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abstract

Civil engineering crack detection faces challenges due to complex environments and external interfer-

ences. This paper proposes an improved YOLO v8s-WOMA network, integrating ODConv, C2f-MA

modules, and WIoU loss function to enhance crack identi�cation accuracy. A BP neural network is

also trained to assess crack damage. Experiments on the CBP dataset compare this method with ex-

isting detection algorithms. Results show that the proposed model achieves the highest mAP (90.5%),

F1-score (90.3%), and accuracy (89.6%). Bridge crack detection errors remain within 0.1mm (width)

and 20mm (length), ensuring precise damage assessment. The model e�ectively handles complex

backgrounds, accurately detects cracks, and meets practical engineering needs.

Keywords: YOLO v8s-WOMA, BP neural network, multidimensional damage assessment, civil en-

gineering, crack detection

1. Introduction

Cracks in reinforced concrete are the result of the release of excessive internal deformation energy

of the concrete material, the cracks abate the peak value of the tensile stress in the cross-section at

that location, so that the deformation energy stored in the structure is below a certain limit, and the

reduction of the internal deformation energy of the material through the cracks is an intrinsic property

of the concrete material [10, 12]. It is quite a common phenomenon that many concrete structures,

masonry structures and other building structures show di�erent degrees and forms of cracks during

construction and use. The emergence of cracks has become a �common disease� and �frequent disease�
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of concrete structure, which is a technical problem that has long plagued construction engineers and

technicians, and it is di�cult to avoid the emergence of cracks in concrete [4, 3]. In actual engineering

practice, the cracks in the concrete structure is too wide not only a�ect the beauty of the building

structure, but also when the crack width reaches a certain degree, it a�ects the normal use of the

structure and durability, often caused by the user's uneasiness, but also lead to the corrosion of

reinforcing steel in the concrete [14, 15]. If it is in a humid environment, it will also accelerate

the aging of concrete, greatly reduce the bearing capacity of the building, signi�cantly reduce the

durability and safety of the concrete structure, often endangering the safety of the main structure,

causing great safety hazards to the building structures, and causing signi�cant economic losses to

society [16, 26, 19]. For a long time, in the detection practice of building cracks, the traditional

contact detection method is the main one, in which the inspector carries the equipment and gets

close to the crack detection area in order to carry out the crack detection work, but there are great

limitations and drawbacks in using the contact detection method for crack detection [7, 21, 18]. Deep

learning based civil engineering crack detection method can solve the practical di�culties of civil

engineering practice, it can make the detection cost lower, can e�ectively reduce the measurement

error, greatly improve the work e�ciency, and on this basis, realize the real-time online high-precision

measurement, multi-dimensional civil engineering structure damage identi�cation and assessment, in

order to satisfy the modern society's requirements for the intelligence of building measurement [1,

23, 9].

In this paper, an improved crack detection method is proposed in combination with YOLO v8s

target detection algorithm, aiming to improve the crack recognition accuracy and realize the high-

precision detection and localization of cracks. Full-dimensional dynamic convolution is introduced

to improve the visibility of �ne cracks. The optimized MA-ECA channel attention module is used to

construct the C2f-MA to deepen the texture feature information, highlight the crack's own charac-

teristics, and suppress the interference of irrelevant background. The WIoU loss function is chosen

to increase the model's attention to important and di�cult-to-detect targets to improve its detection

ability for cracks. Finally, combined with the damage determination standard, a crack damage de-

gree assessment method based on BP neural network is proposed. The results of the crack detection

model in this paper are visualized through experiments and the performance of the proposed method

is evaluated.

2. Overview

2.1. Civil engineering crack detection

Detection of cracks on the surface of buildings is a very important part of the engineering construc-

tion process. Zawad et al. [28] emphasizes the importance of detecting and repairing cracks in

engineering structures, points out the challenges of existing crack detection techniques, and critically

analyzes and compares existing image processing based crack detection techniques for civil engi-

neering structures through literature review, and the results show that convolutional neural network

based crack detection algorithms based on camera images of general structures have high detection

accuracy. Yang et al. [27] proposes a deep convolutional neural network based migration learning

method for crack detection in civil engineering infrastructure and veri�es the superior performance of

the proposed method through experiments, which can e�ciently and accurately detect a wide range

of cracks and provide technical guarantee for ensuring the safety of bridges, highways and other



deep learning-based crack detection method for civil 643

infrastructure. Kim and Cho [17] proposed an automatic concrete surface crack pattern detection

technique based on convolutional neural network (cnn) in �eld environment, and veri�ed the ro-

bustness and applicability of the proposed method through empirical analysis, which can e�ectively

detect and manage a large number of civil engineering structures. Hsieh and Tsai [11] systematically

reviews a variety of machine learning-based crack detection methods, highlights the current trend of

pixel-level crack segmentation, and points out that the false-positive problem must be solved in order

to further improve the machine learning-based crack detection model through the performance com-

parison of crack segmentation models. Cha et al. [6] proposes a deep learning-based convolutional

neural network crack damage detection method, which is veri�ed by image training and testing to

have superior performance, and is able to better detect civil infrastructure defects, which helps to

replace on-site inspections carried out manually and improve the safety of buildings.

