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abstract

With the frequent occurrence of global climate change and extreme weather events, meteorological

forecasting technology has gradually become an auxiliary technology for production activities. In

order to improve the quality of meteorological analysis results, a technology utilizing cloud radar

data as the core is proposed. The vertical distribution of water vapor and liquid water in the

atmosphere is detected by a ground-based microwave radiometer. The median �ltering method is

used to further smooth the classi�ed and preliminarily removed re�ectance factor data, and computer

information processing technology is used for data analysis. The experimental results of Taiyuan

ground based remote sensing high altitude detection experiment showed that in the data availability

test, the research method had a data availability rate of 97.3% when the height was 2km in humidity

data. When conducting accuracy analysis of the results, the root mean square error of the relative

humidity pro�le was only 22.0% when the height increased to 12km. This indicates that the research

method can conduct high-quality meteorological analysis and provide assistance for meteorological

forecasting.
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1. Introduction

Meteorological data are of vital importance to our understanding and prediction of weather and

climate, as well as to our response to various weather-related activities. With the continuous devel-

opment of science and technology, the sources of meteorological data are becoming more and more
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diversi�ed, including satellites, radars, ground observatories, sounders, etc. [9, 15, 4, 19]. However,

these di�erent sources of data often have di�erent characteristics and accuracy, in order to under-

stand the meteorological situation more comprehensively and accurately, meteorological data fusion

technology has emerged. Meteorological data fusion is a method of comprehensive processing and

analysis of meteorological information from multiple data sources [1, 21, 13, 7]. Its purpose is to

integrate data from di�erent sources to obtain more complete, more accurate and more representative

meteorological information. The realization of this technique is not simply adding or averaging the

data, but needs to take into account the quality of the data, spatial and temporal resolution, error

characteristics and other factors [14, 6, 22, 10].

Meteorological radar is a major tool used to monitor rainfall and meteorological phenomena.

By observing the radar images, the rainfall situation in each area can be obtained, and the future

meteorological trends can also be analyzed to provide basic data for weather forecasting [17, 3, 18, 8].

The working principle of meteorological radar is to utilize the scattering and re�ection of RF signals,

and by calculating the time, frequency, and phase of the RF signals, we can obtain the re�ected signal

strength and morphological information of each location in the sky [5, 16, 20, 24]. By processing

and analyzing the data from multiple radars, more accurate rainfall and weather trend prediction

results can be obtained. The application of weather radar data is very wide. At present, weather

radar data have been widely used in weather forecasting, hydrological forecasting, transportation,

aerospace, agricultural production and other �elds [11, 12, 23, 2].

In this context, the research attempts to innovatively optimize data sources through data fusion

based on cloud radar data. Then, combining BP neural network for high-quality analysis of me-

teorological conditions, it is expected to provide certain technical support for the meteorological

industry.

2. Methodology

2.1. Design of data collection and quality control methods for meteorological analysis

Accurate meteorological forecasting relies on precise monitoring of the weather system, where key

data collection can help meteorological professionals predict weather trends. However, meteorologi-

cal phenomena vary greatly at di�erent time and spatial scales, making high-resolution monitoring

di�cult. Moreover, there are di�erences in accuracy and types of data collected by di�erent data col-

lection methods. Cloud radar can obtain detailed information about clouds by emitting radar waves

and receiving signals re�ected back from water droplets or ice crystals in the cloud layer. Cloud

radar is one of the core data sources used to construct data collection methods for meteorological

analysis technology. In order to collect more comprehensive meteorological parameters as much as

possible, a comprehensive collection system for meteorological analysis data is established based on

cloud radar, as shown in Figure 1.

