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abstract

The minimum dominating set problem asks for a dominating set with minimum size. First, we deter-

mine some vertices contained in the minimum dominating set of a graph. By applying a particular

scheme, we ensure that the resulting graph is 2-connected and the length of each formed induced cy-

cle is 0 mod 3. We label every three vertices in the induced cycles of length 0 mod 3. Then there is a

way of labeling in which the set of all labeled vertices is the minimum dominating set of the resulting

graph, and is contained in the minimum dominating set of the original graph. We also consider the

remaining vertices of the minimum dominating set of the original graph and determine all vertices

contained in the minimum dominating set of a graph with maximum degree 3. The complexity of

the minimum dominating set problem for cubic graphs was shown to be APX-complete in 2000 and

this problem is solved by our arguments in polynomial time.
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1. Introduction

This paper takes the minimum dominating set problem and aims to determine the minimum dom-

inating set of a cubic graph. A cubic graph is a type of graph where every vertex has degree 3. A

dominating set of a graph G is a set S of vertices of G such that every vertex v of G is either in S

or adjacent to a vertex of S. A minimum dominating set is a dominating set with minimum size.

Proposition 1.1. [2] A graph is 2-connected if and only if it can be constructed from a cycle by

successively adding H-paths to graphs H already constructed.

First, we determine some vertices contained in the minimum dominating set of a graph. By

applying a particular scheme, we ensure that the resulting graph is 2-connected and the length of
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each formed induced cycle is 0 mod 3. The scheme has been relaxed from the published paper [3].

We label every three vertices in the induced cycles of length 0 mod 3. Then there is a way of labeling

in which the set of all labeled vertices is the minimum dominating set of the resulting graph, and

is contained in the minimum dominating set of the original graph. We also consider the remaining

vertices of the minimum dominating set of the original graph and determine all vertices contained in

the minimum dominating set of a graph with maximum degree 3.

The complexity of the minimum dominating set problem for cubic graphs was shown to be APX-

complete [1] and this problem is solved by our arguments in polynomial time, which implies that all

NP-complete problems are contained in P, but does not claim that P = NP in general.

Figure 1 shows an example of the minimum dominating set of a graph with maximum degree 3

derived by the method in this paper.

Fig. 1. A graph with maximum degree 3. The added edges are shown with dashed lines. The set of black or grey

vertices is the minimum dominating set of the graph

2. Notation

In this paper, a graph G is �nite, undirected, and simple with the vertex set V and edge set E.

We follow the notations presented in [2]. For a vertex v ∈ V (G), the open neighborhood, denoted

by NG(v), is {u ∈ V (G): uv ∈ E(G)}, also for a set W ⊆ V (G), let NG(W ) =
⋃

v∈W NG(v) and

NG[W ] = NG(W ) ∪ W . A dominating set X ⊆ V (G) is such that NG[X] = V (G). A minimum

dominating set, called a d-set, is a dominating set with the minimum size. X-3-path is a path that

has labels on the vertices so that the distance between the labels is 3 if the length of the path is at

least 2, otherwise X-3-path is a path of length 1 that has at most one label on the vertices. Two

cycles C1 and C2 are said to be connecting without seams if X-3-paths can be assigned to C1 and C2

as C1 ∩ C2 is one X-3-path.

3. Main results

We consider a connected graph G, otherwise consider each component one by one. We introduce the

construction scheme K as follows.
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K: Input a connected graph G.

(1) Let G0 = G and k = 0.

(2) If there exists a cut vertex in Gk, then proceed as follows. Let v be the cut vertex in Gk. For

every pair of components C1 and C2 of Gk − v and for every pair of vertices v1 ∈ C1 ∩ NGk
(v) and

v2 ∈ C2 ∩NGk
(v), add an edge v1v2 to Gk. Increase k by 1.

(3) Repeat (2) while they occur.

(4) Find an induced cycle in Gk.

(4-1) If it is an induced cycle of length 0 mod 3, assign X-3-path to it. Increase k by 1.

(4-2) If it is an induced cycle of length 2 mod 3, then proceed as follows. Let D2 be the induced

cycle of length 2 mod 3. Take a 4-path Q ⊆ D2, and set Q = w1w2w3w4. Add three edges

w1w3, w2w4, and w1w4 to Gk. Assign X-3-paths to the induced cycles connecting without seams in

D2 + w1w3 + w2w4 + w1w4 (say the subgraph (a)). Increase k by 1.

(4-3) If it is an induced cycle of length 1 mod 3, then proceed as follows. Let D1 be the induced

cycle of length 1 mod 3. Take a 4-path Q ⊆ D1, and set Q = w1w2w3w4. Add two edges w1w3 and

w2w4 to Gk. Assign X-3-paths to the induced cycles connecting without seams in D1+w1w3+w2w4

(say the subgraph (b)). Increase k by 1.

(5) Find a shortest path P between two vertices v1 and v2 on the previously assigned X-3-path

in Gk where X-3-path is not assigned to v̊1P v̊2. Let P
′ be the previously assigned X-3-path with v1

and v2 in Gk.

