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On the Ramsey numbers r(Sn, K6 − 3K2)
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abstract

For every connected graph F with n vertices and every graph G with chromatic surplus s(G) ≤ n

the Ramsey number r(F,G) satis�es r(F,G) ≥ (n − 1)(χ(G) − 1) + s(G), where χ(G) denotes the

chromatic number of G. If this lower bound is attained, then F is called G-good. For all connected

graphs G with at most six vertices and χ(G) ≥ 4, every tree Tn of order n ≥ 5 is G-good. In case

of χ(G) = 3 and G ̸= K6 − 3K2 every non-star tree Tn is G-good except for some small n, whereas

r(Sn, G) for the star Sn = K1,n−1 in a few cases di�ers by at most 2 from the lower bound. In

this note we prove that the values of r(Sn, K6 − 3K2) are considerably larger for su�ciently large n.

Furthermore, exact values of r(Sn, K6 − 3K2) are obtained for small n.
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1. Introduction

Let G be a graph with chromatic number χ(G). The chromatic surplus s(G) is de�ned to be the

smallest number of vertices in a color class under any χ(G)-coloring of the vertices of G. It is well-

known (cf. [3]) that for any connected graph F with n vertices and any graph G with s(G) ≤ n the

Ramsey number r(F,G) satis�es

r(F,G) ≥ (n− 1)(χ(G)− 1) + s(G). (1)

When equality occurs in (1), F is said to be G-good. The concept of G-goodness generalizes a

classical result of Chvátal [2] who proved that r(Tn, Km) = (n− 1)(m− 1)+ 1 for any tree Tn with n

vertices. Results concerning the G-goodness of trees have been obtained for various classes of graphs

G and also for small graphs G. The Ramsey number r(Tn, G) for connected graphs G with at most 5
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vertices was studied in [3], r(Tn, G) for connected graphs with six vertices was investigated in [7] and

[5]. These results show that every tree Tn with n ≥ 5 is G-good if G is a connected graph with at most

six vertices and χ(G) ≥ 4. In case of χ(G) = 3 and G ̸= K6 − 3K2 every non-star tree Tn is G-good

except for some small n, whereas r(Sn, G) for the star Sn = K1,n−1 in a few cases di�ers by at most 2

from the lower bound (1). For graphs G with χ(G) = 2 and at most six vertices the values of r(Tn, G)

are not completely determined, but it is known that for some G, especially for non-star complete

bipartite graphs, they di�er considerably from the lower bound (1) (see [1, 6, 8]). Here we will prove

that also the values of r(Sn, K6−3K2) are much larger. We present a lower bound for r(Sn, K6−3K2)

depending on r(Sn, C4) which implies that r(Sn, K6 − 3K2) ≥ 2n +
⌊√

n− 1
⌋
− 1 if n = q2 + 1 or

n = q2+2 where q is any prime power and that r(Sn, K6−3K2) > 2n−2+
⌊√

n− 1 − 6(n− 1)11/40
⌋

for all su�ciently large n. For n ≤ 10, our lower bound matches the exact value of r(Sn, K6 − 3K2)

or di�ers from it by at most 1.

Some specialized notation will be used. A coloring of a graph always means a 2-coloring of its

edges with colors red and green. An (F1, F2)-coloring is a coloring containing neither a red copy of

F1 nor a green copy of F2. We use V to denote the vertex set of Kn and de�ne dr(v) to be the

number of red edges incident to v ∈ V in a coloring of Kn. Moreover, ∆r = maxv∈V dr(v). The

set of vertices joined red to v is denoted by Nr(v). Similarly we de�ne dg(v), ∆g and Ng(v). For

U ⊆ V (Kn), the subgraph induced by U is denoted by [U ]. Furthermore, [U ]r and [U ]g denote the red

and the green subgraph induced by U. We write G′ ⊆ G if G′ is a subgraph of G. For disjoint subsets

U1, U2 ⊆ V (Kn), qr(U1, U2) denotes the number of red edges between U1 and U2, and qg(U1, U2) is

de�ned similarly.

