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abstract

The wires and ground wires on transmission towers cannot be straight lines, but present di�erent

sizes of arcs, which directly a�ect the safety and transmission quality of the line. In response to

this, a research proposes an online monitoring system for transmission towers based on computer

video algorithms. The system collects environment and mechanism parameters of transmission lines

by installing sensors on transmission towers, monitors them through computer video algorithms,

and combines grey wolf algorithm and deep learning models to predict sag, thereby achieving crisis

warning of the power grid around transmission towers. The outcomes denoted that during the �eld

testing process, the warning accuracy of the system reaches over 98.57%, and the response time is

only 0.5 seconds. The false negative rate and false positive rates are 2% and 0.5%, respectively.

Based on the above content, it can be concluded that the proposed online monitoring system for

transmission towers can e�ectively achieve line anomaly warning and maintain stable line operation.
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1. Introduction

With the development of the national economy, electric power, communication network coverage

area is more and more extensive, electric power transmission lines and communication lines in a

large number of towers, such as high-voltage transmission line towers, communication base station

towers and so on. Towers play an important role in the coverage of power transmission lines and

communication networks [17, 4, 15, 12]. However, due to some natural disasters and coal mining,

engineering construction, man-made damage, etc., tower tilting occurs from time to time. Tower tilt-

ing often causes interruption of transmission lines and communication networks, and serious collapse

� Corresponding author.
E-mail address: 13935413809@163.com (L. Yao).

Received 13 October 2024; Accepted 29 December 2024; Published Online 18 March 2025.

DOI: 10.61091/jcmcc124-32
© 2025 The Author(s). Published by Combinatorial Press. This is an open access article under the CC BY license

(https://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.61091/jcmcc124-32
https://www.combinatorialpress.com/jcmcc
mailto:13935413809@163.com
https://doi.org/10.61091/jcmcc124-32
https://creativecommons.org/licenses/by/4.0/


490 yao et al.

events [3, 14, 7, 1]. These will be a great threat to the safe operation of the transmission network and

the normal work of the communication network. It will bring losses to people's lives and properties.

Therefore, real-time monitoring of the condition of the pole tower is particularly important [18, 10].

The online monitoring system for transmission towers relates to the �eld of online monitoring of

transmission towers. It is designed to solve the problem that the existing transmission pole tower

monitoring setups using wired methods are susceptible to interference from strong electrical signals

on the line and have a low degree of intelligence [2, 19, 20]. It is through the N tower monitoring unit

for multi-point data acquisition, data including tower monitoring node tilt value, microwave value,

wire tension value and vibration value and then sent to the tower monitoring main unit in a wireless

way [11, 5, 9], the tower monitoring main unit monitors the temperature and humidity of the N

tower monitoring unit and the area where the tower monitoring main unit is located, the wind speed,

the wind direction, the rainfall, the barometric pressure and the insolation, and comprehensively

conducts data processing, and �nally transmitted to the monitoring center and mobile terminals

that can communicate with the monitoring center through GPRS wireless communication [13, 6, 16,

8].

Based on the above content, it can be concluded that the existing risk assessment and warning

methods for transmission line operation still face problems such as di�culty in data collection, high

computational complexity, and poor real-time performance. Therefore, a research proposes an online

monitoring system for transmission towers based on computer video algorithms. The system collects

data in a diversi�ed manner by installing sensors and image processing on transmission towers.

Finally, it is applied to deep learning models for prediction, achieving high-precision monitoring and

warning e�ects.

2. Methodology

2.1. Monitoring data collection and data correction

Before conducting monitoring and early warning, high-resolution cameras need to be installed on

transmission towers to collect information such as line sag and distribution. The video data captured

by the camera is transmitted to the central monitoring center through high-speed wireless network.

The study found that there are many environmental factors that a�ect the transmission line. In

order to ensure the accuracy of monitoring, these environmental factors were also collected and the

data was corrected. A sensing and monitoring circuit is proposed during the data collection process

to collect the required dataset. The speci�c electrical composition is shown in Figure 1.

Fig. 1. Sensor detection circuit composition
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In Figure 1, the proposed sensing and monitoring circuit includes camera sag sensing, wind sensing,

and temperature sensing. Under di�erent wind speeds, the stress on transmission lines is not the

same, and errors may occur in sag prediction due to the in�uence of wind speed. Therefore, the

study incorporates wind factors into the construction of the computational model. First is to adjust

the horizontal stress of the conductor based on the ground wind speed. The corrected horizontal

stress is shown in Eq. (1).
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In Eq. (1), l is the span and θ is the multiplicative correction factor, which is set to 0.45 and

Lh=0 = 2θσ0

γ
sh γl

2θσ0
in the study. In daily operation, the temperature of the conductor can cause

changes in the sag of the conductor. The thermoelectric coupling relationship between temperature

and wire sag is shown in Figure 2.

