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abstract

Let A be a real algebra. It is called locally complex algebra if every non-zero element generates a

subalgebra isomorphic to either R or C. It is said to satisfy the uniqueness of the square root except

the sign if the equation x2 = y2 implies y = ±x. We show the following:

1. Every locally complex algebra is a quadratic algebra.

2. Every alternative locally complex algebra is isomorphic to either R, C, H or O.

3. Every commutative locally complex algebra without divisors of zero is isomorphic to R or C.
4. Every �nite-dimensional algebra satisfying the uniqueness of the square root except the sign has

dimension ≤ 2 and contains non-zero idempotents.

Keywords: quadratic (alternative, �exible, locally complex) algebra, divisors of zero, Cayley-Dickson

process, quaternions, octonions, sedenions, nearly absolute-valued algebra

1. Introduction

In this present paper, all algebras are considered over the �eld R of real numbers. An algebra is

a vector space A endowed with a bilinear product A × A → A (x, y) 7→ xy. A �nite-dimensional

algebra A is said to be a (real) division algebra if it is ̸= {0} and contains no divisors of zero. The

study of division algebras, began with the discovery of the quaternion algebra H in 1843 and the

octonion algebra O in 1843 and, independently, 1845.

An algebra A is said to be algebraic (resp. quadratic) if every element in A generates a �nite-
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dimensional subalgebra (resp. if A contains an unit element e and every element x ∈ A satis�es a

quadratic equation x2 = αe+ βx with α, β ∈ R).
Frobenius' associative theorem [11, 10] states that R, C, H are the only associative, quadratic

algebras with no divisors of zero. Zorn's alternative theorem [22, 10] states that O is the only

alternative, quadratic algebra with no divisors of zero which is not associative. Combining two above

results:

Theorem 1.1. (Frobenius-Zorn) Every alternative quadratic algebra with no divisors of zero is iso-

morphic to either R, C, H or O.

Many researchers gave minimum additional conditions for an alternative algebra to be isomorphic

to either R, C, H or O. The Frobenius-Zorn theorem will then be either improved or extended.

A normed algebra is a space A endowed with a norm ||.|| such that ||xy||≤ ||x|| ||y|| for all x, y. Let
S(A) = {x ∈ A : ||x||= 1} be the unit-sphere of the normed algebra (A, ||.||). An element a ∈ A \ {0}
is said to be a joint topological divisors of zero if there exists a sequence (xn)n≥0 in S(A) such that

lim
n→∞

axn = lim
n→∞

xna = 0.

Let A be a normed algebra with no joint topological divisors of zero. Cabrera-Rodríguez showed

that A is isomorphic to either R, C or H in the associative case [2, Theorem 2], and is isomorphic to

R, C, H or O in the alternative case [2, Theorem 3], [3, Theorem 2.5.50].

A nonzero element a of an algebra A is said to be a joint divisor of zero if there exists b ∈ A \ {0}
such that ab = ba = 0. Cabrera-Rodríguez showed that every power-associative (resp. alternative)

algebraic algebra with no nonzero joint divisor of zero is quadratic [3, Proposition 2.5.10] (resp.

isomorphic to either R, C, H or O [3, Theorem 2.5.29]).

Diouf-Traoré proved that every weakly alternative algebraic algebra with no nonzero joint divisor

of zero is isomorphic to either R, C, H or O [9, Corollary 3]

Cuenca proves that R, C, H and O are the only normed division algebras satisfying the middle

Moufang identity [4, Theorem 2.3].

Bres̆ar-S̆emrl-S̆penko [1] were the �rst to have introduced the notion of locally complex algebra,

this being in the unitary case. They showed that every unital associative (resp. alternative) locally

complexe algebra is isomorphic to either R, C or H (resp. R, C, H or O) [1, Theorem 4.7].