As shown in Figure 1, the comprehensive acquisition system established in the study includes

a 35GHz cloud radar, ground-based microwave radiometer, and sounding equipment. The cloud

radar emits radar waves and receives signals re�ected back from water droplets or ice crystals in the

cloud layer, obtaining the vertical structure of the cloud and tracking its development process in real

time. Based on the vertical pro�le information provided by cloud radar, ground-based microwave

radiometers detect the vertical distribution of water vapor and liquid water in the atmosphere, while

sounding equipment calibrates the data from cloud radar and microwave radiometers. The microwave
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radiometer provides continuous time series data, �lling the gap between each launch of the sounding

equipment. However, the data collection equipment itself has noise, and there may also be animals

and suspended solids in the detected area, which may a�ect the quality of the data and require data

quality control. This study uses computers to classify re�ectance factor data in order to eliminate

invalid data. The texture representation of echo intensity is shown in Eq. (1);

Fig. 1. Comprehensive collection system for meteorological analysis data

ITi,j =
N∑
i=1

N∑
j=1

(Ri,j − V PRi) . (1)

In Eq. (1), ITi,j represents the echo intensity texture at time i and height i, Ri,j represents the

re�ectivity factor at time i and height j and V PRi represents the average pro�le of the re�ectance

factor in the time direction. The vertical variation of echo intensity is shown in Eq. (2);

IGi,j =
N∑
i=1

N∑
j=1

(Ri,j − V PRj) . (2)

In Eq. (2), IGi,j represents the change in echo intensity at time i and height j. V PRj represents

the average pro�le of re�ectance factors in the vertical direction. According to the analysis results

of statistical features, data points are removed when their noise characteristics exceed the preset

threshold. The median �ltering method is used to further smooth the classi�ed and preliminarily

removed re�ectance factor data. The median �ltering calculation is shown in Eq. (3);

Rfiltered (x, y) = median {R(x+ i, y + j)} . (3)

In Eq. (3), Rfiltered (x, y) represents the median �ltering result value and (x, y) represents the

median �ltering window. In addition, it is necessary to carry out quality control on the brightness

temperature data, which involves a lot of basic information. A quality control system for brightness

temperature data is constructed, as shown in Figure 2.

As shown in Figure 2, when controlling the quality of brightness temperature data, it is necessary

to combine logical checks, minimum variability checks, precipitation checks, time consistency checks,

and extreme value checks. After each inspection, the data will be assigned a corresponding quality

identi�cation code, indicating the quality status of the data. If any issues are detected at any step,

the data will be marked and enter the error correction process for further correction and processing.

Finally, the revised data is generated and a brightness temperature quality label is generated to
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ensure that the data quality meets the standard. The time consistency check requires calculating

the standard deviation of meteorological elements, as shown in Eq. (4);

σ =

√√√√ 1

n

n∑
i=1

(
dEt − dĒ

)2
. (4)

In Eq. (4), σ represents the standard deviation of meteorological elements and Et represents the

meteorological element values at time t in the time series. After obtaining meteorological data of

su�cient quality, subsequent meteorological analysis can begin.

Fig. 2. Quality control system for bright temperature data

2.2. Meteorological analysis method based on computer data fusion

The atmosphere is a complex nonlinear system. The interactions between its various components can-

not be simply described by linear models, making the construction and optimization of meteorological

prediction models very complex. Moreover, meteorological models usually require a large amount

of computing resources and have very high demands on computing power. Data fusion can improve

the reliability of overall observations by combining multiple sources of data for mutual veri�cation

and correction. BP neural network can e�ectively capture complex nonlinear relationships between

di�erent variables, and automatically optimize their weights through training data to improve data

processing e�ciency and capability. On the basis of computer data fusion, a meteorological analysis

method incorporating BP neural network is proposed. Before conducting meteorological analysis, it

is necessary to determine the conditions for judging meteorological conditions. The relative threshold

of 85% humidity is set as the boundary. Areas above the boundary are considered to have cloud

cover, while areas below the boundary are considered to have no cloud cover. The BP neural network

structure for meteorological analysis based on data fusion is shown in Figure 3.