2. Results

The following theorem establishes a general lower bound for r(Sn, K6−3K2) depending on r(Sn, C4).

Theorem 2.1. Let n ≥ 2. Then

r(Sn, K6 − 3K2) ≥ r(Sn, C4) +

{
n− 1 if n is odd,

n if n is even.

Proof. Let m = r(Sn, C4) − 1. Take an (Sn, C4)-coloring of Km. For n odd, add a red Kn−1, and,

for n even, a Kn with n/2 independent green edges and all other edges colored red. Join the vertices

of the Km and the vertices of the Kn−1 or Kn, respectively, by green edges. Obviously, no red Sn

occurs. Now consider any subgraph H of order six. If at least four vertices of H belong to the Km,

then a green K6 − 3K2 ⊆ H is impossible since deleting any two vertices of a K6 − 3K2 leaves a

graph of order four containing a C4. Otherwise, at least three vertices of H belong to the Kn−1 or

Kn. Then adjacent red edges occur in H and again a green K6 − 3K2 ⊆ H is impossible. Thus, the

lower bound is established.

Exact results on the values of r(Sn, C4) are known only in special cases. Parsons [6] proved that

r(Sn, C4) = n +
⌊√

n− 1
⌋
if n = q2 + 1 or n = q2 + 2 where q is any prime power. Burr, Erdös,

Faudree, Rousseau and Schelp [1] showed that r(Sn, C4) > n− 1 +
⌊√

n− 1 − 6(n− 1)11/40
⌋
for all

su�ciently large n. From these results and Theorem 2.1 we obtain the following lower bounds on

r(Sn, K6 − 3K2) .
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Corollary 2.2. (i) Let n = q2 + 2 where q is any power of 2 or n = q2 + 1 where q is any odd

prime power. Then

r(Sn, K6 − 3K2) ≥ 2n+
⌊√

n− 1
⌋
.

(ii) Let n = q2+1 where q is any power of 2 or n = q2+2 where q is any odd prime power. Then

r(Sn, K6 − 3K2) ≥ 2n− 1 +
⌊√

n− 1
⌋
.

(iii) If n is su�ciently large, then

r(Sn, K6 − 3K2) > 2n− 2 +
⌊√

n− 1 − 6(n− 1)11/40
⌋
.

Using recent results on r(Sn, C4) of Wu Yali, Sun Yongqi, Zhang Rui and Radziszowski [8], further

lower bounds on r(Sn, K6 − 3K2) can be obtained from Theorem 2.1. The next theorem shows that

the lower bound for r(Sn, K6 − 3K2) given in Theorem 2.1 matches the exact value of the Ramsey

number if n ≤ 6 or n = 8 and di�ers by at most 1 from it if n = 7 or 9 ≤ n ≤ 10. The value of

r(S5, K6 − 3K2) has already been obtained by Gu Hua, Song Hongxue and Liu Xiangyang [4] using

a di�erent method.

Theorem 2.3.

n 2 3 4 5 6 7 8 9 10

r(Sn, K6 − 3K2) 6 6 10 11 14 15/16 19 20/21 23/24
.

The proof of Theorem 2.3 is based on the following lemmas.

Lemma 2.4. The red subgraph of an (S4, K6 − 3K2)-coloring of K9 is isomorphic to K1 ∪ 2C4 or

to C4 ∪ C5.

Proof. S4 ̸⊆ [V ]r implies ∆r ≤ 2. Thus, every component of [V ]r has to be a path or a cycle. If the

union of all paths in [V ]r contains at least three vertices, then it is a subgraph of a cycle. Moreover,

2K1 ⊆ K2. Hence, [V ]r ⊆ H where H ∈ {C9, C3 ∪ C6, C4 ∪ C5, 3C3, K2 ∪ C7, K2 ∪ C3 ∪ C4, K1 ∪
C8, K1 ∪ C3 ∪ C5, K1 ∪ 2C4}. Except for [V ]r = H = K1 ∪ 2C4 or [V ]r = H = C4 ∪ C5 we �nd a

forbidden K6 − 3K2 in [V ]g.

