,1x3,1x3,2x5,2, x2,1x6,1x4,1x3,1x1,1x5,1x5,2}.

Now, using Construction 1.4 we get the required number of paths and cycles from the C6-

decomposition given above.

Lemma 3.7. There exists a (6; p, q)-decomposition of K62K4, p ̸= 1.

Proof. First we decompose K62K4 into C6's as follows:

{(x3,3x1,3x2,3x2,4x3,4x3,2x3,3), (x3,3x4,3x4,4x6,4x6,3x5,3x3,3)},
{(x1,3x1,1x1,2x2,2x2,4x1,4x1,3), (x1,3x6,3x3,3x3,4x5,4x5,3x1,3)},
{(x4,2x3,2x5,2x6,2x6,3x4,3x4,2), (x4,2x4,1x3,1x6,1x6,4x6,2x4,2)},
{(x1,2x3,2x2,2x2,1x1,1x1,4x1,2), (x1,2x1,3x4,3x2,3x2,2x4,2x1,2)},
{(x6,1x6,3x2,3x5,3x4,3x4,1x6,1), (x6,1x1,1x5,1x5,4x2,4x2,1x6,1)},
{(x3,1x1,1x4,1x2,1x2,3x3,3x3,1), (x3,1x5,1x5,2x1,2x6,2x3,2x3,1)},
{(x1,4x6,4x5,4x5,2x4,2x4,4x1,4), (x1,4x5,4x4,4x2,4x6,4x3,4x1,4)},
{(x5,1x2,1x3,1x3,4x4,4x4,1x5,1), (x5,1x6,1x6,2x2,2x5,2x5,3x5,1)}.

The �rst 3C6 can be decomposed into 3P7 as follows:

{x1,1x1,2x2,2x2,4x1,4x1,3x2,3, x2,3x2,4x3,4x3,2x3,3x4,3x4,4, x6,4x6,3x5,3x3,3x1,3x1,1}.

Now, using Construction 1.4 we get the required number of paths and cycles from the

C6-decomposition given above.

Lemma 3.8. There exists a (6; p, q)-decomposition of K62K6, p ̸= 1.

Proof. First we decompose K62K6 into C6's as follows:
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{(x1,1x1,2x2,2x3,2x6,2x6,1x1,1), (x1,1x3,1x4,1x5,1x6,1x2,1x1,1)},
{(x2,1x2,2x4,2x4,3x4,4x4,1x2,1), (x2,1x3,1x6,1x4,1x1,1x5,1x2,1)},
{(x1,2x1,4x1,1x1,3x3,3x3,2x1,2), (x1,2x1,3x4,3x4,1x4,2x6,2x1,2)}
{(x1,3x5,3x5,1x5,2x6,2x6,3x1,3), (x1,3x1,6x1,4x6,4x6,5x1,5x1,3)},
{(x1,4x1,5x3,5x2,5x5,5x5,4x1,4), (x1,4x4,4x5,4x2,4x6,4x3,4x1,4)},
{(x1,5x5,5x5,1x5,6x5,2x1,2x1,5), (x1,5x4,5x4,2x1,2x1,6x1,1x1,5)}
{(x1,6x6,6x3,6x4,6x2,6x5,6x1,6), (x1,6x4,6x6,6x2,6x2,5x1,5x1,6)},
{(x3,3x2,3x6,3x5,3x5,4x3,4x3,3), (x3,3x4,3x4,5x6,5x5,5x5,3x3,3)},
{(x5,6x4,6x4,4x2,4x2,6x3,6x5,6), (x5,6x6,6x6,4x4,4x4,5x5,5x5,6)}
{(x3,4x3,5x4,5x4,6x4,2x4,4x3,4), (x3,4x2,4x2,3x2,6x1,6x3,6x3,4)},
{(x6,3x6,4x5,4x5,6x5,3x4,3x6,3), (x6,3x3,3x3,5x6,5x6,1x6,6x6,3)},
{(x2,3x2,5x4,5x4,1x4,6x4,3x2,3), (x2,3x2,2x2,5x2,4x1,4x1,3x2,3)},
{(x3,1x3,6x3,2x5,2x5,5x3,5x3,1), (x3,1x3,4x3,2x3,5x3,6x3,3x3,1)},
{(x6,2x6,4x6,1x6,3x6,5x6,6x6,2), (x6,2x6,5x2,5x2,1x2,6x2,2x6,2)},
{(x5,2x5,4x5,1x3,1x3,2x4,2x5,2), (x5,2x5,3x2,3x2,1x2,4x2,2x5,2)}.

The �rst 3C6 can be decomposed into 3P7 as follows:

{x4,4x4,3x4,2x2,2x3,2x6,2x6,1, x4,4x4,1x5,1x6,1x1,1x2,1x2,2, x6,1x2,1x4,1x3,1x1,1x1,2x2,2}.

Now, using Construction 1.4 we get the required number of paths and cycles from the C6-

decomposition given above.

Lemma 3.9. There exists a (6; p, q)-decomposition of K62K8, p ̸= 1.

Proof. By Lemma 2.2, K8 − I has a (6; p, q)-decomposition. We decompose 8K6 ⊕ 6I into C6's as

follows:

{(x3,jx2,jx6,jx4,jx5,jx1,jx3,j), (x3,jx5,jx5,j+1x1,j+1x1,jx6,jx3,j)} ,
{(x3,j+1x2,j+1x2,jx1,jx4,jx3,jx3,j+1), (x3,j+1x4,j+1x5,j+1x6,j+1x2,j+1x1,j+1x3,j+1)} ,
{(x4,j+1x1,j+1x6,j+1x3,j+1x5,j+1x2,j+1x4,j+1), , (x4,j+1x4,jx2,jx5,jx6,jx6,j+1x4,j+1)} ,

where j = 1, 3, · · · , 7. The �rst 3C6 can be decomposed into 3P7 as follows:

{x3,j+1x2,j+1x2,jx3,jx6,jx1,jx1,j+1, x6,jx4,jx1,jx3,jx5,jx5,j+1x1,j+1, x6,jx2,jx1,jx5,jx4,jx3,jx3,j+1}.

