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ABSTRACT

For every connected graph F' with n vertices and every graph G with chromatic surplus s(G) < n
the Ramsey number r(F, G) satisfies r(F,G) > (n — 1)(x(G) — 1) + s(G), where x(G) denotes the
chromatic number of G. If this lower bound is attained, then F is called G-good. For all connected
graphs G with at most six vertices and x(G) > 4, every tree T,, of order n > 5 is G-good. In case
of X(G) =3 and G # K¢ — 3K, every non-star tree T}, is G-good except for some small n, whereas
r(Sn, G) for the star S,, = Kj,_1 in a few cases differs by at most 2 from the lower bound. In
this note we prove that the values of (S, K — 3K5) are considerably larger for sufficiently large n.
Furthermore, exact values of r(S,, K¢ — 3K5) are obtained for small n.
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1. Introduction

Let G be a graph with chromatic number x(G). The chromatic surplus s(G) is defined to be the
smallest number of vertices in a color class under any x(G)-coloring of the vertices of G. Tt is well-
known (cf. [3]) that for any connected graph F' with n vertices and any graph G with s(G) < n the
Ramsey number r(F, G) satisfies

r(F,G) = (n =1 (x(G) = 1) + s(G). (1)

When equality occurs in (1), F' is said to be G-good. The concept of G-goodness generalizes a
classical result of Chvatal [2] who proved that r(T,, K,;,) = (n —1)(m — 1) + 1 for any tree T,, with n
vertices. Results concerning the G-goodness of trees have been obtained for various classes of graphs
G and also for small graphs G. The Ramsey number r(7,,, G) for connected graphs G with at most 5
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vertices was studied in |3], 7(7,, G) for connected graphs with six vertices was investigated in [7] and
[5]. These results show that every tree T,, with n > 5is G-good if G is a connected graph with at most
six vertices and y(G) > 4. In case of x(G) = 3 and G # K¢ — 3K, every non-star tree T,, is G-good
except for some small n, whereas r(S,,, G) for the star S,, = K, in a few cases differs by at most 2
from the lower bound (1). For graphs G with x(G) = 2 and at most six vertices the values of r(7},, G)
are not completely determined, but it is known that for some G, especially for non-star complete
bipartite graphs, they differ considerably from the lower bound (1) (see [1, 6, 8]). Here we will prove
that also the values of (S, Ks—3K>) are much larger. We present a lower bound for r(.S,,, K¢ —3K>)
depending on r(S,, Cy) which implies that (95, K¢ — 3K3) > 2n + Wﬁj —lifn=¢+1or
n = ¢*+2 where ¢ is any prime power and that r(S,, K¢ —3K>) > 2n—2+ [v/n — 1 — 6(n — 1)!1/10]
for all sufficiently large n. For n < 10, our lower bound matches the exact value of (S, K¢ — 3K3)
or differs from it by at most 1.

Some specialized notation will be used. A coloring of a graph always means a 2-coloring of its
edges with colors red and green. An (F}, Fy)-coloring is a coloring containing neither a red copy of
F} nor a green copy of F5. We use V to denote the vertex set of K, and define d,(v) to be the
number of red edges incident to v € V in a coloring of K,. Moreover, A, = max,ey d,.(v). The
set of vertices joined red to v is denoted by N,(v). Similarly we define dy(v), A, and Ny(v). For
U C V(K,), the subgraph induced by U is denoted by [U]. Furthermore, [U], and [U], denote the red
and the green subgraph induced by U. We write G’ C G if G’ is a subgraph of GG. For disjoint subsets
Uy, Uy C V(K,), ¢-(Uy,Us) denotes the number of red edges between Uy and Us, and q,(Uy, Us) is
defined similarly.

2. Results

The following theorem establishes a general lower bound for r(S,,, K¢ — 3K3) depending on r(S,,, Cy).

Theorem 2.1. Let n > 2. Then

n—1 1if nis odd,

n if nis even.