Lemma 2.5. r(S4, K6 − 3K2) ≤ 10.

Proof. Assume that an (S4, K6 − 3K2)-coloring of K10 exists. Delete one vertex v ∈ V . By Lemma

2.4, the red subgraph of [V \ {v}] has to be isomorphic to K1 ∪ 2C4 or to C4 ∪C5. Moreover, ∆r ≤ 2

forces only green edges from v to the vertices of V \{v} belonging to a red cycle. Thus, in both cases

we �nd a green K6 − 3K2, a contradiction.

Lemma 2.6. r(S6, K6 − 3K2) ≤ 14.

Proof. Assume that we have an (S6, K6 − 3K2)-coloring of K14. This implies ∆r ≤ 4 and W4 =

K5 − 2K2 ⊆ [V ]g because r(S6,W4) = 13 (see [3]). We distinguish three cases.
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Case 1. K5 ⊆ [V ]g. For any K5 ⊆ [V ]g with vertex set U and any two vertices w,w′ ∈ V \ U

joined green with qr(w,U) = qr(w
′, U) = 2 the following property pr(w,w′, U) must be ful�lled:

|Nr(w) ∩ Nr(w
′) ∩ U |∈ {0, 2}. Otherwise w and w′ would have exactly one common red neighbor

u ∈ U and this would yield K6 − 3K2 ⊆ [(U \ {u}) ∪ {w,w′}]g, a contradiction. We distinguish two

subcases.

Subcase 1.1. 2K5 ⊆ [V ]g. Let U1 and U2 be the vertex sets of two vertex-disjoint green copies

of K5 and let W = V \ (U1 ∪ U2). Then K6 − 3K2 ̸⊆ [V ]g forces qr(w,U1) ≥ 2 and qr(w,U2) ≥ 2

for every w ∈ W . Using ∆r ≤ 4, we obtain that qr(w,U1) = qr(w,U2) = 2 for every w ∈ W ,

qr(W,U1) = qr(W,U2) = 8 and [W ]g = K4. Moreover, K6 − 3K2 ̸⊆ [V ]g forces qr(u, U1) ≥ 2 for

every u ∈ U2 and qr(u, U2) ≥ 2 for every u ∈ U1. Thus, ∆r ≤ 4 implies qr(u,W ) ≤ 2 for every

u ∈ U1 ∪ U2. If there are vertices u1 ∈ U1 and u2 ∈ U2 such that qr(u1,W ) = qr(u2,W ) = 0, then

K6 − 3K2 ⊆ [W ∪ {u1, u2}]g, a contradiction. Thus we may assume that qr(u,W ) ≥ 1 for every

u ∈ U1. Since qr(u,W ) ≤ 2 for every u ∈ U1 and qr(W,U1) = 8 there must be two vertices u1 and

u2 in U1 with qr(u1,W ) = qr(u2,W ) = 1, and qr(u,W ) = 2 for every u ∈ U1 \ {u1, u2}. Hence, the
bipartite graph [W ∪U1]r is isomorphic to C6∪P3, to C4∪P5 or to P9. In all three cases we �nd two

vertices w1, w2 ∈ W with exactly one common red neighbor u ∈ U1, contradicting pr(w1, w2, U1).

Subcase 1.2. K5 ⊆ [V ]g and 2K5 ̸⊆ [V ]g. Let U = {u1, . . . , u5} be the vertex set of a green K5 and

let W = V \ U . Since K6 − 3K2 ̸⊆ [V ]g, qr(w,U) ≥ 2 for every w ∈ W . Thus, ∆r ≤ 4 forces only

vertices of degree less or equal 2 in [W ]r. As K5 ̸⊆ [W ]g, we obtain [W ]r = C4 ∪ C5 by Lemma 1.