Now, using Construction 1.4 we get the required number of paths and cycles from the C6-

decomposition given above.

Lemma 3.10. There exists a (6; p, q)-decomposition of K42K4, p ̸= 1.

Proof. First we decompose K42K4 into C6's as follows:

{(x2,1x4,1x1,1x1,2x2,2x2,3x2,1), (x2,1x3,1x3,4x3,2x2,2x2,4x2,1)},
{(x2,3x1,3x1,4x3,4x4,4x2,4x2,3), (x2,3x3,3x3,1x3,2x4,2x4,3x2,3)},
{(x1,1x1,3x3,3x3,2x1,2x1,4x1,1), (x1,1x1,2x2,2x4,2x4,1x3,1x1,1)},
{(x4,4x1,4x2,4x3,4x3,3x4,3x4,4), (x4,4x4,2x1,2x1,3x4,3x4,1x4,4)}.
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The �rst 3C6 can be decomposed into 3P7 as follows:

{x1,1x1,2x2,2x2,4x2,1x2,3x1,3, x1,3x1,4x3,4x3,2x2,2x2,3x2,4, x1,1x4,1x2,1x3,1x3,4x4,4x2,4}.

Now, using Construction 1.4 we get the required number of paths and cycles from the C6-

decomposition given above.

Lemma 3.11. There exists a (6; p, q)-decomposition of K72K7, p ̸= 1.

Proof. We can write K72K7 = 7K7\E(K3) ⊕ K3 ⊕ 7K7\E(K3) ⊕ K3. By Lemma 2.1, K7\E(K3)

has a (6; p, q)-decomposition. Now, we can view 7K3 ⊕ 7K3 asK
1
3 ⊕ · · · ⊕ K7

3 ⊕ (K1
3)

′ ⊕ · · · ⊕ (K7
3)

′

with Ki
3 = (xi,i−2xi,i−1xi,ixi,i−2), for i = 1, · · · , 7 and (Ki

3)
′ = (xi,ixi+1,ixi+2,ixi,i), for i = 1, · · · , 7,

where the subscripts of x are taken modulo 7 with residues {1, · · · , 7}. The C6-decomposition of

7K3 ⊕ 7K3 is given below:

{(x3,1x1,1x2,1x2,7x2,2x3,2x3,1), (x3,1x3,3x3,2x4,2x2,2x2,1x3,1)} ,
{(x4,4x4,2x4,3x3,3x5,3x5,4x4,4), (x4,4x6,4x5,4x5,5x5,3x4,3x4,4)} ,
{(x7,7x1,7x1,6x6,6x6,5x7,5x7,7), (x7,7x2,7x1,7x1,1x1,6x7,6x7,7)} ,
(x5,5x6,5x6,4x6,6x7,6x7,5x5,5).

The last 3C6 can be decomposed into 3P7 as follows:

{x1,1x1,7x2,7x7,7x7,6x7,5x5,5, x5,5x6,5x6,4x6,6x7,6x1,6x1,7, x1,1x1,6x6,6x6,5x7,5x7,7x1,7}.

Now, using Construction 1.4 we get the required number of paths and cycles from the C6-

decomposition given above.

Lemma 3.12. There exists a (6; p, q)-decomposition of K32K12, p ≥ 18.

Proof. Since the degree of each vertex v ∈ V (K32K12) is odd, then p ≥ 36
2

= 18. We can write

K32K12 = 12K3 ⊕ 3K12 = 12K3 ⊕ 3((K12\E(2C6)) ⊕ 2C6). The graph 12K3 along with

three rows of 2C6 can be viewed as 2G, where G = 6K3 ⊕ C1
6 ⊕ C2

6 ⊕ C3
6 with V (G) =

{xi,j : 1 ≤ i ≤ 3, 1 ≤ j ≤ 6} and C1
6 = (x1,1x1,2x1,5x1,4x1,6x1,3x1,1, C

2
6 = (x2,1x2,2x2,4x2,5x2,3x2,6x2,1),

C3
6 = (x3,1x3,2x3,6x3,4x3,3x3,5x3,1) and decompose G into C6's as follows:

{(x1,1x1,2x1,5x2,5x2,3x1,3x1,1), (x1,1x2,1x2,2x1,2x3,2x3,1x1,1)},
{(x1,6x1,4x2,4x2,2x3,2x3,6x1,6), (x1,6x2,6x3,6x3,4x3,3x1,3x1,6)},
{(x3,5x2,5x2,4x3,4x1,4x1,5x3,5), (x3,5x3,1x2,1x2,6x2,3x3,3x3,5)}.

The �rst 3C6 can be decomposed into 3P7 as follows:

{x2,1x2,2x1,2x1,1x3,1x3,2x3,6, x2,1x1,1x1,3x2,3x2,5x1,5x1,2, x1,2x3,2x2,2x2,3x1,3x1,6x3,6}.

Now, using Construction 1.4 we get the required number of paths and cycles from the C6-

decomposition given above. So, G has a (6; p, q)-decomposition. By Lemma 2.5, the remaining

edges has a (6; p, q)-decomposition.
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Lemma 3.13. There exists a (6; p, q)-decomposition of K52K12, p ≥ 30.