Hopf's commutativity theorem has been a blessing within the theory of �nite-dimensional division

algebras. It states that the dimension of every �nite-dimensional commutative division algebra is

≤ 2 [12]. The proof uses a topological method. Attracted by this beautiful result, researchers have

added additional minimum conditions to an algebra to force its dimension to be ≤ 2.

Using algebraic geometry arguments, Springer [20] showed that R and C are the unique �nite-

dimensional unital commutative division algebra.

Cabrera-Rodríguez [3, Corollary 2.5.16] showed that every commutative quadratic algebra with no

divisors of zero is isomorphic to either R or C. They used purely algebraic tools.

Yang [21] proved, via a di�erential geometry method, that every unital division algebra of �nite

dimension ≥ 2 contains a subalgebra isomorphic to C. The same result was obtained by Petro [16]

who used algebraic topology arguments accompanied by the intermediate value theorem.

Recently, Cuenca-Miguel used topological methods to extend the Hopf's commutativity theorem.

They showed the following two results:

Every commutative nearly absolute valued division algebra has �nite dimension ≤ 2 [6, Theorem
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2.4].

For every commutative nearly absolute-valued algebra, the following statements are equivalent [5]:

1. A satis�es the uniqueness of the square roots except the sign.

2. A is a 2-dimensional division algebra.

Motivated by these results, we were interested in the study of minimum additional conditions in

an algebra to be �nite-dimensional and possibly isomorphic to either R, C, H or O.
We show that every locally complex algebra contains an unit-element and is a quadratic algebra

(Theorem 3.3). A locally complex algebra is alternative if and only if it is isomorphic to either R, C,
H or O (Theorem 4.3). This re�nes both Theorem 1.1 of Frobenius-Zorn, [3, Theorem 2.5.29], and

[1, Theorem 4.7].

By easy and short algebraic method, we prove that every algebra A satisfying the uniqueness of

the square roots except the sign does not contain nilpotent elements of index 2. If, in addition, A has

�nite-dimension n then n ≤ 2 and A contains non-zero idempotents (Theorem 5.1). This extends

the commutativity theorem of Hopf.

We show that a commutative algebra satis�es the uniqueness of the square roots except the sign

if and only if it contains no divisors of zero (Theorem 5.2). We give a description (Theorem 5.3)

of all �nite-dimensional algebras satisfying the uniqueness of the square roots except the sign. This

provides some examples (Examples 5.4) of two-dimensional algebras with the uniqueness of the square

root except the sign, which are not commutative nor division algebras.

At the end we show that every commutative locally complex algebra without divisors of zero is

isomorphic to either R or C (Theorem 5.5). This extends [20], [21] and [16].

Note that all algebras obtained from R by the Cayley-Dickson process: C, H, O, S (the sedenions),

... etc are �exible algebras [17, Theorem 1]. The sedenions are examples of �nite-dimensional

quadratic, �exible locally complex algebras which are not alternative.

2. Notations and preliminary results

An algebra is understood to be a (real) vector space A endowed with a bilinear product A × A →
A (x, y) 7→ xy. Let a, b, c be in A. We denote by (a, b, c), [a, b], A(a1, . . . , am), La, Ra, respectively,

the associator (ab)c− a(bc) of a, b, c; the commutator ab− ba of a, b; the subalgebra of A generated

by a1, . . . , am ∈ A; the operator of multiplication by a on the left x 7→ ax; and the operator of

multiplication by a on the right x 7→ xa.

Algebra A is said to be alternative (resp �exible) if it satis�es (x, x, y) = (y, x, x) = 0 (resp.

(x, y, x) = 0) for all x, y ∈ A.

A is said to be locally complex algebra if A(a) is isomorphic to either R or C for all a ∈ A \ {0}.
A is said to be a normed algebra if the spaceA is endowed with a norm ||.|| such that ||xy||≤ ||x|| ||y||

for all x, y ∈ A. This is equivalent to say that the product of algebra A is continuous with respect to

the norm ||.||. Note then S(A) the unit-sphere {x ∈ A : ||x||= 1} of the normed algebra (A, ||.||).
A is said to be a nearly absolute-valued algebra if it is endowed with a norm ||.|| of algebra such

that ||xy||≥ λ||x|| ||y|| for some positive real number λ and all x, y ∈ A [14].