As shown in Figure 3, the data input end of the network receives regional basic information

collected by cloud radar and other devices. The data output terminal only sets two sets of data,

relative humidity and temperature. The hidden layer is set based on the requirements of the analysis

scenario, and the number of layers is determined by repeatedly combining data. Due to the fact

that temperature data and humidity data belong to di�erent categories of information, the analysis

process of the two types of data is independent of each other. The number of input nodes for the

temperature data section is the sum of ground temperature and humidity pressure nodes, channel

brightness temperature data nodes, and cloud information nodes. The number of input nodes for the

humidity data section is the number of pro�le layers. The number of hidden layer nodes is estimated

using an empirical formula, as shown in Eq. (5):
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ny =
√
0.42ab+ 0.12b2 + 2.54a+ 0.77b+ 0.35 + 0.51. (5)

Fig. 3. BP neural network structure for meteorological analysis

In Eq. (5), ny represents the number of hidden layer nodes, a represents the number of nodes in

the input layer and b represents the number of nodes in the output layer. When transferring data

between the input layer and the hidden layer, the function calculation is shown in Eq. (6):

tan sig (n) =
2

1 + e−2n
− 1. (6)

In Eq. (6), tan sig (n) represents the tan-Sigmoid function and e represents the Napier constant.

The neural relationship between the hidden layer and the input layer is shown in Eq. (7):

Yb = tan sig
L∑

a=1

wabXa +Bb. (7)

In Eq. (7), Yb represents the hidden layer neurons, Xa represents input layer neurons, w represents

the weight between two neurons and Bb represents the bias of hidden layer neurons. The neural

relationship between the output layer and the hidden layer is shown in Eq. (8):

Zc =
M∑
i=1

wbcYb +Bc. (8)

In Eq. (8), Zc represents the output layer neuron and Bc represents the deviation of output layer

neurons. The forward information transmission calculation is shown in Eq. (9):

intm =
n∑

i=1

vimxi. (9)

In Eq. (9), vim represents the input layer information and intm represents the information trans-

mission from the input layer to the output layer. In information backpropagation, weight adjustment

is performed by solving partial derivatives. The forward propagation root mean square error is ex-

panded, as shown in Eq. (10):

Ez =
1

2

1∑
n=1

{[
yn − f2

(
n∑

n=1

wimZm

)]}2

. (10)



308 fu et al.

In Eq. (10), wim represents the intermediate layer information in backpropagation, Zm represents

the last layer of information, Ez represents the forward propagation root mean square error and yn
represents the true output value of the last layer. In order to smoothly operate the meteorological

analysis technology designed for research, the constructed computer model framework includes a

data collection module, a data preprocessing module, a feature engineering module, a model selection

and training module, a model evaluation and validation module, a visualization and result analysis

module, and a deployment and monitoring module. Data collection is the starting point of the entire

process, determining the quality of the foundational data for subsequent analysis. Data preprocessing

and feature engineering ensure that the model is trained using clean and useful data to improve its

accuracy. Model training and evaluation are the core components, ensuring the e�ectiveness of the

selected model through scienti�c selection and evaluation. After completing the model training, the

corresponding meteorological conditions can be obtained through information inversion analysis, as

shown in Figure 4.

Fig. 4. The process of retrieving meteorological condition information

As shown in Figure 4, when conducting speci�c meteorological condition information inversion,

the inversion model data that has undergone data fusion is �rst input. The BP neural network is

trained to establish a mapping relationship from brightness temperature data to temperature and

humidity pro�les. In the inversion stage, the trained BP neural network inputs real-time observation

data into the model. The model predicts temperature and relative humidity pro�les based on these

data. By comparing with actual sounding data, the e�ectiveness of the inversion results is evaluated.

The optimized parameter details are used as the �nal meteorological analysis technique to analyze

the input data for meteorological analysis.

3. Result

3.1. Meteorological analysis technology operational performance testing

In order to analyze the operational performance of the meteorological analysis technology designed for

research, data availability and computation time are used as testing indicators. During testing, the

fused data is input into the computer for processing and corresponding data information is collected.