T(Sn, Kﬁ — 3K2) Z T(Sn, C4) + {

Proof. Let m = r(S,,Cy) — 1. Take an (S, Cy)-coloring of K,,. For n odd, add a red K,,_1, and,
for n even, a K, with n/2 independent green edges and all other edges colored red. Join the vertices
of the K, and the vertices of the K, _; or K, respectively, by green edges. Obviously, no red S,
occurs. Now consider any subgraph H of order six. If at least four vertices of H belong to the K,,,
then a green Ky — 3Ky C H is impossible since deleting any two vertices of a Kg — 3K, leaves a
graph of order four containing a Cj. Otherwise, at least three vertices of H belong to the K, _; or
K,,. Then adjacent red edges occur in H and again a green K4 — 3Ky C H is impossible. Thus, the
lower bound is established. O

Exact results on the values of r(S,, Cy) are known only in special cases. Parsons [6] proved that
r(Sn,Ct) =n+ |vVn—1]if n=¢*+1orn = ¢*+ 2 where ¢ is any prime power. Burr, Erdés,
Faudree, Rousseau and Schelp [1] showed that r(S,,Cy) > n—1+ |v/n—1 —6(n — 1)1/%°| for all
sufficiently large n. From these results and Theorem 2.1 we obtain the following lower bounds on
7(Sn, K¢ — 3K3) .
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Corollary 2.2. (i) Let n = ¢*> + 2 where q is any power of 2 or n = ¢*> + 1 where q is any odd
prime power. Then

r(Sp, K¢ — 3K3) > 2n + \_\/n— 1J .

(ii) Let n = ¢* +1 where q is any power of 2 or n = ¢*+2 where q is any odd prime power. Then
r(Sn, Ko —3K5) >2n— 1+ [Vn—1].
(113) If n is sufficiently large, then
r(Sn, Ko — 3K5) >2n — 2+ |[Vn—1 — 6(n — 1)"/*] .

Using recent results on r(S,,, Cy) of Wu Yali, Sun Yongqi, Zhang Rui and Radziszowski [8], further
lower bounds on 7(S,, K — 3K3) can be obtained from Theorem 2.1. The next theorem shows that
the lower bound for (S, K¢ — 3K5) given in Theorem 2.1 matches the exact value of the Ramsey
number if n < 6 or n = 8 and differs by at most 1 from it if n = 7 or 9 < n < 10. The value of
r(Ss, Kg — 3K3) has already been obtained by Gu Hua, Song Hongxue and Liu Xiangyang || using
a different method.

Theorem 2.3.

n \2 34 5 6 7 8 9 10
r(Sn,Kﬁ—gKQ)\G 6 10 11 14 15/16 19 20/21 23/24

The proof of Theorem 2.3 is based on the following lemmas.

Lemma 2.4. The red subgraph of an (Sy, K¢ — 3K3)-coloring of Ky is isomorphic to Ky U 2Cy or
to C4 U 05.

Proof. S, Z [V], implies A, < 2. Thus, every component of [V], has to be a path or a cycle. If the
union of all paths in [V], contains at least three vertices, then it is a subgraph of a cycle. Moreover,
2K, C K. Hence, [V], C H where H € {Cy, C3U Cq, C4UC5, 3C3, Ko UCr7, Ko UC3UCy, K3 U
Cs, K1 UC3UCs, K3 U2C,}. Except for [V], = H= K, U2C, or [V], = H=C,;UC5 we find a
forbidden K¢ — 3K, in [V],. O

Lemma 2.5. r(Sy, Kg — 3K3) < 10.

Proof. Assume that an (Sy, K¢ — 3K3)-coloring of K exists. Delete one vertex v € V. By Lemma
2.4, the red subgraph of [V'\ {v}] has to be isomorphic to K; U2Cy or to Cy U Cs. Moreover, A, < 2
forces only green edges from v to the vertices of V'\ {v} belonging to a red cycle. Thus, in both cases
we find a green Kg — 3K5, a contradiction. O

Lemma 2.6. T(Sﬁ, Kﬁ — BKQ) < 14.

Proof. Assume that we have an (Sg, Kg — 3K3)-coloring of Ki4. This implies A, < 4 and W, =
K5 — 2K, C [V], because (S, Wy) = 13 (see [3]). We distinguish three cases.
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Case 1. K5 C [V],. For any K5 C [V], with vertex set U and any two vertices w,w’ € V \ U
joined green with ¢,(w,U) = ¢.(w’,U) = 2 the following property pr(w,w’,U) must be fulfilled:
|N(w) N N,.(w) NU|e {0,2}. Otherwise w and w’ would have exactly one common red neighbor
w € U and this would yield K¢ — 3K, C [(U \ {u}) U {w,w'}],, a contradiction. We distinguish two
subcases.