Proof. Since the degree of each vertex v ∈ V (K52K12) is odd, then p ≥ 30. We can write K52K12

= 12K5 ⊕ 5K12 = 12K5 ⊕ 5((K12\E(2C6)) ⊕ 2C6). By Lemma 2.5, K12\E(2C6) has a (6; p, q)-

decomposition. Let 12K5 ⊕ 10C6 = G1 ⊕ G2, where G1 = (6K5 ⊕ C1
6 ⊕ · · · ⊕ C5

6)
∼= G2

with

C1
6 = (x1,1x1,2x1,4x1,6x1,5x1,3x1,1), C

2
6 = (x2,1x2,5x2,3x2,6x2,2x2,4x2,1),

C3
6 = (x3,1x3,3x3,5x3,2x3,6x3,4x3,1), C

4
6 = (x4,1x4,5x4,2x4,4x4,6x4,3x4,1),

C5
6 = (x5,1x5,2x5,4x5,6x5,5x5,3x5,1).

The graph G1 decomposes into required number of C6 as follows:

{(x1,2x1,4x5,4x4,4x4,2x3,2x1,2), (x1,2x2,2x2,4x3,4x5,4x5,2x1,2)} ,
{(x1,6x2,6x3,6x3,4x4,4x1,4x1,6), (x1,6x3,6x5,6x5,5x2,5x1,5x1,6)} ,
{(x1,3x2,3x2,6x5,6x4,6x4,3x1,3), (x1,3x1,5x5,5x3,5x3,3x5,3x1,3)} ,
{(x2,1x2,5x3,5x4,5x4,1x1,1x2,1), (x2,1x2,4x1,4x3,4x3,1x4,1x2,1)} ,
{(x4,2x5,2x5,1x3,1x1,1x1,2x4,2), (x4,2x2,2x3,2x3,5x1,5x4,5x4,2)} ,
{(x4,6x3,6x3,2x5,2x2,2x2,6x4,6), (x4,6x1,6x5,6x5,4x2,4x4,4x4,6)} ,
{(x3,3x4,3x4,1x5,1x1,1x1,3x3,3), (x3,3x2,3x5,3x5,1x2,1x3,1x3,3)} ,
(x2,3x2,5x4,5x5,5x5,3x4,3x2,3).

The last 3C6 can be decomposed into 3P7 as follows:

{x5,5x5,3x2,3x4,3x4,1x5,1x2,1, x2,1x3,1x3,3x1,3x1,1x5,1x5,3, x5,3x4,3x3,3x2,3x2,5x4,5x5,5}.

Now, using Construction 1.4 we get the required number of paths and cycles from the C6-

decomposition given above. Hence G1 has a (6; p, q)-decomposition and so the graph G2.

Lemma 3.14. There exists a (6; p, q)-decomposition of K72K12, p ≥ 42.

Proof. Since the degree of each vertex v ∈ V (K72K12) is odd, then p ≥ 42. We can write K72K12 =

12K7 ⊕ 7K12 = 12(K7\E(K3)) ⊕ 4K12 ⊕ (K32K12). By Lemmas 2.1, 2.8 and 3.12, the given

graph has a (6; p, q)-decomposition.

Lemma 3.15. There exists a (6; p, q)-decomposition of K112K12, p ≥ 66.

Proof. Since the degree of each vertex v ∈ V (K112K12) is odd, then p ≥ 66. We can write

K112K12 = 12K11 ⊕ 11K12 = 12(K11\E(C7)) ⊕ 11K12. Consider K12 in rows 1, 3, 4, 7 as

(K12\E(2C6)) ⊕ 2C6, where 2C6 are vertex disjoint cycles. Now, these 8C6 along with 12C7 in

columns form a graph G = (4C6 ⊕ 6C7) ⊕ (4C6 ⊕ 6C7) = G1 ⊕ G2, G1
∼= G2. Let G1 =

C1
6 ⊕ · · · ⊕ C4

6 ⊕ C1
7 ⊕ · · · ⊕ C6

7 , where

C1
6 = (x1,1x1,2x1,5x1,6x1,4x1,3x1,1), C

2
6 = (x3,1x3,2x3,3x3,6x3,4x3,5x3,1),

C3
6 = (x4,1x4,2x4,5x4,6x4,4x4,3x4,1), C

4
6 = (x7,1x7,2x7,3x7,4x7,5x7,6x7,1),
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and

C1
7 = (x1,1x2,1x4,1x7,1x3,1x5,1x6,1x1,1), C

2
7 = (x1,2x3,2x7,2x6,2x5,2x4,2x2,2x1,2),

C3
7 = (x1,3x3,3x5,3x6,3x7,3x4,3x2,3x1,3), C

4
7 = (x1,4x2,4x3,4x7,4x6,4x5,4x4,4x1,4),

C5
7 = (x1,5x3,5x5,5x6,5x7,5x4,5x2,5x1,5), C

6
7 = (x1,6x2,6x3,6x4,6x5,6x6,6x7,6x1,6).

This can be decomposed into required number of C6 as follows:

{(x1,2x3,2x3,1x5,1x6,1x1,1x1,2), (x1,2x1,5x2,5x4,5x4,2x2,2x1,2)} ,
{(x7,2x7,1x4,1x4,2x5,2x6,2x7,2), (x7,2x3,2x3,3x5,3x6,3x7,3x7,2)} ,
{(x7,4x7,3x4,3x4,4x5,4x6,4x7,4), (x7,4x3,4x3,5x5,5x6,5x7,5x7,4)} ,
{(x7,6x7,5x4,5x4,6x5,6x6,6x7,6), (x7,6x7,1x3,1x3,5x1,5x1,6x7,6)} ,
{(x1,3x1,4x2,4x3,4x3,6x3,3x1,3), (x1,3x2,3x4,3x4,1x2,1x1,1x1,3)} ,
(x1,4x1,6x2,6x3,6x4,6x4,4x1,4).