2.2. Damage Assessment of Civil Engineering Structures

It is of great signi�cance to know how to perform damage assessment, structural safety analysis, and

remaining life rating considering uncertainty in engineering analysis. Mohandes et al. [20] devel-

oped a multidimensional fuzzy-based �ve-dimensional safety risk assessment model to improve the

reliability and safety of construction projects, using a green building construction project in Hong

Kong as an example, and the results con�rmed that the developed model provided a comprehensive

ranking system for the safety risks present in the project. Qiu and Zhan [24] proposed a civil engi-

neering structural damage identi�cation method based on Benchmark numerical model and parallel

convolutional neural network, and the feasibility of the proposed method was con�rmed by algorith-

mic model testing, with good damage identi�cation performance, which is of great signi�cance for

the structural inspection of civil engineering projects and the development of related risk preven-

tion programs. Shang et al. [25] proposed a bridge vibration damage detection strategy based on

deep convolution denoising self-coder, and evaluated the practicality of the model through numerical

simply supported beam model and experimental continuous beam model, which is able to meet the

structural damage detection under the exposure environment, and has a certain reference value for

the research of civil engineering damage assessment. Huang et al. [13] designed several comparative

experiments to verify that the proposed damage identi�cation method for frame structures based on

multi-channel data fusion and convolutional neural network performs better than the damage identi-

�cation method that relies solely on single-channel data, and can e�ectively improve the accuracy of

damage identi�cation for complex frame structures. Anaissi et al. [2] proposed a new algorithm for

structural damage detection and assessment of bridges and other structures based on tensor analy-

sis, and the results veri�ed the e�ectiveness and feasibility of the proposed algorithm through the

application of real bridges and laboratory samples to assess the e�ectiveness and feasibility of the

proposed algorithm, and it is a certain reference signi�cance for the prediction of structural health

of civil engineering.

3. Civil engineering crack detection methods

3.1. Theory of target detection algorithm

Target detection is an important computer vision task whose goal is to accurately identify all the

targets contained in a given image or video and achieve precise localization.

Currently, target detection algorithms are mainly categorized into three types: One-Stage, Two-
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Stage and Anchor-free. These three types have di�erent algorithmic advantages: the One-Stage model

has faster training and inference speed, but in terms of target localization and bounding box accuracy,

the One-Stage model may be slightly inferior to the Two-Stage model.The Two-Stage algorithm

performs well in terms of accuracy, but since the Two-Stage algorithm is generally more complex,

the model have more parameters and their training and inference costs are higher. Compared to

the One-Stage and Two-Stage models, the Anchor-free model is a bit later in development, but this

model also has excellent performance and can better adapt to various shapes of targets because it is

not bound by anchor frames.

Unlike classi�cation tasks, target detection requires not only recognizing objects in an image, but

also accurately locating the positions of these targets. Therefore, when evaluating a target detection

model, both the model's localization precision and classi�cation accuracy need to be considered. In

target detection, accuracy, recall, mean average precision (mAP), billion �oating-point operations

per second, number of model parameters, and number of frames processed per second are often used

to comprehensively evaluate the performance of a model.

Accuracy: Accuracy in target detection is the proportion of positive classes predicted by the model

that are true positive classes. In target detection tasks, accuracy is often used in conjunction with

target localization, implying the ability of the model to correctly predict the target and localize it

correctly. Speci�cally, the calculation of accuracy involves two key metrics: true positive examples

(TP) and false positive examples (FP). True cases are the number of samples that the model correctly

predicts as positive classes, while false positive cases are the number of negative class samples that

the model incorrectly predicts as positive classes. Accuracy is calculated by the formula:

Precision =
TP

TP + FP
. (1)

The value of accuracy ranges from 0 to 1. The closer the value is to 1 means that the model is

more accurate in predicting the positive class. In target detection, a high accuracy rate means that

the model performs more reliably in identifying and localizing targets.