Subcase 1.1. 2K5 C [V],. Let Uy and U, be the vertex sets of two vertex-disjoint green copies
of K5 and let W =V \ (U UU,). Then K¢ — 3K, Z [V], forces g,(w,U;) > 2 and g, (w,Us) > 2
for every w € W. Using A, < 4, we obtain that ¢.(w,U;) = ¢.(w,Uy) = 2 for every w € W,
(W, Uy) = ¢,(W,Us) = 8 and [W], = K. Moreover, K¢ — 3K, Z [V], forces g,(u,U;) > 2 for
every u € U, and ¢.(u,Us) > 2 for every u € U;. Thus, A, < 4 implies ¢,(u, W) < 2 for every
u € Uy U U,. If there are vertices uy € Uy and uy € Uy such that ¢.(u1, W) = ¢,(uz, W) = 0, then
K¢ — 3Ky C [W U {u,us}]y, a contradiction. Thus we may assume that g,(u, W) > 1 for every
u € U;. Since ¢,.(u, W) < 2 for every u € Uy and ¢,.(W,U;) = 8 there must be two vertices u; and
ug in Uy with g, (uy1, W) = g,(u2, W) = 1, and ¢,(u, W) = 2 for every u € Uy \ {uy,us}. Hence, the
bipartite graph [W U U], is isomorphic to Cs U P3, to Cy U Ps or to Py. In all three cases we find two
vertices wy, wy € W with exactly one common red neighbor u € Uy, contradicting pr(w;, wq, Uy).

Subcase 1.2. K5 C [V], and 2K5 Z [V],. Let U = {uy, ..., us} be the vertex set of a green K; and
let W =V \U. Since K¢ — 3Ky € [V],, ¢-(w,U) > 2 for every w € W. Thus, A, < 4 forces only
vertices of degree less or equal 2 in [W],. As K5 Z [W],, we obtain [W], = C4y U Cs by Lemma 1.
Moreover, g.(w,U) = 2 for every w € W. Let W} = {wq, wq, w3, ws} and Wy = {ws, wg, wy, ws, wo }
be the vertex sets of the red C; and the red C5 in [W], where w;w;,1 for i = 1,2,3,5,6,7,8, wyuw,
and wows are red. We may assume that wyu; and wyus are red and use that pr(w,w’,U) holds for
any two vertices w,w’ € Wy joined green.

First let |N,(wy) N N.(w) N U|= 0 for every w € Wa. Thus, N,.(w) N U C {us,us, us} for every
w € Wy, We may assume that wsus and wsuy are red. From pr(ws, w,U) for w € {w7, ws} we derive
N (w) NU = {ug,us} for w € {ws,ws}. Now apply pr(ws, ws,U) and pr(ws, wy,U). Hence, also
N, (w)NU = {us,uqs} for w € {wg, we}. It follows that d,(us) > 5, contradicting A, < 4.

The remaining case is that |N.(w;) N N.(w) N U|= 2 for some w € Wy, say w = ws. Then
{w1, w5, us, ug, us} induces a green K. Consequently, K —3K,  [V], implies g, (w, {us, uq, us}) = 2
for every w € {ws, w7, ws} and ¢.(w, {ug, ug,us}) > 1 for w € {wg, wo}. Because of pr(w;,w,U) for
w € {wg,wo}, we obtain g, (w, {us, us,us}) = 2 also for w € {wg, we}. Moreover, we may assume
that wsus and wsuy are red. Note that pr(ws,w,U) holds for every w € {wg,wr, ws, we}. Thus,
N.(w)NU = {ug, us} for every w € {we, wr, ws, wy}. This implies d,.(u3) > 5 contradicting A, < 4.