The basic software and hardware environment of the experimental equipment used is shown in Table

1.

When conducting analysis, the research method is referred to as cloud radar fusion technology. It

is compared with current mainstream numerical weather prediction and data assimilation techniques.

The collected data was tested for availability, as shown in Figure 5.

As shown in Figure 5, the data availability rate of di�erent methods on di�erent categories of

data showed a decreasing trend with increasing height. In Figure 5a, in terms of humidity, the data
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availability rate of numerical weather prediction was 87.2% at an altitude of 2km, and decreased

to 64.9% when the altitude rose to 10km. The data availability of cloud radar fusion technology

was 97.3% at an altitude of 2km, and remained above 89.0% at an altitude of 10km. As shown in

Figure 5b, in terms of temperature, the data assimilation technique decreased to 77.1% when the

altitude increased to 10km. The data availability of cloud radar fusion technology was 95.4% at an

altitude of 2km, and remained above 85.0% at an altitude of 10km. The research method can ensure

higher data availability and reduce meaningless waste of equipment resources. The calculation time

of meteorological analysis results using di�erent methods is analyzed, as shown in Figure 6.

Table 1. Basic environmental parameters of the experiment

Parameter variables Parameter selection

Operating system Windows10

System running memory 32GB

CPU main frequency 3.30GHz

Solid state drive space 4TB

CPU Intel Core i5-13490

Graphics card model NVIDIA GeForce Titan X

(a) humidity (b) temperature

Fig. 5. Data availability testing

As shown in Figure 6, the computation time of di�erent methods increased with height. In Figure

6a, the calculation time for humidity data in numerical weather prediction reached over 7000ms when

the altitude reached 9km. As shown in Figure 6b, the data assimilation technique took more time

to calculate temperature data than humidity data when the altitude was between 4km and 7km.

The humidity calculation time reached over 7000ms when the altitude reached 9km. As shown in

Figure 6c, the cloud radar fusion technology maintained humidity calculation time below 6000ms and

temperature calculation time below 5000ms at an altitude of 9km. This indicates that the research

method as faster data analysis capability.

3.2. Application analysis of meteorological analysis technology in practical scenarios

In order to analyze the practical application e�ect of the research method, the research method is

used for actual meteorological analysis in the range of Taiyuan ground based remote sensing vertical
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observation system. The root mean square error is used to analyze the accuracy of the measured

relative humidity and temperature pro�les. The accuracy of the relative humidity pro�le is shown

in Figure 7.

(a) numerical weather prediction (b) data as similation

(c) cloud radar fusion

Fig. 6. Calculation time for meteorological analysis results

(a) low altitude (b) high altitude

Fig. 7. Accuracy of relative humidity pro�le

As shown in Figure 7, the root mean square error of the relative humidity pro�le analyzed by

di�erent methods increased with height. In Figure 7a, in low altitude, the root mean square error of
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the relative humidity pro�le in the numerical weather prediction reached over 18.0% as the altitude

increased to 2km. When the height of cloud radar fusion technology increased to 2km, the root

mean square error of the relative humidity pro�le was 15.4%, with signi�cant �uctuations during the

increase process. As shown in Figure 7b, at high altitudes, the root mean square error of the relative

humidity pro�le in numerical weather prediction reached over 27.0% as the altitude increased to

12km. There was a signi�cant pullback during the increase process, but it did not a�ect the overall

trend. When the height increased to 12km, the root mean square error of the relative humidity pro�le

reached over 29.0% in data assimilation technology. The cloud radar fusion technology achieved a

root mean square error of 22.0% for the relative humidity pro�le when the height increased to 12km.

However, when the height increased to 7km, the root mean square error of the relative humidity

pro�le no longer showed a signi�cant increasing trend. The accuracy of the temperature pro�le is

shown in Figure 8.

