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abstract

To counter threats to low-orbit communication satellites from hacker attacks and spectrum interfer-

ence, this study develops an adversarial sample detection model using a variational self-encoder and

a fast region-based convolutional network for spectrum interference detection. The proposed model

achieves 97.68% accuracy and an F1 score of 96.86% in intrusion tra�c detection, with AUC values

above 95% for various network attacks. For single-tone interference, it attains 98.65% accuracy,

96.21% recall, and 93.14% precision, converging within 200 iterations with an average recognition

accuracy of 95.47%. These results con�rm the model's ability to detect adversarial threats and

interference, enhancing satellite communication security.

Keywords: low-orbit satellites, environmental threats, adversarial samples, variational self-encoders,

spectral interference

1. Introduction

In LEO satellite communication systems, the ground electromagnetic spectrum environment faced

by satellites is quite complex due to the low orbital altitude and fast operating speed. In practice,

LEO satellite communication systems mostly use the UHF band or L band, which are now very
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crowded, and there are also unauthorized military applications, amateur radio applications and

possible malicious interference [11, 5, 19, 12]. In addition to this, the actual utilization e�ciency

of some of the frequency bands is extremely low if the percentage of time the bands are actually

occupied is de�ned as their utilization e�ciency [2, 14]. The premise and foundation of cognitive

radio lies in how to perceive and predict the complex spectrum environment. On the one hand, the

communication system needs to perceive the complex spectrum environment, analyze the location

of spectrum nulls, and predict the availability of nulls in the future [4, 21, 7, 6]. On the other hand,

in order to verify the actual availability of the system, the actual spectrum environment needs to

be simulated, and the spectrum environment is further simulated and generated by predicting the

interference [8, 3, 18, 1].

Spectrum sensing can e�ciently acquire spectrum posture data thus improving spectrum utilization

e�ciency, which makes satellite-assisted spectrum sensing an e�ective way to realize spectrum sensing

[20, 16, 15]. However, in the complex electromagnetic environment, the spectrum signal at the

receiving end will inevitably be subject to certain unknown interference, which is re�ected in the

spectrum as interference information [17, 10, 9]. In addition, the probability of signal interference

in real scenarios is relatively large and has many reasons [13]. Therefore, in order to e�ectively

detect the electromagnetic spectrum interference information under the condition of existing a priori

information or a small amount of information is really important for the spectrum sensing results.

In this context, in order to deal with various threats and challenges facing LEO communication

satellites in a more comprehensive way, the study proposes a variational self-encoder (VSE)-based

adversarial sample detection model (ASDM). It also proposes a spectrum interference detection model

based on fast region-based convolutional network (Fast R-CNN). To react quickly to the e�ects of

various threat sources on the operational security of satellites, the research attempts to provide an

e�cient threat detection technique for low-orbit communication satellites. The study is innovative in

that it uses an unbiased teacher model to train the Faster R-CNN, allowing for improved detection

performance during training even with a limited sample set.

2. Modeling of environmental threat detection for low-orbit

communication satellites

To ensure the stability and reliability of low-Earth orbit communication satellites, it is crucial to

detect environmental threats. To this end, the study will combine variational autoencoders and

residual networks to build an AS detection model based on variational autoencoders. And use an

unbiased teacher model to train Faster R-CNN and build a spectrum interference detection model

based on Faster R-CNN.

2.1. VSE-based adversarial sample detection model

Adversarial sample attack refers to the attacker modifying the data in the communication signal of a

low-orbit communication satellite so that it is maliciously manipulated during transmission, thereby

a�ecting the accuracy and security of communication. It not only a�ects the real time and reliability

of satellite communication, but may also leak sensitive information or cause incorrect instructions

to be executed, posing a serious threat to national security and social stability. The study gathers

network tra�c data from communication satellites during normal operation and under cyberattack,

respectively, in order to identify the ASs. Depending on the volume of data, the network tra�c data



low-orbit satellite signal interference detection based 503

is transformed into picture format, and the AS generation algorithm creates the ASs in order to train

the model. Eq. (1) displays the classi�cation loss of the AS generation algorithm.

max
∥δ∥p≤∈

− log D̂(x+ δ)[y], (1)

In Eq. (1), D̂ denotes a pre-trained classi�er, x denotes a clean image labeled y, δ denotes the

perturbation and p usually takes the value of 1 or 2. VSE is a generative model that is able to learn

potential representations of input data by combining the ideas of deep learning and probabilistic

graphical models. The study employs VSE as a generator G to capture category redundant images

G(x). Then, category related images x−G(x) are sent to the discriminator. Subsequently, the one

containing category core information x−G(x) is passed to the discriminator D for classi�cation. The

study uses wide residual networks (Wide ResNet) as a discriminator. ResNet is a deep convolutional

neural network (CNN) structure, and its core idea is to realize a deeper network structure (NS) by

introducing residual blocks. However, the jump connection of ResNet also leads to only a small

number of residual blocks learned useful information, so Wide ResNet is born. Wide ResNet reduces

the problem of reduced feature reuse that can occur in deep residual networks by introducing more

convolutional kernels in the residual blocks and improves the training speed and performance of the

model by increasing the width of the network. A comparison of the residual blocks of traditional

ResNet and Wide ResNet is shown in Figure 1.