Case 2. Kz —e C [V], and K5 € [V],. Let U = {uy,us, us, us,us} be the vertex set of a
K5 —e C [V];. We may assume that ujus is red. If a vertex w € W = V \ U exists such that
¢r(w,U) < 1, then we either find a green K¢ — 3K, or a green K3, both a contradiction. Thus,
¢(w,U) > 2 for every w € W. Note that A, < 4 and K5 Z [V],. Hence, [W], = C4UC5 by
Lemma 1. Again let W) = {wy, we, w3, ws} and Wy = {ws, wg, w7, ws, wy} be the vertex sets of the
red Cy and the red Cs in [W], where w;w; 41 for i = 1,2,3,5,6,7,8, wyw; and wyws are red. From
A, < 4 we obtain that u; must have a green neighbor in W5, say ws. Now consider the two green
copies of K5 — e induced by W3 = {wy, w3, ws, we, wg} and Wy = {wq, wy, ws, wr, we}. Mind that
Wi N W, = {ws}. If g (ug, W3) < 1 or ¢.(u, Wy) < 1, then a green Kg — 3K5 or a green K5 would
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occur in [W3 U {u}] or Wy U {us}|. Otherwise d,(u;) > 5, contradicting A, < 4.

Case 8. K5 — 2Ky C [V], and K5 —e € [V],. Let U = {uy, uz, us, us, us} be the vertex set of a
K5 — 2K, C [V],. We may assume that ujus; and usuy are red. If a vertex w € W =V \ U exists
such that ¢.(w,U) < 1 we either find a green K¢ — 3K5 or a green K5 — e, a contradiction. Thus,
¢ (w,U) > 2 for every w € W. Note that A, < 4. Hence, [W], = K; U2Cy or [W], = C4 U C5 by
Lemma 1. But then K5 —e C [W], C [V],, a contradiction.

]

Lemma 2.7. Let n > 2. Then
T(Sn+2, K@ — 3K2) S T(Sn, Kﬁ — BKQ) + 5.

Proof. Let m = r(S,, K¢ — 3K3) + 5. By (1), 7(Sn, K¢ — 3K3) > 2n, and this implies m > 2n + 5.
Assume that an (5,9, Kg — 3K3)-coloring of K, exists. Since 7(S,, Wy) = 2n + 1 if n is even and
r(Sn, Wy) = 2n — 1 if n is odd (see [3]) we obtain 7(S,42, Wy) < 2n+5 < m. Thus, S,2 Z [V],
forces Wy C [V],. Let U = {uy,us,us, us, us} be the vertex set of a green Wy = Kz — 2K, and
W =V \ U. Note that |W|= r(S,, Kg — 3K3). Hence, S, C [W], and a vertex w* € W exists with
degree at least n — 1 in [W],. From S, o Z [V], it follows that ¢,(w*,U) <1, i.e. g,(w*,U) > 4.

If [U], = K5, then K¢ — 3K, C [{w*} UU],, a contradiction, and we may assume that K5 Z [V],.
Now let [U], = K5 — e assuming that the edge ujus is red. If w* is joined green to u; and us, then
a green Kg — 3K, is contained in [{w*} U U]. Otherwise w* is joined red to u; or to us, say to ug,
but this implies that [{w*} U {ug, us, uy, us}| is a green K5. Again we have obtained a contradiction
and we may assume that K5 —e ¢ [V],. It remains that [U], = K5 — 2K,. Here we may assume
that the edges uius and ugus are red. If w* is joined red to ug, then a green K¢ — 3K, is contained
in [{w*} UU]. Otherwise w* is joined green to uz and to at least three vertices in {uy, us, u4, us},
say to uj, us and uy. But this gives a forbidden green K5 — e in [{w*} U {uy, us, us, us}], and we are
done. ]

Now we will use the results obtained in Theorem 2.1 and Lemmas 2.5, 2.6 and 2.7 to prove Theorem
2.3.

Proof of Theorem 2.3

At first we will show that the given values are lower bounds for r(S,, Ks — 3K3). The exact results
of r(S,, Cy4) for n < 10 can be found in [1], namely

n \2345678910
r(Sn,C4)\44678911 12 13

Applying Theorem 2.1, we obtain the desired lower bounds. It remains to establish the given values
as upper bounds for r(S,, K¢ — 3K3). Obviously, r(S,, Kg — 3K3) < 6 for 2 < n < 3. The other
cases are settled by Lemmas 2.5, 2.6 and 2.7.

From Lemma 2.7 and the exact results for 5 < n < 6 in Theorem 2 we obtain a general upper
bound for r(S,, K¢ — 3K>).
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Theorem 2.8. Let n > 5. Then

bn — 2
’I“(Sn,K@' — 3K2) S \‘ n J .
Proof. For 5 < n < 6 the upper bound matches the exact values in Theorem 2. For n > 7, induction
on n using Lemma 2.7, separately for n even and n odd, yields the desired upper bound. 1.
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