Recall: recall in target detection is the ratio of positive class samples successfully detected by the

model to all actual positive class samples. In a target detection task, recall measures the model's

ability to recognize positive class samples, i.e., whether the model is able to �nd as many targets in

the image as possible and classify them correctly. The calculation of recall involves two key metrics:

true cases (TP) and false negative cases (FN). True cases are the number of positive class samples

that the model succeeds in correctly detecting, while false negative cases indicate the number of

positive class samples that the model fails to successfully detect. Recall is calculated by the formula:

Recall =
TP

TP + FN
. (2)

The values of recall also range from 0 to 1, with values closer to 1 indicating that the model is

better at detecting positive class samples.

Mean Average Precision Mean (mAP): mAP in target detection is a comprehensive evaluation

metric to measure the performance of a target detection model. The mAP is derived by calculating

(AP) for each category and then averaging the APs across all categories. First, for each category,

Precision-Recall curves were plotted. Precision denotes the proportion of true positive examples

among the detected targets, while Recall denotes the proportion of all true positive examples that

were detected. The AP value for the category is obtained by calculating the area under the Precision-

Recall curve. Finally, the APs of all categories are averaged to obtain mAP. The mAP is an important
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metric for comprehensively evaluating the performance of a target detection model in multi-category

scenarios, and the higher its value, the better the detection performance of the model on each

category. The formula for mAP is:

APc =

∫ 1

0

precisionc (recall) d (recall) , (3)

mAP =
1

N

N∑
c=1

APc, (4)

where APc denotes the AP value of category C, which is obtained by calculating the area under the

Precision-Recall curve. In the calculation of mAP this will be averaged over all categories AP and

N denotes the total number of categories.

3.2. Principle of YOLOV8 target detection algorithm

Convolutional neural network based target detection algorithms are mainly categorized into one-

stage [8] algorithm based on regression and two-stage algorithm based on candidate region, one-stage

algorithm has faster detection speed, while two-stage algorithm possesses higher detection accuracy.

yolov8's is the latest target detection algorithm of the current yolov series, it adopts a new model

architecture and uses a new convolutional layer and detection head.

YOLOV uses the CSPDarknet architecture, which combines the advantages of csp and darknet, as

its backbone network. CSPDarknet drastically reduces the use of repetitive information, minimizing

the number of parameters in the model and the value of GFLOPs while improving the accuracy

and inference speed of the model as much as possible. In addition, to further improve the model

performance, YOLOV8 introduces an innovative c2f module [22]. It enables the model to obtain

gradient information in more dimensions while maintaining the model complexity.

FPN has a bottom-up feature extraction process and a top-down feature fusion process. The

bottom-up structure aims at mining hidden features from shallow to deep layers, while the top-down

structure realizes the fusion of features at di�erent scales by transferring the high-level semantic

information to the bottom feature layer, this fusion can help the model to capture both the details

of the target and the global semantic information. In order to achieve both correct determination of

the target category and accurate localization of the target location when detecting the input image,

YOLOV8 adopts a Decoupled Head similar to YOLOVX, which separates the regression branch from

the prediction branch to achieve faster convergence speed and detection results.

3.3. Target detection dataset preprocessing

In this chapter, 500 images of cracks with complex backgrounds from the inspection reports are

screened for the production of the crack target detection dataset, which will be named, and these

images have a variety of disturbing factors, such as shadows, arti�cially drawn lines, weeds, and so

on. To ensure the quality and consistency of the dataset, the dataset is preprocessed as follows:

1) Scale the image resolution to 640×640 to ensure that the model can handle uniform size inputs

during training.

2) LabelImg image annotation software was applied to accurately label the crack portion of each

image to provide the model with accurate label information for supervised learning.

3) In order to increase the number of samples in the dataset and improve the robustness of the

model, technical means such as brightness and contrast adjustment, rotation and adding motion blur
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were used to expand the number of samples in the dataset to 2000, which provided more samples of

training data.

4) In order to evaluate the performance of the model, the dataset is divided into a training set and

a validation set in the ratio of 8:2, where 80% of the data is used to train the model, and 20% of the

data is used to validate the accuracy and generalization ability of the model.

3.4. Crack detection modeling

3.4.1. YOLO v8 algorithm. YOLO v8 network adopts the hyper-parameter adjustment mechanism

to realize precise control of the depth and width of the network structure by adjusting the key

parameters of depth and width, which provides a total of 5 versions such as n, s, m, l, x, etc., each

with di�erent network depth and width.

In order to comprehensively consider the factors of detection performance and model size, the

s version is chosen as the base model.The YOLO v8 algorithm achieves simultaneous detection

and localization of multiple targets in an image by dividing the image into grids and predicting the

bounding box and category information of the targets in each grid cell. Its network structure includes

convolutional layers, pooling layers, and fully connected layers, etc., and achieves accurate recognition

and localization of targets through multi-layer feature extraction and regression operations.