Let A be an algebra, we denote by A+ the algebra called symmetrization of A having underlying

space A and product x ⋄ y = 1
2
(xy + yx).

Algebra A is said to satis�es the uniqueness of the square roots except the sign if the equation

x2 = y2 in A implies y = ±x. Such an algebra has no nilpotent elements of index 2. Note that the

(real) division algebra R satis�es the above property.



222 diouf et al.

A is said to be a (real) division algebra if it is �nite-dimensional with A ̸= {0} and contains no

divisors of zero.

An algebra A with unit element e is called a quadratic algebra if every element x ∈ A satis�es a

quadratic equation x2 = αe + βx with α, β ∈ R [15]. The set Im(A) = {x ∈ A : x2 ∈ Re and x /∈
Re\{0}} of purely imaginary elements of A constitutes a linear subspace of A which is supplementary

to Re ([8], [10]).

Remark 2.1. 1. Clearly, every commutative algebra with no divisors of zero satis�es the uniqueness

of the square roots except the sign. Such an algebra can be in�nite-dimensional and associative as

the algebra R[X] of polynômials with one indeterminate with coe�cients in R.
2. Every �nite-dimensional algebra A with no divisors of zero is nearly absolute-valued algebra.

Indeed, it is well known that the product of A is continuous with respect to every norm ||.|| of the
space A. The minimum of this product is reached on the compact S(A)× S(A) := S and there exists

(a, b) ∈ S such that

inf
(x,y)∈S

||xy||= ||ab||.

As A contains no divisors of zero we have ||ab||:= λ > 0. Now, let x, y be arbitrary in A \ {0}, we
have:

(
x

||x|| ,
y

||y||

)
∈ S. This implies that

∣∣∣∣∣∣ x
||x||

y
||y||

∣∣∣∣∣∣ ≥ λ and then ||xy||≥ λ||x|| ||y||. So A is nearly

absolute-valued algebra.

3. Locally complex algebras are quadratic algebras

In order to prove the main result of this section, we need the following two preliminary results where

A is assumed to be a locally complex algebra containing two distinct nonzero idempotents e, f :

Lemma 3.1. A(e− f)∩A(e+ f) = R(e− f)2 and there exists an idempotent g ∈ A \ {0} such that

(e− f)2 = αg, α ∈ R \ {0}. (1)

In particular, (e− f)2, e− f, e+ f are linearly independent.

Proof. (e−f)2 ∈ A(e−f)\{0} because A(e−f) contains no nilpotent elements of index two. Now,

A(e− f) ̸= A(e+ f) otherwise A(e− f) would contain both

e =
(e+ f) + (e− f)

2
and f =

(e+ f)− (e− f)

2
,

which is absurd. So

dim (A(e− f) ∩ A(e+ f)) ≤ 1.

On the other hand

(e− f)2 = 2(e+ f)− (e+ f)2 ∈ A(e− f) ∩ A(e+ f).

So A(e− f) ∩ A(e+ f) has dimension one and we have

A(e− f) ∩ A(e+ f) = R(e− f)2 = Rg,

where g is a nonzero idempotent collinear to (e− f)2.



on the theorems of frobenius, zorn and hopf's commutativity 223

Lemma 3.2. Let u ∈ A \ Rg such that u2 ∈ Rg of the forme βg with β ∈ R. Then β < 0. In

particular the scalar α in equality 1 is negative.

Proof. The multiplication table of algebra A(u) with respect to the basis g, u is given by:

A(u) g u

g g u

u u βg

As A(u) is isomorphic to C there exists v = λg + µu ∈ A(u) such that v2 = −g. We have

v2 = (λ2 + µ2β)g + 2λµu. Now

v2 = −g ⇔
{

λ2 + µ2β = −1,

λµ = 0,

⇔
{

µ2β = −1,

λ = 0, because µ cannot be equal to 0.