(a) ResNet (b) Wide ResNet

(c) Wide-dropout

Fig. 1. Residual blocks of wide ResNet and traditional ResNet

In Figure 1, Figure 1a is the most basic ResNet structure. Figure 1b is the wide residual block

structure. Figure 1c is the WideResNet structure with dropout layer added to the ResNet structure.

The primary task of the objective function of the proposed intrusion tra�c against sample detection

method of the study is to reconstruct x in the generation process of VSE, as shown in Eq. (2).

L = τK (qϕ(l |x) ∥p(l))− Eqϕ(l|x ) log pθ(x |l ). (2)

In Eq. (2), l denotes the latent factor, qϕ(l |x) denotes the posterior distribution, pθ(x |l ) denotes
data likelihood, τ denotes the hyperparameter, which is used to balance the reconstruction error and
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the regularization of the latent space, K denotes KL scatter, used to measure the di�erence between

two probability distributions and p(l) denotes prior distribution. The cross-entropy loss function

(CELF) is used in the study, as shown in Eq. (3).

J = −
∑

y log y∗. (3)

In Eq. (3), y represents the true category, and y∗ represents the predicted category. To summarize,

the �ow of decoupling network intrusion tra�c picture categories is shown in Figure 2.

Fig. 2. Flowchart for decoupling tra�c images

In Figure 2, category decoupling achieves the recovery of the original image by separating the input

ASs into A(x) and x − A(x). Among them, A(x) contains category-related information useful for

classi�cation. The adversarial perturbations generated by the network attack are mainly concentrated

on x−A(x), revealing the main image region of interest for the classi�er. The proposed VSE-based

ASDM �rst extracts the feature map (FM) of x−A(x) using category decoupling. and computes the

multiple local intrinsic dimensions between the FMs of the ASs and the normal samples, denoted as

matrix m. The multiple local intrinsic dimensions are a further development of the local intrinsic

dimensions. Let the continuous space of a nonnegative distance function d be R. The distribution

of distances between any point c and other points in R is a random variable D ∈ [0,+∞). If the

cumulative density function C(d) of d is positive and continuously di�erentiable when d is greater

than 0, then the intrinsic dimension of the point c, as shown in Eq. (4).

IDD(d)
∆
= lim

ε→0

logCD ((1 + ε)d)− logCD(d)

log(1 + ε)
. (4)

Finally, matrix m is utilized to train random forest (RF) and the analysis results of di�erent

intrinsic dimensions are fed into the RF model for binary classi�cation. RF is a machine learning

algorithm that refers to a classi�er that utilizes multiple trees to train and predict samples. Figure

3 displays the RF model's schematic diagram.

The proposed VSE-based ASDM decouples clean samples and ASs by category during the training

process. Moreover, the decoupled samples are used to train the RF model to realize the detection of

ASs.
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Fig. 3. Schematic diagram of RF model

2.2. Faster R-CNN-based model for spectrum interference detection

In addition to cyber-attacks, spectrum interference is also an important factor that threatens the

normal operation of LEO communication satellites. Therefore, the research will build the spectrum

interference detection model. Faster R-CNN is a deep neural NS for object detection, and the main

innovation is the faster object detection speed achieved by adding region proposal network (RPN),

which enables Faster R-CNN to be trained end-to-end. Therefore, the study uses Faster R-CNN for

spectrum interference detection. The NS of Faster R-CNN consists of four main components: shared

neural network (SNN), RPN, region of interest (RoI) and classi�cation. Figure 4 depicts Faster

R-CNN's core architecture.