Currently, although YOLOv8s algorithm shows excellent performance in target detection tasks,

there are still some bottlenecks and room for improvement when performing crack detection tasks in

complex backgrounds:

1) Poor feature extraction capability for problems such as crack minuteness and ambiguity.

2) The aspect ratio increment introduced by the complete intersection and union ratio (CIoU) loss

function may have some ambiguity when dealing with crack detection in complex backgrounds. In

addition, when there is an error in data labeling, the prediction accuracy of crack location is also

reduced.

3) Excessive background noise interference in the image and the presence of a large amount of

invalid information lead to the lack of competitiveness of �ne cracks in the detection task, thus

a�ecting the e�ectiveness of crack detection.

3.4.2. YOLO v8s-WOMA crack detection algorithm. This chapter proposes a concrete crack de-

tection algorithm YOLO v8sWOMA based on improved YOLOv8s, which mainly introduces full-

dimensional dynamic convolution, introduces improved MA-ECA into the C2f module (C2f-MA) to

enhance the semantic information of the crack features, and adopts a faster computational loss func-

tion (WIoU) to solve the problem of recognizing low-quality samples so as to improve the algorithm's

The structure of YOLO v8s-WOMA algorithm is shown in Figure 1.

3.4.3. Dynamic convolution in full dimension. Full-dimensional dynamic convolution is a convolu-

tion operation that introduces a multidimensional attention mechanism through a parallel strategy

to enhance the convolution kernel's ability to learn complementary attentions in the four dimensions

of space.ODConv achieves a better handling of the variability between dimensions in the input data

by gradually and progressively applying di�erent attention weights to the convolution operation on

the dimensions of position, channel, �lter, and kernel, and captures more rich contextual information,

which further improves the feature extraction capability of convolution and outputs a more expres-

sive crack feature map. For dynamic convolution, the convolution operation is performed by linearly
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weighting multiple convolution kernels, and these weight values are related to the input, so dynamic

convolution is input-dependent, and ODConv continues the de�nition of dynamic convolution.

Fig. 1. Yolov8s-woma network structure

y = (αw1W1 + · · ·+ αwnWn)x, (5)

y = (αw1αf1αc1αs1W1 + · · ·+ αwnαfnαcnαsnWn)x, (6)

where {W1, · · · ,Wn} is the convolution kernel, n is the number of convolution kernels, αwn is the

attention scalar of the convolution kernel, and αfn, αcn, and αsm denote the learnable weights for

the output channel, input channel, and spatial dimension, respectively.

Due to the problem of �ne blurring of cracks in crack detection, the �rst three conventional convo-

lutions in the YOLOv8s backbone network are replaced with ODConv in this chapter.The ODConv

module can obtain richer contextual information, better enhance the convolutional feature extrac-

tion capability, obtain more e�ective �ne crack feature information, and more accurately distinguish

cracks from background, thus improving the detection capability of �ne cracks. Optimize the problem

of di�cult �ne fuzzy feature extraction under complex background.

3.4.4. C2f-MA module. The C2f-MA module consists of the C2f module and the improved MA-ECA

module in series.The MA-ECA module is a lightweight and e�cient channel attention module based

on the improved SE module. The module keeps the channel dimensions of the input feature maps

unchanged, utilizes a one-dimensional convolution operation to capture inter-channel correlations in

a local range, and adaptively adjusts the size of the convolution kernel to �t di�erent contextual

information.

Maximum pooling operation is introduced in the ECA module to enhance the sensitivity to texture

feature information and better preserve the salient features of the image to reduce the in�uence

of invalid information. The feature maps output from the C2f module are respectively subjected

to maximum pooling and average pooling operations, and the pooled feature maps are summed to

generate feature maps with richer semantic information, which makes the model pay more attention to

the important feature information in the channel while suppressing the irrelevant feature information.

It has better e�ect on extracting �ne fuzzy crack features under complex background. For the
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detection of small fuzzy cracks in complex backgrounds, the C2f-MA module enables the model to

focus on more important feature information and reduces the in�uence of background noise on the

model. By enhancing the semantic information of the feature map, the detection accuracy of cracks

under complex background is e�ectively improved.