Moreover, qr(w,U) = 2 for every w ∈ W . Let W1 = {w1, w2, w3, w4} and W2 = {w5, w6, w7, w8, w9}
be the vertex sets of the red C4 and the red C5 in [W ], where wiwi+1 for i = 1, 2, 3, 5, 6, 7, 8, w4w1

and w9w5 are red. We may assume that w1u1 and w1u2 are red and use that pr(w,w′, U) holds for

any two vertices w,w′ ∈ W2 joined green.

First let |Nr(w1) ∩ Nr(w) ∩ U |= 0 for every w ∈ W2. Thus, Nr(w) ∩ U ⊆ {u3, u4, u5} for every

w ∈ W2. We may assume that w5u3 and w5u4 are red. From pr(w5, w, U) for w ∈ {w7, w8} we derive
Nr(w) ∩ U = {u3, u4} for w ∈ {w7, w8}. Now apply pr(w6, w8, U) and pr(w7, w9, U). Hence, also

Nr(w) ∩ U = {u3, u4} for w ∈ {w6, w9}. It follows that dr(u3) ≥ 5, contradicting ∆r ≤ 4.

The remaining case is that |Nr(w1) ∩ Nr(w) ∩ U |= 2 for some w ∈ W2, say w = w5. Then

{w1, w5, u3, u4, u5} induces a green K5. Consequently, K6−3K2 ̸⊆ [V ]g implies qr(w, {u3, u4, u5}) = 2

for every w ∈ {w3, w7, w8} and qr(w, {u3, u4, u5}) ≥ 1 for w ∈ {w6, w9}. Because of pr(w1, w, U) for

w ∈ {w6, w9}, we obtain qr(w, {u3, u4, u5}) = 2 also for w ∈ {w6, w9}. Moreover, we may assume

that w3u3 and w3u4 are red. Note that pr(w3, w, U) holds for every w ∈ {w6, w7, w8, w9}. Thus,

Nr(w) ∩ U = {u3, u4} for every w ∈ {w6, w7, w8, w9}. This implies dr(u3) ≥ 5 contradicting ∆r ≤ 4.

Case 2. K5 − e ⊆ [V ]g and K5 ̸⊆ [V ]g. Let U = {u1, u2, u3, u4, u5} be the vertex set of a

K5 − e ⊆ [V ]g. We may assume that u1u5 is red. If a vertex w ∈ W = V \ U exists such that

qr(w,U) ≤ 1, then we either �nd a green K6 − 3K2 or a green K5, both a contradiction. Thus,

qr(w,U) ≥ 2 for every w ∈ W . Note that ∆r ≤ 4 and K5 ̸⊆ [V ]g. Hence, [W ]r = C4 ∪ C5 by

Lemma 1. Again let W1 = {w1, w2, w3, w4} and W2 = {w5, w6, w7, w8, w9} be the vertex sets of the

red C4 and the red C5 in [W ], where wiwi+1 for i = 1, 2, 3, 5, 6, 7, 8, w4w1 and w9w5 are red. From

∆r ≤ 4 we obtain that u1 must have a green neighbor in W2, say w5. Now consider the two green

copies of K5 − e induced by W3 = {w1, w3, w5, w6, w8} and W4 = {w2, w4, w5, w7, w9}. Mind that

W3 ∩W4 = {w5}. If qr(u1,W3) ≤ 1 or qr(u1,W4) ≤ 1, then a green K6 − 3K2 or a green K5 would
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occur in [W3 ∪ {u1}] or [W4 ∪ {u1}]. Otherwise dr(u1) ≥ 5, contradicting ∆r ≤ 4.

Case 3. K5 − 2K2 ⊆ [V ]g and K5 − e ̸⊆ [V ]g. Let U = {u1, u2, u3, u4, u5} be the vertex set of a

K5 − 2K2 ⊆ [V ]g. We may assume that u1u5 and u2u4 are red. If a vertex w ∈ W = V \ U exists

such that qr(w,U) ≤ 1 we either �nd a green K6 − 3K2 or a green K5 − e, a contradiction. Thus,

qr(w,U) ≥ 2 for every w ∈ W . Note that ∆r ≤ 4. Hence, [W ]r = K1 ∪ 2C4 or [W ]r = C4 ∪ C5 by

Lemma 1. But then K5 − e ⊆ [W ]g ⊆ [V ]g, a contradiction.