So β = − 1
µ2 is negative.

Theorem 3.3. Every locally complex algebra A contains an unit-element and is a quadratic algebra.

Proof. Assume that A contains two distinct nonzero idempotents e, f. By Lemma 3.1 e + f, g are

linearly independent so a = e+ f − g ∈ A \ Rg. We have:

a2 = (e+ f)2 − 2(e+ f) + g

= −(e− f)2 + g

= (1− α)g.

According to Lemma 3.2: 1 − α < 0, that is α > 1. Absurd. Thus A contains only a nonzero

idempotent which is its unit-element.

4. Improvements for alternative algebras

Let's start with the following preliminary result in the associative case:

Lemma 4.1. Let A be an associative locally complex algebra. Then A has no divisors of zero.

Proof. Let 1 be the unit of the quadratic algebra A, let a, b ∈ A \ {0} and let a−1 (resp b−1) the

inverse of a in algebra A(a) (resp. the inverse of b in algebra A(b)). The equality a−1abb−1 = 1 shows

that ab ̸= 0 and then A has no divisors of zero.

Corollary 4.2. Let A be a locally complex algebra. Then A is associative if and only if it is isomor-

phic to either R, C or H.
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Theorem 4.3. Let A be a locally complex algebra. Then A is alternative if and only if it is isomorphic

to either R, C, H or O.

Proof. Let's show the "only if" part. The subalgebra of A generated by any pair a, b ∈ A is

associative by Artin's theorem [18, Theorem 3.1]. Lemma 4.1 shows that A contains no divisors of

zero. The "only if" part is then concluded by the Theorem 1.1 of Frobenius-Zorn.

Corollary 4.4. Let A be an algebra such that A(x, y) is isomorphic to either R, C or H for all

nonzero x, y ∈ A. Then A is an alternative algebra and isomorphic to either R, C, H or O.

Proof. A is clearly locally complex algebra. It is also alternative algebra by Artin's theorem, and

Theorem 4.3 concludes.

Theorem 4.5. Let A be a locally complex algebra satisfying any one of the following middle Moufang

identities:

(xy)(zx) = x((yz)x), (2)

(xy)(zx) = (x(yz))x. (3)

Then A is alternative and isomorphic to either R, C, H or O.

Proof. Let 1 be the unit of algebra A. By putting z = 1 in any one of equalities 2, 3 we get the

�exible law: (x, y, x) = 0. Now, taking into account �exibility, the equality

((1 + z)y)(z(1 + z)) = (1 + z)(yz)(1 + z)

gives yz2 = (yz)z. So A is right-alternative. It is also left-alternative and Theorem 4.3 concludes.

5. Improvements for commutative algebras

Let's start with improvements via the uniqueness of the square root except the sign:

Theorem 5.1. Let A be an algebra satisfying the uniqueness of the square root except the sign. Then

A does not contain nilpotent elements of index 2. If, in addition, A has �nite-dimension n then n ≤ 2

and A contains non-zero idempotents.

Proof. The �rst a�rmation follows immediately from the fact that A satis�es the uniqueness of the

square root except the sign. Now, we consider the algebra A+ having product x ⋄ y = 1
2
(xy + yx).

Let a, b be in A, we have:

a ⋄ b = 0 ⇒ ab+ ba = 0,

⇒ (a+ b)2 − (a− b)2 = 0,

⇒ a+ b = ±(a− b),

⇒ a = 0 or b = 0.
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So A+ does not contain divisors of zero. If, in addition, A has �nite-dimension n which is also

the dimension of A+ then n ≤ 2 by the commutativity theorem of Hopf. Also A+ contains non-zero

idempotents [19], as well as A.

Theorem 5.2. Let A be a commutative algebra. Then A satis�es the uniqueness of the square roots

except the sign if and only if it contains no divisors of zero.