3.4.5. Loss function (WIoU). The loss function of bounding box regression (BBR) is crucial for

the target detection task, and the YOLOv8s network adopts the CIoU loss function as the target

localization function.The CIoU loss function introduces three geometric factors, namely, the overlap

area, the distance from the centroid, and the aspect ratio of the bounding box regression.However,

the aspect ratio, as a relative value, does not allow us to determine the size or shape information of

the cracks, and this loss function does not consider the balance of di�cult and easy samples. There-

fore, this chapter introduces the WIoU loss function [5], which proposes a dynamic non-monotonic

focusing mechanism to assess the quality of anchor frames by using �outliers� instead of IoU. As there

may be some errors in the labeling process of the dataset in this chapter, resulting in low-quality

examples, the WIoU loss function provides a sensible gradient gain allocation strategy, which can

reduce the competitiveness of high-quality anchor frames, reduce the harmful gradient generated by

low-quality examples, and solve the problem of identifying low-quality samples, so that the network

can more accurately detect low-quality crack samples. In addition, since WIoU does not involve the

computation of aspect ratios, the computational speed of WIoU is better than that of CIoU, so WIoU

performs better relative to CIoU, which improves the detection performance of the target detection

neural network. The CIoU and WIoU loss functions are shown in Figure 2.

Fig. 2. Cioand wioloss functions

In Figure 2, Bpred is the crack prediction box, Btrue is the crack true labeling box, and Wg and

Hg are the sizes of the minimum closure box.CIoU and WIoU are calculated as follows:

CIoU = IoU − d2

c2
− αβ, (7)

WIoU = exp

(
d2

(c2)∗

)
, (8)

where IoU is one of the most commonly used performance metrics in target detection, denotes the

ratio of the overlapping area of the real labeled frame and the predicted frame to the total area,

d is the distance between the centroids of the two frames, c is the diagonal length of the smallest

area that contains both frames, α denotes the trade-o� parameter, and β denotes the consistency of

the aspect ratios of the two frames. * indicates that the operation separates Wg and Hg from the
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computational graph. The IoU is calculated as follows:

IoU =
|Bpred ∩Btrue|
|Bpred ∪Btrue|

. (9)

4. Multi-dimensional crack damage assessment method based on BP

neural network

The optimal BP neural network model consists of 6 fully connected layers, the �rst layer and the

second layer have the same number of neuron nodes, both are 1024. The second, third and fourth

layers have the same number of neuron nodes, all of which are 512. The last layer, the output layer,

has a node number of 1. J (W, b) is the value of the deviation of the data in the output layer from

the real data, i.e., the cost function, whose speci�c formula is shown in Eq. (10):

J (W, b) =
1

n

n∑
i=1

L(ŷ(i), y(i)), (10)

where, n is the amount of data in each batch during the training of the BP neural network, ŷ(i)

and y(i) are the true and predicted values of the ith sample in the batch training respectively, and

L(ŷ(i), y(i)) is the method of calculating the loss value used in the BP neural network.

The mean square error (MSE) and Huber loss function are used in the BP neural network, respec-

tively δ. in the Huber loss function is a hyper-parameter, which can be selected according to the

training situation. When the value of δ is chosen close to in�nity, the Huber loss value is close to

MSE and when the value of δ is chosen close to 0, the Huber loss value is close to the Mean Absolute

Error (MAE).

L(ŷ(i), y(i)) = (y(i)− ŷ(i))2, (11)

Lδ(ŷ(i), y(i)) =

{
1
2
(y(i)− ŷ(i))2, |y(i)− ŷ(i)| ≤ δ,

δ |y(i)− ŷ(i)| − 1
2
δ2, otherwise,

(12)

where, ∂J(W,b)

∂b[L](∂W [L])
stands for the partial derivatives of the bias and weights of the neurons in layer

L, respectively, in order to update the neuron bias and weights during training.BP neural networks

iteratively update the bias and weights of neurons in each layer during training in order to bring

the value of the cost function close to 0. By using such an approach, the BP neural network is able

to accurately simulate the nonlinear characteristics of any data, and thus make the most accurate

predictions for the unknown data of the same distribution. The BP neural network is used in the

paper to model the nonlinear features of any data accurately to make the most accurate prediction

of unknown data with the same distribution.

In this paper, the root mean square error (RMSE) of BP neural network on the validation set is

used to evaluate its goodness of �t and prediction accuracy, which is calculated as shown in Eq. (13).

RMSE =

√√√√ 1

n

n∑
i=1

(ŷ(i)− y(i))2, (13)

where n is the number of data in the validation set in the ten-fold cross-validation, and the size is 40.

y(i) and ŷ(i) are the theoretical value of the ith sample in the validation set and the predicted value

of the BP neural network, respectively. Finally, according to the performance of BP neural network



650 zhang and bian

on the validation set, three BP neural network models with di�erent structures (di�erent number of

layers, number of neurons, activation function, etc.) were selected.