The last 3C6 can be decomposed into 3P7 as follows:

{x4,1x2,1x1,1x1,3x1,4x1,6x2,6, x2,6x3,6x4,6x4,4x1,4x2,4x3,4, x3,4x3,6x3,3x1,3x2,3x4,3x4,1}.

Now, using Construction 1.4 we get the required number of paths and cycles from the C6-

decomposition given above. Hence G1 also has a (6; p, q)-decomposition and so the graph G2. Also

by Lemmas 2.5, 2.7, K11\E(C7) and K12\E(C6) have a (6; p, q)-decomposition. Hence by Remark

1.3, K112K12 has a (6; p, q)-decomposition.

Lemma 3.16. There exists a (6; p, q)-decomposition of C62(K8\E(2C6)), where p = 24 and the 2C6

are {(x2,ix3,ix7,ix4,ix6,ix8,ix2,i),

(x2,ix5,ix4,ix8,ix1,ix6,ix2,i)}, 1 ≤ i ≤ 6.

Proof. Let V (G = C62(K8\E(2C6))) = {xi,j : 1 ≤ i ≤ 6, 1 ≤ j ≤ 8}. Since the degree of each

vertex v ∈ V (G) is odd and |E(G)| = 144, then p = 24. Now, the 24P7 are given below:

{xi,1xi+1,1xi+1,5xi+1,3xi+1,8xi+1,7xi,7, xi,2xi+1,2xi+1,1xi+1,3xi+1,6xi+1,5xi,5, xi,3xi+1,3xi+1,4xi+1,2xi+1,7

xi+1,6xi,6, xi,4xi+1,4xi+1,1xi+1,7xi+1,5xi+1,8xi,8, where 1 ≤ i ≤ 6 and the �rst coordinate of subscripts

of x are taken modulo 6 with residues {1, · · · , 6}}.

Lemma 3.17. There exists a (6; p, q)-decomposition of K82K9, p ≥ 36.

Proof. Since the degree of each vertex v ∈ V (K82K9) is odd, then p ≥ 72
2
= 36. For p = 36, the

required number of P7's and C6's are constructed as follows:

{x1,1x1,3x1,2x6,2x5,2x3,2x4,2, x1,2x1,9x1,7x2,7x3,7x3,2x6,2,

x5,7x6,7x6,1x1,1x7,1x7,6x7,3, x1,5x5,5x6,5x8,5x8,2x1,2x3,2,

x1,6x3,6x3,2x7,2x1,2x2,2x2,4, x1,7x1,3x2,3x2,9x2,5x6,5x6,3,

x1,8x5,8x5,6x8,6x8,9x8,7x7,7, x1,9x1,1x2,1x6,1x8,1x8,2x8,8,

x2,1x5,1x1,1x4,1x4,2x6,2x8,2, x2,2x8,2x8,4x3,4x2,4x2,6x2,7,

x2,3x2,4x6,4x7,4x7,6x1,6x6,6, x2,5x2,2x4,2x4,5x3,5x5,5x8,5,



Decomposition of the cartesian product 595

x2,6x2,9x2,4x5,4x5,1x3,1x7,1, x2,8x2,5x2,7x7,7x5,7x4,7x4,6,

x2,9x1,9x7,9x7,3x8,3x2,3x4,3, x3,1x3,6x7,6x7,5x7,1x8,1x8,9,

x3,3x6,3x4,3x4,8x3,8x3,1x4,1, x3,4x3,5x3,3x1,3x8,3x8,8x7,8,

x3,5x3,1x3,7x4,7x4,3x3,3x3,6, x3,7x3,4x4,4x7,4x5,4x5,8x5,9,

x3,8x3,7x8,7x4,7x4,5x1,5x7,5, x4,4x5,4x5,3x5,9x6,9x6,6x6,1,

x4,5x7,5x3,5x3,6x6,6x5,6x5,4, x4,7x4,9x4,4x4,2x4,8x7,8x7,6,

x4,8x1,8x1,2x1,1x1,4x5,4x6,4, x4,9x4,6x2,6x1,6x8,6x7,6x7,2,

x5,3x5,2x5,9x5,5x5,8x2,8x6,8, x5,5x2,5x1,5x6,5x6,2x6,4x6,7,

x5,6x3,6x4,6x6,6x8,6x8,7x8,3, x5,8x6,8x7,8x7,5x6,5x6,4x6,9,

x6,5x6,7x6,6x6,3x5,3x5,1x8,1, x7,4x8,4x8,9x7,9x7,5x8,5x8,7,

x8,4x4,4x1,4x1,8x2,8x2,6x8,6, x7,9x3,9x4,9x4,1x7,1x6,1x5,1,

x1,4x2,4x7,4x7,3x7,2x8,2x5,2, x1,3x1,8x1,9x6,9x8,9x5,9x3,9}

and

{(x1,7x1,2x1,6x1,5x1,1x1,8x1,7), (x1,7x1,4x1,5x1,3x1,6x1,1x1,7)},
{(x1,7x3,7x6,7x4,7x2,7x8,7x1,7), (x1,7x1,6x1,9x1,4x1,2x1,5x1,7)},
{(x1,3x1,4x1,6x1,8x1,5x1,9x1,3), (x1,3x6,3x8,3x5,3x3,3x7,3x1,3)},
{(x2,1x2,2x2,8x2,3x2,7x2,9x2,1), (x2,1x2,7x2,4x2,5x2,3x2,6x2,1)},
{(x2,1x2,4x2,8x2,9x2,2x2,3x2,1), (x2,1x2,8x2,7x2,2x2,6x2,5x2,1)},
{(x3,2x3,8x3,3x3,7x3,9x3,1x3,2), (x3,2x3,5x3,7x3,6x3,9x3,4x3,2)},
{(x3,4x3,8x3,9x3,2x3,3x3,1x3,4), (x3,4x3,6x3,8x3,5x3,9x3,3x3,4)},
{(x4,4x4,6x4,8x4,5x4,9x4,3x4,4), (x4,4x4,5x4,3x4,6x4,1x4,7x4,4)},
{(x4,9x4,2x4,3x4,1x4,4x4,8x4,9), (x4,9x5,9x7,9x2,9x3,9x8,9x4,9)},
{(x4,8x4,7x4,2x4,6x4,5x4,1x4,8), (x4,8x2,8x8,8x1,8x3,8x6,8x4,8)},
{(x5,2x5,8x5,3x5,7x5,9x5,1x5,2), (x5,2x5,5x5,7x5,6x5,9x5,4x5,2)},
{(x5,5x5,1x5,8x5,7x5,2x5,6x5,5), (x5,5x5,3x5,6x5,1x5,7x5,4x5,5)},
{(x6,2x6,8x6,3x6,7x6,9x6,1x6,2), (x6,2x6,6x6,5x6,1x6,8x6,7x6,2)},
{(x6,4x6,6x6,8x6,5x6,9x6,3x6,4), (x6,4x6,8x6,9x6,2x6,3x6,1x6,4)},
{(x7,2x7,8x7,3x7,7x7,9x7,1x7,2), (x7,2x7,5x7,7x7,6x7,9x7,4x7,2)},
{(x7,7x7,1x7,4x7,8x7,9x7,2x7,7), (x7,7x7,4x7,5x7,3x7,1x7,8x7,7)},
{(x8,6x8,8x8,5x8,9x8,3x8,4x8,6), (x8,6x8,5x8,1x8,8x8,7x8,2x8,6)},
{(x8,3x8,1x8,4x8,8x8,9x8,2x8,3), (x8,3x8,6x8,1x8,7x8,4x8,5x8,3)},
{(x3,1x6,1x4,1x2,1x8,1x1,1x3,1), (x3,1x8,1x4,1x5,1x7,1x2,1x3,1)},
{(x7,2x6,2x2,2x5,2x1,2x4,2x7,2), (x7,2x2,2x3,2x8,2x4,2x5,2x7,2)},
{(x2,3x5,3x1,3x4,3x7,3x6,3x2,3), (x2,3x3,3x8,3x4,3x5,3x7,3x2,3)},
{(x1,4x6,4x8,4x5,4x3,4x7,4x1,4), (x1,4x3,4x6,4x4,4x2,4x8,4x1,4)},
{(x1,5x3,5x6,5x4,5x2,5x8,5x1,5), (x2,5x3,5x8,5x4,5x5,5x7,5x2,5)},
{(x1,6x4,6x7,6x6,6x2,6x5,6x1,6), (x2,6x3,6x8,6x4,6x5,6x7,6x2,6)},
{(x5,7x1,7x4,7x7,7x6,7x2,7x5,7), (x5,7x3,7x7,7x1,7x6,7x8,7x5,7)},
{(x2,8x3,8x8,8x4,8x5,8x7,8x2,8), (x1,8x6,8x8,8x5,8x3,8x7,8x1,8)},
{(x1,9x3,9x6,9x4,9x2,9x8,9x1,9), (x1,9x4,9x7,9x6,9x2,9x5,9x1,9)}.

For p = 37, we decompose the last path and �rst cycle into 2P7 as follows:

{x1,7x1,2x1,6x1,5x1,1x1,8x1,3, x1,7x1,8x1,9x6,9x8,9x5,9x3,9} .
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Now, using Construction 1.4 we get the required number of paths and cycles from C6's for p > 37.

So, we have the desired decomposition for K82K9.

Theorem 3.18. Km2Kn has a (6; p, q)-decomposition if and only if mn(m+n− 2) ≡ 0 (mod 12).

Proof. Necessity. Since Km2Kn is (m + n − 2)-regular with mn vertices, Km2Kn has mn(m +

n− 2)/2 edges. Now, assume that Km2Kn has a (6; p, q)-decomposition. Then the number of edges

in the graph must be divisible by 6, i.e., 12|mn(m+n− 2) and hence mn(m+n− 2) ≡ 0 (mod 12).

Su�ciency. We construct the required decomposition in ten cases.

Case 1. m ≡ 0 (mod 6) and n ≡ 0 (mod 2).

Subcase 1.1. m,n ≡ 0 (mod 6) .

Let m = 6k and n = 6l, where k, l > 0 are integers. We can write Km2Kn = kl(K62K6) ⊕
3kl(k+ l− 2)K6,6. By Theorem 1.2 and Lemma 3.8, K6,6 and K62K6 have a (6; p, q)-decomposition.

Hence by Remark 1.3, Km2Kn has a (6; p, q)-decomposition.

Subcase 1.2. m ≡ 0 (mod 6), n ≡ 4 (mod 6) .

Let m = 6k and n = 6l + 4, where k, l are non-negative integers. We can write Km2Kn =

(K6k2K6l) ⊕ k(K62K4) ⊕ 2k(k − 1)K6,6 ⊕ 6kK6l,4. By Theorem 1.2, Lemmas 3.7, and 2.4,

Subcase 1.1 and Remark 1.3, Km2Kn has a (6; p, q)-decomposition.

Subcase 1.3. m ≡ 0 (mod 6), n ≡ 2 (mod 6) .

When m = 6k and n = 2, Km2Kn = k(K62K2) ⊕ k(k − 1)K6,6. By Theorem 1.2, Lemma

3.6 and Remark 1.3, Km2Kn has a (6; p, q)-decomposition. When m = 6k and n = 8, Km2Kn =

k(K62K8) ⊕ 4k(k − 1)K6,6. By Theorem 1.2, Lemma 3.9 and Remark 1.3, Km2Kn has a (6; p, q)-

decomposition. When n > 8, let m = 6k, n = 6l + 8, where k, l are non-negative integers. We can

write Km2Kn = (K6k2K6l) ⊕ (K6k2K8) ⊕ 6kK6l,8. By Theorem 1.2, Lemma 2.4, Subcase 1.1

and Remark 1.3, Km2Kn has a (6; p, q)-decomposition.