(5-1) If it forms an induced cycle of length 0 mod 3 with v1P
′v2 in Gk, then proceed as follows.

Let D0 be the induced cycle of length 0 mod 3. Assign X-3-path to D0. Increase k by 1.

(5-2) If it forms an induced cycle of length 2 mod 3 with v1P
′v2 in Gk, then proceed as follows.

Let D2 be the induced cycle of length 2 mod 3. Take a 4-path Q ⊆ D2, and set Q = w1w2w3w4.

Add three edges w1w3, w2w4, and w1w4 to Gk. Assign X-3-paths to the induced cycles connecting

without seams in D2 + w1w3 + w2w4 + w1w4 (say the subgraph (a)). Increase k by 1.

(5-3) If it forms an induced cycle of length 1 mod 3 with v1P
′v2 in Gk, then proceed as follows.

Let D1 be the induced cycle of length 1 mod 3. Take a 4-path Q ⊆ D1, and set Q = w1w2w3w4. Add

two edges w1w3 and w2w4 to Gk. Assign X-3-paths to the induced cycles connecting without seams

in D1 + w1w3 + w2w4 (say the subgraph (b)). Increase k by 1.

(6) Repeat (5) while they occur.

(7) Return the resulting graph Gk.

Let K(G) be a graph constructed by applying K to G. Note that K(G) is not unique and

constructed from G arbitrarily. By the scheme, K(G) is 2-connected with V (G) = V (K(G)) and

E(G) ⊆ E(K(G)), and all edges in K(G) should be covered by at least one set of X-3-paths but

may be covered by other set of X-3-paths with the rotation of labels.

Remark 3.1. Let X be a dominating set of G. Every subset D ⊆ X is a d-set of G[NG[D]] if and

only if X is a d-set of G.

Consider labeling vertices by assigning X-3-paths to the induced cycles of length 0 mod 3 con-

necting without seams in K(G) (Figure 2). Note that certain induced cycles are not counted for the

labeling, and have as few labeled vertices as possible.

Proposition 3.2. (i) For every labeling, the set of all labeled vertices is a minimal dominating set of

K(G). In addition, by selecting the �rst vertex to label, the number of the remaining labeled vertices
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is uniquely determined. (ii) For at least one labeling, the set of all labeled vertices is a d-set of K(G).

Fig. 2. Labeling vertices on 0 mod 3 cycles connecting without seams

Proof. Since every edge in K(G) is covered by X-3-path, for every labeling, the set of all labeled

vertices is an independent dominating set of K(G), that is, a minimal dominating set of K(G). After

selecting the vertex to label �rst, if there are multiple ways to label vertices during the labeling

process, those vertices are interchangeable and equivalent. Indeed, those vertices are two adjacent

vertices with degree 3 in K4 − e ⊆ K(G) for some e ∈ E(K4). Thus, the number of the remaining

labeled vertices is uniquely determined. Therefore, the statement (i) holds. By Remark 3.1, the

statement (ii) obviously holds.

Let Y be a d-set of K(G) that is obtained by labeling vertices. Let Y be the set of all Y . For

Y1, Y2 ∈ Y , if Y1 ∩ Y2 ̸= ∅ and Y1 \ Y2 has a cut vertex in G, then let Y be Y \ {Y2}. Repeat this
operation while they occur and let A = Y . By the de�nition of K(G), a cut vertex in G should be

labeled rather than its adjacent vertex as we see in Lemma 3.4. For A1, A2 ∈ A , if A1 ∩ A2 ̸= ∅,
then let A1 and A2 be equivalent and denote A1 ≡ A2.

Lemma 3.3. A /≡ is determined in polynomial time and |A /≡ |≤ |V (G)|.

Proof. By the de�nition of K, K(G) is constructed from G in polynomial time. By the proof of

Proposition 3.2 and the de�nition of A /≡, A /≡ is determined in polynomial time and |A /≡ |≤
|V (G)|.

Let X be a d-set of G. Let X be the set of all X.

Lemma 3.4. For some B ∈ A /≡ and for each Y ∈ B, there exists X ∈ X such that Y ⊆ X.

Proof. Let B ∈ A /≡. Consider labeling vertices in G ⊆ K(G). By the de�nition of K(G) and

B, it su�ces that considering the subgraph (a) or (b). For any Y1, Y2 ∈ B such that Y1 ̸= Y2,

NK(G)[Y1 \ Y2] = NK(G)[Y2 \ Y1]. If Y1 is a dominating set of G, then for some X ∈ X , X = Y1.

Now, NG[Y2 \ Y1] \ NG[Y1 \ Y2] ⊆ NG[Y1] = V (G). By considering the subgraph (a), we have

NG[Y1 \ Y2] \ NG[Y2 \ Y1] ⊆ NG[Y2]. Hence, NG[Y1] = NG[Y2]. Suppose that for all Y ∈ A , Y is

not a dominating set of G. Now, each Y1 and Y2 is not a dominating set of G. By considering the

subgraph (b), we have NG[Y2 \ Y1] \ NG[Y1 \ Y2] ̸⊆ NG[Y1] and NG[Y1 \ Y2] \ NG[Y2 \ Y1] ̸⊆ NG[Y2].