The prediction accuracy and stability of the BP neural network will be determined by its perfor-

mance on the test set. In the paper, the R2, RMSE, and MAE of the BP neural network prediction

results are considered to select the optimal model. The value of R2 re�ects the goodness of �t of

the BP neural network model to the global data, and its value range is from 0 to 1, the closer to

0 indicates that the BP neural network �ts the goodness of �t more poorly, and vice versa, the

better.The values of MAE, RMSE re�ect the prediction accuracy of the BP neural network in the

test set, and its value distribution is from 0 to in�nity, and the closer to 0 indicates that the accuracy

is more high, and vice versa, the poorer.

5. Crack detection performance experiment and bridge engineering

application e�ect

5.1. Crack detection performance analysis

In order to further verify the e�ectiveness of the algorithm in this chapter for the improvement of

YOLOv8 network, the algorithm in this paper is compared with the classical networks Faster R-CNN,

R-FCN, E�cientDet, RetinaNet, SSD, YOLOv4, YOLOv7 for the comparison experiments on the

CBP dataset. Among them, Faster R-CNN and R-FCN are classical two-stage detection algorithms,

which have advantages in robustness and accuracy. E�cientDet, RetinaNet, SSD, YOLOv4, YOLOv7

are the mainstream one-stage detection algorithms in recent years, with smaller number of parameters

and faster detection speed.

Eight networks are trained and tested on the CBP dataset. Figure 3 shows the comparison of P-R

curves of di�erent networks in the CBP dataset, the mAP values are E�cientDet, SSD, YOLOv4, R-

FCN, RetinaNet, YOLOv7, FasterR-CNN, and the algorithm in this paper in order from low to high.

The F1 values in descending order are E�cientDet, SSD, YOLOv4, RetinaNet, R-FCN, YOLOv7,

Faster R-CNN, and the algorithm in this paper.

Fig. 3. The CBP data concentrates di�erent network p-r curves

Table 1 shows the performance comparison between this network and other classical networks in

CBP dataset, the mAP and F1 values of this algorithm and Faster R-CNN are the highest, but the
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detection speed of this algorithm is much better than the latter. YOLOv7 has the best detection

speed, which is 1.76f/s higher than the FPS of this algorithm, but the detection accuracy is slightly

inferior to this algorithm. FPS is the number of frames per second, the larger the value, the faster

the algorithm.

Table 1. CBP data centralized classical network performance comparison

Model P/% R/% m AP/% F1/% FPS/(f/s)

Faster R-CNN 92 87.9 90.2 89.8 16.74

R-FCN 87.2 83.4 84.7 85.6 25.8

E�cientDet 78.4 76.1 77 77.4 41.65

RetinaNet 84.9 81.8 83.8 83.7 37.93

SSD 76.5 80.2 79.5 78 40.14

YOLOv4 82.9 84.4 83.2 83.6 38.87

YOLOv7 88.3 84.5 88 86.3 50.11

This method 89.3 91.3 90.3 90 48.35

To verify the superiority of the algorithms in this chapter in deep learning crack detection algo-

rithms, the algorithms in this paper are compared with GT-CNN-1, Improved YOLOv5.1, ST-YOLO,

and Improved YOLOv5.2 algorithms on CBP datasets.The GT-CNN-1 algorithm, a CNN-based

bridge crack recognition algorithm, uses VGG structures and residual blocks instead of Alexnet

structure, which allows the network accuracy to be increased while the false alarm rate is reduced.

The improved YOLOv5.1 algorithm uses a lightweight module combining Shu�eNetv2 and stem-

block as the backbone detection network, introduces the CA attention module, and uses a mixture

of LogSoftmax and NLLLoss as the bounding-box regression loss function, which provides a better

detection e�ect with a faster operation rate.

ST-YOLO algorithm is a crack intelligent detection algorithm based on YOLOv5 network frame-

work, integrating Swin Transformer and convolutional neural network, which has higher recognition

accuracy and better environmental adaptability, and is suitable for actual engineering crack disease

detection tasks.

Fig. 4. Di�erent network p-r curves

The improved YOLOv5.2 algorithm is a bridge crack detection algorithm based on YOLOv5 and
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combined with the C3-B (C3-Bottleneck) module, the path aggregation network PAN, and the loss

function SIOU-Loss, which has better detection accuracy and detection speed.

Figure 4 shows the comparison results of di�erent algorithms of the same type, the mAP values are

GT-CNN-1, Improved YOLOv5.1, Improved YOLOv5 Algorithm.2, ST-YOLO, and the algorithm of

this paper in order from low to high. The F1 values in descending order are GT-CNN-1, Improved

YOLOv5 algorithm.1, Improved YOLOv5 algorithm.2, ST-YOLO, and the algorithm in this paper.