Case 2. m,n ≡ 4 (mod 6).

Let m = 6k + 4 and n = 6l + 4, where k, l are non-negative integers. We can write Km2Kn =

kl(K62K6) ⊕ (k+l)(K62K4) ⊕ (K42K4) ⊕ (3kl(k+l−2)+2k(k−1))K6,6 ⊕ (12kl+4(l+k))K6,4. By

Theorem 1.2, Lemmas 3.7, 3.8, 3.10 and 2.4 and Remark 1.3, Km2Kn has a (6; p, q)-decomposition.

Case 3. m ≡ 0, 1, 4 or 9 (mod 12), n ≡ 1 or 9 (mod 12).

When m is even, the degree of each vertex v ∈ V (Km2Kn) is odd, then p ≥ mn/2. Now,

Km2Kn = nKm ⊕ mKn. By Lemma 2.8 and Theorem 1.1, Km andKn have a (6; p, q)-decomposition

(with p ≥ m/2 whenever m is even). Hence by Remark 1.3, Km2Kn has the required decomposition.

Case 4. m,n ≡ 3 or 7 (mod 12).

Subcase 4.1. m,n ≡ i (mod 12), i = 3, 7.

Whenm = n, if i = 3, thenKm2Kn = nKm ⊕ mKn = 2m(Km\E(K3)) ⊕ m
3
(K32K3). If i = 7 let

m = 12k+7, thenKm2Kn = 2(m−7)(Km\E(K3))⊕ (m−7)
3

(K32K3)⊕ 14(K12k+1⊕K12k,6)⊕K72K7.

By Lemmas 2.6, 3.1, 3.11, Theorems 1.1, 1.2 and Remark 1.3, Km2Kn has a (6; p, q)-decomposition.

When m < n, let n = m+h, where h = 12l, l ∈ Z+ m = 12k+ i, i = 3, 7. We can write Km2Kn =

(Km2Km) ⊕ hKm ⊕ m(Kn\E(Km)) = (Km2Km) ⊕ 12l(Km\E(K3)) ⊕ 12lK3 ⊕ m(K12l+1 ⊕
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K12l,m−1). Now, the �rst three rows of (Km2Kn)\(Km2Km) can be viewed as (K12l+1\E(2lC6)) ⊕
K12l,m−1 ⊕ 2lC6. As in the proof of Lemma 3.12, we can prove 12lK3 along with three rows of

2lC6 has a (6; p, q)-decomposition. By Lemmas 2.4 and 2.5 and Theorem 1.2, K12l+1\E(2lC6) and

K12l,m−1 have a (6; p, q)-decomposition. Hence by Remark 1.3, Km2Kn has a (6; p, q)-decomposition.

Subcase 4.2. m ≡ 3 (mod 12), n ≡ 7 (mod 12).

Let m = 12k + 3, n = 12l + 7. We can write Km2Kn = nKm ⊕ mKn.

When k = l, every column of Km2Kn can be viewed as (Km\E(K3)) ⊕ K3 and every �rst (m−3)

rows can be viewed as (Kn\E(K3)) ⊕ K3 and last three rows can be viewed as (Kn\E(K7)) ⊕ K7.

Now, the K3's in �rst (m−3) rows and columns form (m−3)
3

(K32K3) and Kn\E(K7) can be viewed as

K12l+1 ⊕ K12l,6 and these graphs have a (6; p, q)-decomposition, by Theorems 1.1, 1.2. By Lemmas

2.6 and 3.1, Km\E(K3), Kn\E(K3) and (K32K3) have a (6; p, q)-decomposition. By Lemma 3.2, the

remaining graph K32K7 has a (6; p, q)-decomposition.

When k < l, every column of Km2Kn can be viewed as (Km\E(K3)) ⊕ K3 and every �rst

(m − 3) rows can be viewed as (Kn\E(K3)) ⊕ K3. Now, the K3's in �rst (m − 3) rows and

columns form (m−3)
3

(K32K3). By Lemmas 2.6 and 3.1, Km\E(K3), Kn\E(K3) and (K32K3) have

a (6; p, q)-decomposition. Finally, we have to �nd a (6; p, q)-decomposition of the last three rows

and 12(l − k) + 7 columns of Km2Kn. Now, every 12(l − k) + 7 columns of Km2Kn can be

viewed as (Km\E(K3)) ⊕ (Km\V (Km−3)) and every last three rows of Km2Kn can be viewed as

K12k+1 ⊕ K7 ⊕ K12k,6 ⊕ K12(l−k),6 ⊕ K12k,12(l−k) ⊕ (K12(l−k)+1\E(2(l − k)C6)) ⊕ 2(l − k)C6

and by Theorem 1.2, K12k,6 ⊕ K12(l−k),6 = K12l,6 has a (6; p, q)-decomposition. By Lemma 2.5,

K12(l−k)+1\E(2(l− k)C6) has a (6; p, q)-decomposition. As in the proof of Lemma 3.12, we can prove

12(l − k)Kn\V (Kn−3) along with the three rows of 2(l − k)C6 has a (6; p, q)-decomposition. By

Lemma 3.2, the remaining graph K32K7 has a (6; p, q)-decomposition.

By using similar proof, we can prove for the case k > l also. Hence Km2Kn has a (6; p, q)-

decomposition.

Case 5. m ≡ 3 (mod 12), n ≡ 11 (mod 12).