Fig. 4. Structure diagram of Faster R-CNN

Figure 4 displays the FM of the picture extracted by the SNN, which consists of 4 pooling layers, 13

relu levels, and 13 conv layers. Using Softmax to ascertain whether the anchor points are foreground

or background, RPN is utilized to create the target region. To determine the target FMs, ROI gath-

ers and compares the input FMs and target regions. to maximize the model's prediction accuracy by

modifying the Faster R-CNN model's parameters and weights. The study uses the unbiased teacher

model to train the Faster R-CNN. The unbiased teacher model is a deep learning model training

framework that can be seamlessly inserted into existing deep learning work�ows, e�ectively mitigat-

ing potential biases in the model. Figure 5 depicts the unbiased instructor model's organizational

structure.
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Fig. 5. The structure of unbiased teacher model

The study set the RPN's loss to the CELF, but the RPN simply �ltered out target frames that

are judged to be background. With less training data, the CELF causes the prediction results to

be biased towards a larger number of target categories. Therefore, the study sets the loss of RoI to

Focal Loss. To help to enable the model to focus more on the di�cult-to-split samples, focal Loss is

a loss function (LF) that was created to address the issues of positive and negative sample imbalance

as well as hard and easy sample imbalance in the target identi�cation task. Focal loss is shown in

Eq. (5).

F = −(1− P )δ log(P ). (5)

In Eq. (5), P denotes the probability of predicting a particular category and δ denotes the

hyperparameter. In Eq. (5), when the P of the target sample is larger, (1−P ) is close to 0, then the

weight of this target is smaller when calculating the loss, and vice versa, the weight is not a�ected.

The larger the hyperparameter δ is the greater the degree of change. When it is 0, Focal loss is

equivalent to the CELF. The Fast R-CNN model's total loss consists of the following: regression

losses for RPN reference frames, RPN classi�cation, RoI target frames, and RoI classi�cation. using

Fast R-CNN by reducing the multi-task loss objective function. Eq. (6) illustrates the image's LF.

Loss(Pa, ya) =
1
Nc

∑
a Lossc(Pa, P

∗
a )+κ 1

Nr

∑
a P

∗
aLossr(ya, y

∗
a). (6)

In Eq. (6), a denotes the index of the anchor, Pa denotes the predicted probability that anchor

is a target, Lossc denotes classi�cation loss, κ represents the parameter, P ∗
aLossr denotes regression

loss, ya denotes coordinate parameter, y∗a denotes the information associated with having a target

anchor and P ∗
a is 0 if the anchor is not a target and 1 if it is a target. Therefore, the �nal loss of

Fast R-CNN model training is the sum of RPN loss and RoI loss. The �nal optimization goal of the

model is to minimize the �nal loss.

3. Result

3.1. E�ectiveness analysis of the adversarial sample detection model

To exam the performance of VSE based ASDM, the study is tested using CIC-IDS2017 dataset.

The CIC-IDS2017 dataset is created by the Canadian Institute of Cybersecurity and is a network

intrusion detection dataset that includes benign and the latest common attacks, similar to real-world

data. The collection period starts on Monday, July 3rd, 2017 and ends on Friday, July 7th, 2017,

totaling 5 days. Monday only includes normal tra�c, while the other days include network attacks

such as brute force FTP, brute force SSH, DoS, Heartbleed, web attacks, penetration, botnets, and
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DDoS. The experiments are conducted in Windows 11 environment with Intel(R) Xeon(R) Gold

6226R processor and 64GB of RAM. The proposed model is compared with three common intrusion

tra�c detection models, namely, CNN, multilayer perceptron (MLP) and auto-encoder (AE). The

results of accuracy and F1 value comparison of the four models in intrusion tra�c detection are

shown in Figure 6. In Figure 6a, the proposed ASDM has the highest detection accuracy of 97.68%

compared to the other three models. This is followed by the MLP model with a detection accuracy

of 92.51%. In Figure 6b, the proposed ASDM still has the highest F1 value of 96.86%. The �ndings

demonstrate that the suggested ASDM performs better in terms of intrusion tra�c detection.

(a) Accuracy (b) F1 value

Fig. 6. Comparison of detection performance of four models in intrusion tra�c

The detection accuracies and F1 values of the above four models in normal tra�c are shown in

Figure 7. In Figure 7a, the detection accuracy of the proposed antagonistic sample detection model

is still higher than the other three models, which is 95.63%. In Figure 7b, the proposed ASDM has

the highest F1 value of 95.87%. The outcomes exhibit that the VSE-based ASDM still has a good

detection e�ect in the normal �ow detection task.

(a) Accuracy (b) F1 value

Fig. 7. Comparison of detection performance of four models in normal tra�c

The detection accuracy of the above four models under the four antagonistic sample generation

methods of fast gradient symbolic method (FGSM), basic iterative method (BIM), projection gradient

descent (PGD) and Carlini-Wagner (CW) attack are shown in Table 1. Compared with the other

three models, the proposed ASDM has the highest detection accuracy under all four AS generation
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methods, FGSM, BIM, PGD, and CW, which are 90.16%, 89.65%, 96.84%, and 94.62%, respectively.

The outcomes display that the ASDM has higher discrimination accuracy in AS attacks.