Table 2 shows the performance comparison of this paper's algorithm with other excellent networks,

and this paper's algorithm performs the best with an accuracy value of 89.6%, which re�ects the

superiority in deep learning crack detection algorithms.

Table 2. The network is compared with other excellent networks

Model P/% R/% mAP/% F1/%

GT-CNN-1 72.6 76 73.9 74.8

YOLOv5.1 76.5 74.3 75.9 75.5

ST-YOLO 89.4 87.4 88.7 88.4

YOLOv5.2 84.8 83 83.5 83.8

This method 89.6 91.1 90.5 90.3

5.2. E�ectiveness of crack detection in bridge engineering

In order to verify the practicality of the detection system, a bridge on the mainline of a city highway

was collected, with a total length of 190.0 m and a total width of 26 m. The cracks of the bridge were

photographed, and the bridge cracks were measured and the measured values were recorded. When

shooting, the crack position is always �xed in the view�nder frame, and as the distance gets farther,

the image is enlarged so that the crack position remains unchanged in the view�nder frame. The

object distance corresponding to the captured image was also recorded in conjunction with a laser

range�nder. Then, the image is inputted into the crack parameter calculation system to calculate

the pixel statistics of the cracks and convert them into physical values. The physical values obtained

from the calculation are recorded as measured values and compared with the measured values from

the detection system in this paper to evaluate the measurement accuracy of this system in real

situations.

The cracks are detected and categorized to obtain the crack parameter values in terms of actual

length. In order to verify the practicality of the system built in this chapter, the detection results of

10 crack images are randomly selected in this subsection, and their detection results are compared

with the actual values respectively, and the comparison results are shown in Table 3. Among them,

the crack numbered 1 has the longest length and the crack numbered 9 has the widest maximum

width of 1.249 mm.

In order to describe more intuitively the error between the detection value and the actual value

obtained by using the above method, the absolute di�erence between the maximum width, the

average width and the length of the cracks is calculated and plotted as a graph, and the absolute

di�erence comparison results are shown in Figure 5, and the �uctuation amplitude of the calculation

error of crack length is bigger than that of the maximum width and the average width, but the error

of the crack width is not more than 0.1mm, and that of the crack length is not more than 20mm.

20mm, the detection comparison results show that the visualization system built in this chapter can

meet the practical application of bridge crack detection.
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Table 3. Bridge fracture visualization system detection

Fracture number Crack maximum width Fracture mean width Fracture length

Detection value/mm Measured value/mm Detection value/mm Measured value/mm Detection value/mm Measured value/mm

1 0.545 0.538 0.522 0.506 681.301 674.798

2 0.836 0.793 0.822 0.801 429.301 438.501

3 1.042 0.99 0.982 0.945 112.601 108.398

4 0.796 0.759 0.755 0.741 207.497 203.901

5 0.315 0.331 0.27 5.145 672.201 658.011

6 0.25 0.236 0.205 0.199 342.502 361.301

7 0.71 0.719 0.683 0.702 268.401 284.898

8 0.905 0.881 0.858 0.823 194.703 185.998

9 1.249 1.195 0.974 0.996 326.901 319.197

10 0.264 0.243 0.241 0.229 574.803 561.805

Fig. 5. Absolute di�erence

6. BP neural network application results analysis

6.1. Bridge crack damage criteria and assessment

This paper applies the proposed crack detection method for bridge crack damage assessment to check

the performance and utility of the method. This paper adopts the quantitative assessment criteria for

bridge crack cracking in the Technical Speci�cation for Detection and Assessment of Urban Bridges

issued by the Ministry of Housing and Urban-Rural Development of the People's Republic of China,

and divides the bridge crack damage into four grades, which takes into account the length and width

of the cracks, as well as the development of the cracks and other factors. The four grades are intact,

slight, serious and dangerous, and the quantitative criteria for their assessment are crack width less

than or equal to 1.0mm respectively. Crack width greater than 1.0mm and less than 2.0mm. Crack

width greater than 2.0mm. Crack width greater than 2.0mm.

Speci�cally, cracks 1, 2, 4, 5, 6, 7, 8, and 10 were rated as minor damage levels. Although these

cracks show some degree of deterioration, they are currently in a relatively stable condition according

to the assessment and pose a minor impact on the tra�c safety of the bridge. Regular monitoring

and inspection is recommended for these slightly damaged cracks to ensure that the cracks do not

extend further. When cracks are found to have a tendency to expand or reach a certain level, the

necessary maintenance and repair works should be carried out in a timely manner. On the other

hand, the technical condition of Cracks 3 and 9 is assessed to be at a severe level of damage, with

detection values for the maximum width of the cracks of 1.042 mm and 1.249 mm, respectively.These

cracks have a deeper level of damage, and although the damage develops at a slower rate, if left
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unchecked, they may pose a greater risk to pedestrian safety and vehicular tra�c. Therefore, key

monitoring measures need to be taken for these severely damaged cracks to keep a close watch on

their development. Targeted repairs to these cracks are recommended in the short term to prevent

further deterioration of the damage and to ensure the structural safety and service life of the bridge.