Let m = 12k + 3, n = 12l + 11. We can write Km2Kn = nKm ⊕ mKn. Consider all columns as

(Km\E(K3)) ⊕ K3 except the columns 1, 3, 4 and 7 and consider these columns as (Km\(E(K3)) ⊕
E(2kC6))⊕K3 ⊕ 2kC6 and all rows can be viewed as (Kn\E(C7))⊕ C7 except the last three rows. The

last three rows can be viewed as (K12l+1\E(2lC6))⊕K12l,10 ⊕ 2lC6 ⊕K11. In each columnKm\E(K3)

has a (6; p, q)-decomposition and in columns 1, 3, 4 and 7 the graph (Km\(E(K3)) ⊕ E(2kC6))

has a (6; p, q)-decomposition, by Lemma 2.6. So the remaining edges in columns 1, 3, 4 and 7 form

K3 ⊕ 2kC6 and in other columns form K3. By Lemma 2.7 and Theorem 1.1, the graphs Kn\E(C7)

and K12l+1 have a (6; p, q)-decomposition and K12l,10 = 2l(K6,6 ⊕ K6,4) has a (6; p, q)-decomposition,

by Theorem 1.2 and Lemma 2.4. So the remaining edges in the �rst (m − 3) rows form 12kC7 and

in the last three rows form K11 ⊕ 2lC6. The graph 12lK3 in the �rst 12l columns along with 2lC6 in

the last three rows have a (6; p, q)-decomposition as in Lemma 3.12. Also, the edges of 12kC7 along

with four columns of 2kC6 can have a (6; p, q)-decomposition as in Lemma 3.15.

Now, the remaining edges (K3's) in the last 11 columns and (K11's) in the last 3 rows will form

K32K11 which has a (6; p, q)-decomposition, by Lemma 3.4. Hence by Remark 1.3 Km2Kn has a

(6; p, q)-decomposition.

Case 6. m ≡ 5 (mod 12), n ≡ 9 (mod 12).
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Let m = 12k+5, n = 12l+9. We can write Km2Kn = nKm ⊕ mKn = n((Km\E(C4)) ⊕ C4) ⊕
mKn. Consider the �rst 5 rows and the last 2 rows as K12l+1 ⊕ K9 ⊕ K12,8 and (K12l+1\E(2lC6)) ⊕
2lC6 ⊕ K9 ⊕ K12,8 respectively. The graph (n − 9)C4 in the �rst n − 9 columns along with the

last 2 rows of 2lC6 can be viewed as 2lG, where G = 6C4 ⊕ 2C6 = C1
4 ⊕ C2

4 ⊕ · · · ⊕ C6
4 ⊕

C3
6 ⊕ C4

6 with V (G) = {xi,j|1 ≤ i ≤ 4,≤ j ≤ 2} and Ci
4 = (x1,ix2,ix3,ix4,ix1,i), 1 ≤ i ≤ 6, Cj

6 =

(xj,1xj,2xj,3xj,4xj,5xj,6xj,1), j = 3, 4 and G can be decomposed into C6's as follows:{
(x3,2ix3,(2i−1)x2,(2i−1)x1,(2i−1)x4,(2i−1)x4,2ix3,2i) , (x3,2ix2,2ix1,2ix4,2ix4,(2i+1)x3,(2i+1)x3,2i)

}
,

where 1 ≤ i ≤ 6 and the subscripts of x are taken modulo 6 with residues {1, · · · , 6}. The �rst three
cycles can be decomposed into 3P7 as follows: {x1,2x4,2x4,1x1,1x2,1x3,1x3,2, x3,2x4,2x4,3x1,3x2,3x3,3x3,4,

x3,4x4,4x4,3x3,3x3,2x2,2x1,2}. Now, using Construction 1.4 we get the required number of paths and

cycles from the C6-decomposition of G given above. By Theorem 1.1, Lemmas 2.3, 2.4 and 2.5, Kn,

K12l+1\E(2kC6), K9 and K12,8 have a (6; p, q)-decomposition. Now, consider the remaining 9C4 with

5C6 from the �rst 5 rows in 5× 9 block with vertex and edge set as follows:

V (G) = {xi,j|1 ≤ i ≤ 5,≤ j ≤ 6}

and

Ci
4 = (x1,ix2,ix3,ix4,ix1,i), i = 3, 4, 8

and

C1
4 = (x1,1x2,1x4,1x3,1x1,1),

C2
4 = (x2,2x3,2x4,2x5,2x2,2),

C5
4 = (x1,5x3,5x5,5x4,5x1,5),

C6
4 = (x1,6x4,6x2,6x3,6x1,6),

C7
4 = (x1,7x3,7x5,7x2,7x1,7),

C9
4 = (x1,9x4,9x3,9x5,9x1,9),

C1
6 = (x1,1x1,3x1,5x1,7x1,9x1,8x1,1),

C2
6 = (x2,1x2,2x2,3x2,6x2,7x2,8x2,1),

C3
6 = (x3,1x3,3x3,4x3,6x3,5x3,2x3,1),

C4
6 = (x4,2x4,3x4,4x4,7x4,6x4,9x4,2),

C5
6 = (x5,2x5,3x5,5x5,7x5,9x5,4x5,2).