Lemma 2.7. Let n ≥ 2. Then

r(Sn+2, K6 − 3K2) ≤ r(Sn, K6 − 3K2) + 5.

Proof. Let m = r(Sn, K6 − 3K2) + 5. By (1), r(Sn, K6 − 3K2) ≥ 2n, and this implies m ≥ 2n + 5.

Assume that an (Sn+2, K6 − 3K2)-coloring of Km exists. Since r(Sn,W4) = 2n + 1 if n is even and

r(Sn,W4) = 2n − 1 if n is odd (see [3]) we obtain r(Sn+2,W4) ≤ 2n + 5 ≤ m. Thus, Sn+2 ̸⊆ [V ]r
forces W4 ⊆ [V ]g. Let U = {u1, u2, u3, u4, u5} be the vertex set of a green W4 = K5 − 2K2 and

W = V \ U . Note that |W |= r(Sn, K6 − 3K2). Hence, Sn ⊆ [W ]r and a vertex w∗ ∈ W exists with

degree at least n− 1 in [W ]r. From Sn+2 ̸⊆ [V ]r it follows that qr(w
∗, U) ≤ 1, i.e. qg(w

∗, U) ≥ 4.

If [U ]g = K5, then K6 − 3K2 ⊆ [{w∗} ∪ U ]g, a contradiction, and we may assume that K5 ̸⊆ [V ]g.

Now let [U ]g = K5 − e assuming that the edge u1u5 is red. If w
∗ is joined green to u1 and u5, then

a green K6 − 3K2 is contained in [{w∗} ∪ U ]. Otherwise w∗ is joined red to u1 or to u5, say to u1,

but this implies that [{w∗} ∪ {u2, u3, u4, u5}] is a green K5. Again we have obtained a contradiction

and we may assume that K5 − e ̸⊆ [V ]g. It remains that [U ]g = K5 − 2K2. Here we may assume

that the edges u1u2 and u4u5 are red. If w
∗ is joined red to u3, then a green K6 − 3K2 is contained

in [{w∗} ∪ U ]. Otherwise w∗ is joined green to u3 and to at least three vertices in {u1, u2, u4, u5},
say to u1, u2 and u4. But this gives a forbidden green K5 − e in [{w∗} ∪ {u1, u2, u3, u4}], and we are

done.

Now we will use the results obtained in Theorem 2.1 and Lemmas 2.5, 2.6 and 2.7 to prove Theorem

2.3.

Proof of Theorem 2.3

At �rst we will show that the given values are lower bounds for r(Sn, K6 − 3K2). The exact results

of r(Sn, C4) for n ≤ 10 can be found in [1], namely

n 2 3 4 5 6 7 8 9 10

r(Sn, C4) 4 4 6 7 8 9 11 12 13
.

Applying Theorem 2.1, we obtain the desired lower bounds. It remains to establish the given values

as upper bounds for r(Sn, K6 − 3K2). Obviously, r(Sn, K6 − 3K2) ≤ 6 for 2 ≤ n ≤ 3. The other

cases are settled by Lemmas 2.5, 2.6 and 2.7.

From Lemma 2.7 and the exact results for 5 ≤ n ≤ 6 in Theorem 2 we obtain a general upper

bound for r(Sn, K6 − 3K2).



234 Lortz & Mengersen

Theorem 2.8. Let n ≥ 5. Then

r(Sn, K6 − 3K2) ≤
⌊
5n− 2

2

⌋
.

Proof. For 5 ≤ n ≤ 6 the upper bound matches the exact values in Theorem 2. For n ≥ 7, induction

on n using Lemma 2.7, separately for n even and n odd, yields the desired upper bound. .
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