Hence, NG[Y1] \ NG[Y2] ̸= ∅ and NG[Y2] \ NG[Y1] ̸= ∅. Let B1,B2 ∈ A /≡ with B1 ̸= B2. For any
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Y3 ∈ B1 and any Y4 ∈ B2, since Y3 ∩ Y4 = ∅ and each Y3 and Y4 is not a dominating set of G, it

follows that NG[Y3] \ NG[Y4] ̸= ∅ and NG[Y4] \ NG[Y3] ̸= ∅. Now, Y is a d-set of G[NG[Y ]]. Let W

be a subset of V (G) \ Y with minimum size such that Y ∪W is a dominating set of G. By Remark

3.1, Y ∪W is a d-set of G.

Suppose that Y is a d-set of K(G) that satis�es Lemma 3.4.

Lemma 3.5. Let G′ be a graph obtained by deleting Y from, and adding edges to all vertex pairs

of
⋃

y∈Y NG(y) to G. Let Z1 be a d-set of G′. Let G′′ = G − NG[Y ] and Z2 be a d-set of G′′. If

|Z1|< |Z2|, then Y ∪ Z1 is a d-set of G, and Z1 ∩
⋃

y∈Y NG(y) ̸= ∅. If |Z1|≥ |Z2|, then Y ∪ Z2 is a

d-set of G.

Proof. Obviously, Y ∪ Z2 is a d-set of G if |Z1|≥ |Z2|. For a set A ⊆ V (G), suppose that Y ∪ A is

a d-set of G. Let A′ = A \NG[Y ]. Suppose that |Z1|< |Z2|. Now, A′ is not a dominating set of G′′,

and A ∩
⋃

y∈Y NG(y) ̸= ∅. By the de�nition of G′, it su�ces that A = Z1.

Theorem 3.6. The d-set of a graph G with maximum degree 3 is determined in polynomial time.

Proof. By Lemma 3.4, for some X ∈ X , Y ⊆ X. Let G be a graph with maximum degree 3 and

let G0 = G. Let G1 be constructed by deleting Y , and for every pair w1, w2 ∈
⋃

y∈Y NG0(y), adding

an edge w1w2 to G0. Let G2 = G0 − NG0 [Y ]. Let W1 be a d-set of G1 and W2 be a d-set of G2.

Since G0 is a graph with maximum degree 3 and by the de�nition of G2, each component of G2 is

a path or cycle, or G2 = ∅. Indeed, each component of G2 does not have a vertex of degree 3 in its

subgraph. Thus W2 is determined in polynomial time. Suppose that |W1|< |W2|. Let Y1 be a d-set

of K(G1) that satis�es Lemma 3.4. By the de�nition of Y1, it su�ces that Y1∩
⋃

y∈Y NG0(y) ̸= ∅. Let
G3 be constructed by deleting Y1, and for every pair w1, w2 ∈

⋃
y∈Y1

NG1(y), adding an edge w1w2 to

G1. Let G4 = G1 − NG1 [Y1]. Let W3 be a d-set of G3 and W4 be a d-set of G4. By the de�nition

of G4, each component of G4 is a path, or G4 = ∅. Thus W4 is determined in polynomial time.

Suppose that |W3|< |W4|. Let Y2 be a d-set of K(G3) that satis�es Lemma 3.4. By the de�nition

of Y2, it su�ces that Y2 ∩
⋃

y∈Y1
NG1(y) ̸= ∅. Let G5 be constructed by deleting Y2, and for every

pair w1, w2 ∈
⋃

y∈Y2
NG3(y), adding an edge w1w2 to G3. Let G6 = G3 −NG3 [Y2]. Let W5 be a d-set

of G5 and W6 be a d-set of G6. By the de�nition of G6, V (G6) is independent, or G6 = ∅. Thus

W6 = V (G6). Suppose that |W5|< |W6|. Let Y3 be a d-set of K(G5) that satis�es Lemma 3.4. By

the de�nition of Y3, it su�ces that Y3 ∩
⋃

y∈Y2
NG3(y) ̸= ∅. Now, Y3 is a dominating set of G5 and

so it su�ces that W5 = Y3. By Lemma 3.3, Y3 is determined in polynomial time. By Lemma 3.5,

if |W5|< |W6|, then it su�ces that W3 = Y2 ∪ W5, otherwise, it su�ces that W3 = Y2 ∪ W6. By

Lemma 3.3, Y2 is determined in polynomial time. By Lemma 3.5, if |W3|< |W4|, then it su�ces

that W1 = Y1 ∪ W3, otherwise, it su�ces that W1 = Y1 ∪ W4. By Lemma 3.3, Y1 is determined

in polynomial time. By Lemma 3.5, if |W1|< |W2|, then it su�ces that X = Y ∪ W1, otherwise,

it su�ces that X = Y ∪ W2. By Lemma 3.3, Y is determined in polynomial time. Thus, X is

determined in polynomial time. The proof is completed.
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