Now, this G can be decomposed into C6's as follows:

{(x1,8x1,9x5,9x5,7x2,7x2,8x1,8), (x1,8x4,8x3,8x2,8x2,1x1,1x1,8)} ,
{(x5,5x4,5x1,5x1,7x3,7x5,7x5,5), (x5,5x5,3x5,2x2,2x3,2x3,5x5,5)} ,
{(x3,3x2,3x2,2x2,1x4,1x3,1x3,3), (x3,3x3,4x2,4x1,4x4,4x4,3x3,3)} ,
{(x4,2x3,2x3,1x1,1x1,3x4,3x4,2), (x4,2x5,2x5,4x5,9x3,9x4,9x4,2)} ,
{(x4,6x4,7x4,4x3,4x3,6x1,6x4,6), (x4,6x2,6x2,7x1,7x1,9x4,9x4,6)} ,
(x1,3x2,3x2,6x3,6x3,5x1,5x1,3).
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The last 3C6 can be decomposed into 3P7 as follows:

{x1,3x2,3x2,6x4,6x4,9x1,9x1,7, x1,7x2,7x2,6x3,6x1,6x4,6x4,7, x4,7x4,4x3,4x3,6x3,5x1,5x1,3}.

Now, using Construction 1.4 we get the required number of paths and cycles from the C6-

decomposition of G given above. Hence we have the desired decomposition of Km2Kn.

Note 3.19. From Case 7 to Case 10 the degree of each vertex v ∈ V (Km2Kn) is odd and so

p ≥ mn/2.

Case 7. m ≡ 0 (mod 12), n ≡ i (mod 12), i = 3, 5, 7, 11.

Let m = 12k and n = 12l + i, l, k ∈ Z+ and i ∈ {3, 5, 7, 11}. We can write Km2Kn = nKm ⊕
mKn = (n − i)Km ⊕ k(Ki2K12) ⊕ ik(k−1)

2
K12,12 ⊕ m(Kn\E(Ki)), i ∈ {3, 5, 7, 11}. By Lemma

2.6, Kn\E(Ki) has a (6; p, q)-decomposition for i = 3. For i ∈ {5, 7, 11}, Kn\E(Ki) can be viewed as

K12l+1 ⊕K12l,i−1 and these graphs have a (6; p, q)-decomposition, by Theorems 1.1, 1.2 and Lemma

2.4. Also by Theorem 1.2 and Lemmas 3.12 to 3.15, K12,12 and Ki2K12, i ∈ {3, 5, 7, 11} have a

(6; p, q)-decomposition. Hence by Remark 1.3, Km2Kn has a (6; p, q)-decomposition.

Case 8. m ≡ 4 (mod 12), n ≡ 3 or 7 (mod 12).

Let m = 12k + 4. Then Km2Kn = nKm ⊕ mKn = nKm ⊕ m((Kn\E(K3)) ⊕K3). By

Lemmas 2.6 and 2.8, Km has a (6; p, q)-decomposition with p ≥ m/2 and Kn\E(K3) has a (6; p, q)-

decomposition. Now, the last three columns can be viewed as (K12(k−1)\E(2(k−1)C6))⊕2(k−1)C6 ⊕
K16 ⊕ K12(k−1),16. By Lemmas 2.5 and 2.4, K12(k−1)\E(2(k − 1)C6) and K12(k−1),16 have a (6; p, q)-

decomposition. The graph 12(k − 1)K3 in the �rst 12(k − 1) rows along with the last 3 columns of

2(k− 1)C6 can be viewed as 2(k− 1)(6K3 ⊕ 3C6). We can prove this has a (6; p, q)-decomposition as

in Lemma 3.12. Now, K16's of last 3 columns and K3's of last 16 rows form K32K16 and this has a

(6; p, q)-decomposition, by Lemma 3.5.

Case 9. m ≡ 8 (mod 12), n ≡ 3 (mod 12).

Let m = 12k + 8 and n = 12l + 3. We can write Km2Kn = nKm ⊕ mKn = n((K12k ⊕ 2C6) ⊕
(K8\E(2C6)) ⊕ K12k,8) ⊕ m((Kn\E(K3))⊕K3), where 2C6 are (x2,ix3,ix7,ix4,ix6,ix8,ix2,i),

(x2,ix5,ix4,ix8,ix1,ix6,ix2,i), 1 ≤ i ≤ n. Last three columns can be viewed as (K12k\E(2kC6)) ⊕ 2kC6 ⊕
K8 ⊕ K12k,8 and �rst three rows can be viewed as (Km\E(2lC6 ⊕ K3)) ⊕ 2lC6 ⊕K3. The graph

12kK3 in the last 12k rows along with the last 3 columns of 2kC6 can be viewed as 2k(6K3 ⊕ 3C6).

We can prove this has a (6; p, q)-decomposition as in Lemma 3.12. Now, K8's in last three columns

and K3's in the �rst 8 rows forms K82K3 and by Lemma 3.3, which has a (6; p, q)-decomposition.

Also by Lemma 2.8, K12k ⊕ 2C6 in the �rst (n − 3) columns has a (6; p, q)-decomposition. The

remaining edges K8\E(2C6) in the �rst 12l columns and 2lC6 in �rst 3 rows form (K8\E(2C6))2C6

which has a (6; p, q)-decomposition, by Lemma 3.16.

Case 10. m ≡ 8 (mod 12), n ≡ 9 (mod 12).

Let m = 12k + 8 and n = 12l + 9. We can write Km2Kn = nKm ⊕ mKn = (n − 9)((K12k ⊕
2C6) ⊕ (K8\E(2C6)) ⊕ K12k,8) ⊕ 9(K12k ⊕ K8 ⊕ K12k,8) ⊕ mKn. The last 8 rows can be viewed

as K12l+1\E(2lC6) ⊕ 2lC6 ⊕ K9 ⊕ K12l,8. Now, the graph K8\E(2C6) in each (n − 9) columns

along with 2lC6 in last 8 rows forms 2l((K8\E(2C6))2C6) which has a (6; p, q)-decomposition, by

Lemma 3.16 and the graph K8's in last 9 columns and K9's in last 8 rows will form K82K9 which

has a (6; p, q)-decomposition, by Lemma 3.17. By Lemmas 2.4, 2.5 and 2.8, the remaining edges have

a (6; p, q)decomposition.
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