Table 1. Comparison of adversarial sample detection results using di�erent attack methods

Model
Adversarial sample generation method

FGSM BIM PGD CW

CNN 85.93% 83.64% 88.46% 86.57%

MLP 87.95% 85.39% 90.16% 89.95%

AE 85.98% 83.49% 89.65% 86.98%

Our 90.16% 89.65% 96.84% 94.62%

To verify the practical application e�ect of the VSE-based ASDM, the study collects a total of

94,025 network attack tra�c samples in a low-orbit satellites communication network. It contains

three typical network attacks, DDoSA, secure shell (SSH) blasting and port scanning, and 22,138

normal tra�c samples as experimental data. Based on an 8:2 ratio, it is split into training and

test sets. The receiver operating characteristic (ROC) curves of the proposed model under di�erent

network attacks are shown in Figure 8. The proposed ASDM has better detection results in all three

typical network attacks, and the area under the curve (AUC) for detecting both normal and intrusion

tra�c is above 95%. The outcomes demonstrate the practical applicability of the VSE-based ASDM.

(a) DDoSA (b) SSH

(c) port scanning

Fig. 8. ROC curves of models under di�erent network attacks

3.2. E�ectiveness analysis of spectrum interference detection model

For validating the performance of the proposed Fast R-CNN based spectrum interference detection

model, the study uses the dataset constructed for testing. The learning rate, teacher model parameter
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retention rate, iterations, epoch, and the reference frame threshold is set to 0.01, 0.9996, 1000, 300,

and 0.7. The detection e�ectiveness of the proposed model in di�erent interference types is shown in

Table 2. The proposed spectrum interference detection model has the best detection e�ect in single

tone interference detection. The detection accuracy, recall and evaluation precision are 98.65%,

96.21%, and 93.14%, respectively.

Table 2. The detection performance of the model in di�erent types of interference

Interference type Precision/% Recall/% Average precision/%

Tone interference 98.65 96.21 93.14

Polyphonic interference 92.24 90.49 85.15

Linear sweep interference 99.95 97.66 98.67

Pulse interference 87.34 86.17 83.65

Partial noise interference 91.38 90.35 84.98

The detection accuracy curve of the proposed Fast R-CNN-based spectrum interference detection

model on the test set is shown in Figure 9. The proposed spectrum interference detection model

converges at about 200 iterations, and the average recognition accuracy is 95.47%. The outcomes

display that the Fast R-CNN-based spectrum interference detection model has high recognition

accuracy and convergence e�ciency, which is feasible and e�ective.

Fig. 9. Detection accuracy curve

The average precision and recall of the suggested model are compared with those of the YOLOv3

model, YOLOv4 model, and RetinaNet model with the goal to con�rm the superiority of the sug-

gested spectrum interference detection model. Figure 10 presents the �ndings. In Figure 10a, the

average precision rate of the proposed spectrum interference detection model is the highest with

95.68% compared to the other three models. This is followed by the RetinaNet model and the

YOLOv3 model has the lowest average accuracy rate. In Figure 10b, the proposed antisample detec-

tion model still outperforms the other three models in the recall metric, with a recall rate of 91.94%.

The outcomes displays that the proposed spectrum interference detection model of the study has

better interference detection precision and demonstrates certain superiority.
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(a) Average precision (b) Recall

Fig. 10. Comparison of average accuracy and recall of four models

4. Conclusions

Aiming at the environmental threats to the space signals of low-orbit communication satellites, the

study constructed an ASDM based on VSE and a spectrum interference detection model based on

Fast R-CNN. In the intrusion tra�c detection test, the �ndings showed that the suggested ASDM

had the maximum detection accuracy of 97.68% with an F1 value of 96.86%. This was followed

by the MLP model with a detection accuracy of 92.51%. In the normal tra�c detection task, the

proposed ASDM had a detection accuracy of 95.63% and an F1 value of 95.87%. The detection

accuracy of the proposed ASDM was 90.16%, 89.65%, 96.84% and 94.62% under four AS generation

methods, namely FGSM, BIM, PGD and CW, respectively. Its AUC values in three typical network

attacks were above 95%. The proposed spectrum interference detection model had the best detection

e�ect in single tone interference detection. The detection accuracy, recall and evaluation precision

were 98.65%, 96.21% and 93.14%, respectively. It converged at about 200 iterations with an average

recognition accuracy of 95.47%. The proposed spectrum interference detection model had the highest

average precision rate and recall rate of 95.68% and 91.94%, respectively. In summary, the ASDM

and spectrum interference detection model built by the research have better detection performance.

However, the detection model built by the research can only take relevant measures after being

threatened, which has a certain lag. Therefore, in the future research, the satellite environment

security should be further predicted to help the development of defense schemes.
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