(a) low altitude (b) high altitude

Fig. 8. Accuracy of temperature pro�le

As shown in Figure 8, the root mean square error of the temperature pro�le analyzed by di�erent

method also increased with height. In Figure 8a, in low altitude, the root mean square error of the

temperature pro�le reached over 1.9◦C when the data assimilation technique increased to an altitude

of 2km. When the height increased to 2km, the root mean square error of the temperature pro�le

in cloud radar fusion technology reached 1.5◦C. As shown in Figure 8b, at high altitudes, the root

mean square error of the temperature pro�le in numerical weather prediction reached over 3.0◦C as

the altitude increased to 12km. When the height increased to 12km, the root mean square error

of the temperature pro�le reached over 3.3◦C using data assimilation technology. When the height

increased to 12km, the root mean square error of the temperature pro�le remained within 2.5◦C

using cloud radar fusion technology. This indicates that the research method has better accuracy in

meteorological analysis. The analyzed data is imported into ground based remote sensing vertical

observation system to observe the e�ect, as shown in Figure 9.

As shown in Figure 9, after importing the meteorological analysis results into the urban observa-

tion platform, visualized images of temperature pro�le, relative humidity pro�le, and cloud particle

radii were successfully generated. The temperature pro�le includes the pressure and temperature

conditions corresponding to di�erent time points and heights. The relative humidity pro�le includes

the pressure and relative humidity conditions corresponding to di�erent time points and heights.

The cloud particle radius graph displays the variation of cloud particle radius at di�erent time points
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and heights. Other comprehensive performances are analyzed, as shown in Table 2.

Fig. 9. Application e�ect of urban observation platform

Table 2. Other comprehensive performance analysis

Indicator Cloud radar fusion Numerical weather prediction Data assimilation

Prediction Accuracy (%) 95.0 85.0 82.0

Model Convergence Speed (iterations) 100 150 130

Resource Utilization (%) 90.0 80.0 85.0

Data Redundancy Rate (%) 5.0 10.0 8.0

Data Processing Throughput (GB/s) 4.5 3.0 3.5

Memory Usage (%) 70.0 85.0 80.0

As shown in Table 2, among other comprehensive performance metrics, the cloud radar fusion

technology had the fastest convergence speed, requiring only 100 iterations. The numerical weather

prediction and data assimilation techniques required 150 and 130 iterations, respectively. The re-

source utilization rate of cloud radar fusion technology reached 90%, which was more e�cient in

utilizing hardware resources compared with the other two methods. The data processing throughput

of cloud radar fusion technology reached 4.5GB/s, higher than the 3.0GB/s of numerical weather

prediction and the 3.5GB/s of data assimilation technology, indicating that it could process large

amounts of meteorological data more quickly. This indicates that the research method has better

operational e�ectiveness and meteorological analysis accuracy in practical applications.
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4. Conclusions

A meteorological analysis technique combining computer data fusion methods was developed for more

accurate meteorological observations. A comprehensive collection system for meteorological analysis

data was established based on cloud radar, generating revised data and producing brightness temper-

ature quality indicators to ensure the data quality. A BP neural network structure was constructed

for meteorological analysis based on data fusion, and corresponding meteorological conditions were

obtained through information inversion analysis. The experimental results showed that when ana-

lyzing the calculation time of meteorological analysis results, the research method maintained the

humidity calculation time below 6000ms and the temperature calculation time below 5000ms at an

altitude of 9km. When conducting accuracy analysis of the results, the research method kept the root

mean square error of the temperature pro�le within 2.5◦C when the height increased to 12km. The

data processing throughput of the research method reached 4.5GB/s, which was higher than other

methods. This indicates that the research method has stronger operational e�ciency and higher

accuracy in conducting meteorological analysis. However, the study does not consider the distortion

of meteorological data caused by sudden natural disasters. More sudden parameters will be added

to optimize the method in the future to expand the applicability of the research method.
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