6.2. BP neural network training results

The results of the distribution of the error rates show that there is not a simple linear relationship

between the neural network structure and the error rates, which further illustrates the necessity of

extensively exhausting their combined datasets when making hyperparameter selections. Of all the

hyperparameter combinations, the neural network with the lowest error rate is the one with the

number of neurons of 8 and 9 for Layer1 and Layer2, respectively. With this determination of the

parameters of the neural network, there are still training-related hyperparameters that need to be

optimized so that the prediction performance of the neural network can be further improved on this

basis. The hyperparameters in this part include: learning rate, activation function, and training

algorithm.

Since the loss function is directly related to the performance of the �nal model, the lower value

of the loss function indicates the better performance of the neural network. The performance of the

neural network on the training set and validation set during the training process is shown respectively,

and it should be noted that the termination condition is to reach 1000 Epochs or the loss function

of the neural network has reached the minimum value in 10 adjacent Epochs.

Figures 6-8 correspond to the history of the loss function values with the number of iterations

for di�erent learning rates, activation functions, and training algorithms, respectively. According to

the traversal results of di�erent parameters, the optimal combination of hyperparameters is �nally

selected, with 0.01 for the learning rate, Sigmoid function for the activation function and GDX

algorithm for the training algorithm.

The neural network with the optimal combination of hyperparameters obtained is trained and the

variation of the loss function is shown in Figure 9. During the training process, the performance

of the neural network is close on the training set as well as the validation set, indicating that the

generalization ability of the model is good. The results of the calculation of the indicators of the BP

neural network are shown in Eqs (14) to (17).

Fig. 6. Loss function of di�erent learning rate
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Fig. 7. Function of di�erent activation function changes

Fig. 8. The loss function of di�erent training algorithms

Fig. 9. Loss function of optimal superparametric combination

accuracy =
6 + 3 + 3 + 4 + 8

26
= 92.3%, (14)

precision =
85.7% + 100% + 75% + 100% + 100%

5
= 92.1%, (15)

recall =
100% + 75% + 100% + 80% + 100%

5
= 91.0%, (16)
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F1− score =
2× 92.1%× 91.0%

(92.1% + 91.0%)
= 91.5%. (17)

Comparing the calculation results of Random Forest, Adaboost and BP neural network as shown

in Table 4, it can be found that the method based on BP neural network performs optimally in

various performance indexes, in which the accuracy rate reaches 92.6%, and the multidimensional

damage assessment of civil engineering can be realized by using BP neural network.

Table 4. Machine learning algorithm performance indicators

Accuracy/% Precision/% Recall/% F1/%

Random forest algorithm 84.3 84.5 86.3 86.1

Adaboost algorithm 91.3 87.9 83.2 85.3

Bp neural network 92.6 93.6 91.7 93.2

7. Conclusion

This paper applies deep learning vision technology to civil engineering crack detection. Aiming at

the needs of crack detection on the surface of wood engineering, the crack detection model based on

YOLOv8 is designed, and the damage degree of the crack is evaluated using BP neural network.

The recognition network of this paper's crack detection method is compared with similar algorithms

and di�erent classes of algorithms in the CBP dataset, and the performance of this paper's algorithm

is the most excellent, and among the same type of algorithms, this paper's algorithm has the highest

mAP value and F1 value scores of 90.5% and 90.3%, respectively, and its accuracy value reaches

89.6%, which re�ects the superiority of this paper's algorithm in crack detection algorithms.

The absolute di�erence between the maximum width, average width and length of the cracks shows

that the error of the width of the cracks is not more than 0.1mm, and the error of the length is not

more than 20mm, and the comparison of the absolute di�erence shows that the model in this paper is

able to e�ectively deal with the interference of the complex background, accurately detect the bridge

cracks, and meet the practical application of the crack detection in civil engineering.

The optimal parameter combination of BP neural network is determined through experiments,

the learning rate is 0.01, the activation function and training algorithm are Sigmoid function and

GDX algorithm, respectively.The method of BP neural network is compared with Random Forest

and Adaboost on various performance indexes, and the three indexes are all optimal, in which the

accuracy rate reaches 92.6%.
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