Proof. To prove the "only if" part, let x, y be A. Then

xy = 0 ⇒ (x+ y)2 = (x− y)2 because A is commutative ,

⇒ x+ y = ±(x− y).

So either x = 0 or y = 0.

The "if" part is given in the beginning of Remarks 2.1.

Theorem 5.3. Let A be an algebra of �nite dimension n satisfying the uniqueness of the square

roots except the sign. Then n ≤ 2 and is isomorphic to either R or the algebra R2(α, λ, β, µ) obtained

by endowing the real vector space R2 with the product:

(x, y)⊙ (x′, y′) = (xx′ + αxy′ + λyx′ − yy′, βxy′ + µyx′),

where α, λ, β, µ are real numbers with β + µ ̸= 0.

Proof. Algebra A has no nilpotent elements of index 2, and contains a nonzero idempotent e [19]

which is an idempotent for the commutative division algebra A+ := (A, ⋄). We have n ≤ 2 by the

commutativity theorem of Hopf, and we can assume that n = 2. There exists u ∈ A such that

u2 = u ⋄ u = −e [7, Lemma 2.3], [13, Remark 1]. We get a basis {e, u} of algebra A for which the

multiplication is given by the table:

e u

e e αe+ βu

u λe+ µu −e

where α, λ, β, µ are real numbers. We then de�ne on the vector space R2 the product:

(x, y)⊙ (x′, y′) = (xx′ + αxy′ + λyx′ − yy′, βxy′ + µyx′).

The mapping Φ : A → (R2,⊙) ae + bu 7→ (a, b) is then an isomorphism of algebras. Indeed, for

every (x, y), (x′, y′) ∈ R2 :

(xe+ yu)(x′e+ y′u) = xx′e+ xy′(αe+ βu) + yx′(λe+ µu)− yy′e

= (xx′ + αxy′ + λyx′ − yy′)e+ (βxy′ + µyx′)u,

Φ((xe+ yu)(x′e+ y′u)) = (xx′ + αxy′ + λyx′ − yy′, βxy′ + µyx′)

= (x, y)⊙ (x′, y′)

= Φ(xe+ yu)⊙ Φ(x′e+ y′u).
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Assume now that β + µ = 0. We have: 0 ̸= (e+ u)2 = ωe where ω = α + λ ̸= 0.

1. If ω > 0 then (e + u)2 = (
√
ωe)2. As A satis�es the uniqueness of the square roots except the

sign, we have: e+ u = ±
√
ωe, absurd.

2. If ω < 0 then (e+ u)2 = (
√
−ωu)2. This gives e+ u = ±

√
−ωu, absurd.

So β + µ ̸= 0.

There are two-dimensional not commutative algebras with divisors of zero satisfying the uniqueness

of the square roots except de sign:

Example 5.4. Theorem 4.3 shows that algebras R2(0, 0, 1, 0) := (R2, ∗), R2(0, 0, 1, 2) := (R2,⊙)

satisfy the uniqueness of the square roots except the sign. However, they are not commutative. In

addition,

1. (R2, ∗) contains divisors of zero.
2. (R2,⊙) is a division algebra.

Now let's move on to improvements via the locally complex property:

Theorem 5.5. Let A be a commutative locally complex algebra without divisors of zero. Then A is

isomorphic to either R or C.

Proof. A is quadratic algebra by Theorem 3.3, with unit e, and we can assume that Im(A) ̸= {0}.
Let u, v be in Im(A)\{0} which can be taken as u2 = v2 = −e. We have: 0 = u2−v2 = (u−v)(u+v).

So v = ±u and then A has underlying vector space Re+ Ru and is isomorphic to C.

Remark 5.6. A commutative locally complex algebra is not necessarily isomorphic to R or C as

shown by [1, Example 4.3]. So the hypothesis of absence of divisors of zero is necessary in Theorem

5.5. Also the fact that algebras H, O are locally complex algebra with no divisors of zero shows that

the hypothesis of commutativity is necessary in Theorem 5.5.
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