Fig. 2. Thermoelectric coupling process between sag and temperature of transmission line

To reduce the impact of temperature uncertainty, the study classi�ed all collected operating con-

ditions according to temperature sensitivity. The study adopts relative entropy as the classi�cation

standard, and the speci�c process is shown in Eq. (2).

KL (X ∥Y ) = H (X, Y )−H (Y ) =
n∑

a=1

m∑
b=1

P (xa) log
P (xa)

P (xb)
. (2)

In Eq. (2), KL (X ∥Y ) is the relative entropy of environmental temperature and sag relative error,

P (xb) is the probability distribution of error, n and m are the sizes of two datasets, Y is the relative

error and H (X, Y ) is cross entropy, P (xa) is the probability distribution of temperature, X is the

temperature variable, and H (Y ) is the encoding of the true distribution. Based on the calculated

relative entropy and fuzzy membership function, a predictive classi�cation of operating conditions

based on environmental temperature has been achieved. The speci�c process of dividing working

conditions is shown in Figure 3.

In Figure 3, the study further classi�ed the operating conditions after multiple model trainings.

After classi�cation, the study predicts the sag situation under di�erent working conditions.
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Fig. 3. The speci�c process of working condition division

2.2. Prediction of operational obstacles based on PSO algorithm and BPNN

Sensors are installed on transmission towers to receive corresponding transmission line video data,

and after data correction, the computer video algorithms are used to analyze the operation status of

transmission lines. Computer video algorithms collect and process data in the form of videos, and

then identify and predict abnormal situations in the videos. BPNN is applied to pattern recognition

and function approximation, which is trained through multi-layer feedforward networks and back-

propagation algorithms, and can e�ectively learn and simulate complex nonlinear relationships. This

study considers applying it to the construction of computer video algorithms. The study takes the

sag value of the transmission line as the input of the model. In the collected information, the sag

value cannot be directly obtained. Therefore, the study uses the catenary formula to calculate the

sag data of the conductor. The equation of the catenary curve is shown in Eq. (3).
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γ
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γx2

σ0

− 1

)
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In Eq. (3), γ is the speci�c load of the conductor, x is the horizontal distance of the point to be

calculated, c is a positive coe�cient, h is the height di�erence between the suspension points of the

two towers, and σ0 is the horizontal stress at the initial temperature. After inputting sag data into

BPNN, more accurate prediction and analysis of the operation status of transmission lines can be

made. In the forward propagation stage of BPNN, the input sag values are processed by weighted

summation and activation functions of neurons in each layer to produce output results. If there is an

error between the output result and the expected value, the system will enter the backpropagation

stage, where the error gradient is calculated and the weights and biases are adjusted layer by layer

to reduce the error. After multiple iterations of training, BPNN can gradually improve its prediction

accuracy. However, due to the large number of hyperparameters in BPNN, it needs to be pre-trained

in advance, and the training accuracy is not ideal. Therefore, PSO algorithm is used to optimize the

training process and improve the global search ability of the neural network. PSO algorithm is an

optimization technique based on swarm intelligence, which simulates the foraging behavior of bird

�ocks to �nd the optimal solution. Combining PSO algorithm with BPNN can optimize the weights

and biases of neural networks, improving the accuracy and e�ciency of predictions. The �owchart

of the sag prediction method based on PSO-BP is shown in Figure 4.

In Figure 4, the study �rst initializes a three-layer BPNN and optimizes its parameters using the

PSO algorithm. Finally, it is applied to sag prediction through measurement error compensation,

realizing sag prediction. Based on the above content, the study adopts a computer video algorithm

based on PSO algorithm and BPNN to establish an online monitoring system. By establishing a
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computer video algorithm to predict the sag of transmission towers, early warning of line operation

obstacles can be achieved. To further revise the prediction model results, the GWO algorithm is

utilized to further adjust the parameters of sag stress and speci�c load to ensure more accurate

prediction results. The speci�c process of GWO algorithm is denoted in Figure 5.

Fig. 4. Flow of sag prediction method based on PSO-BPNN

Fig. 5. The speci�c �ow of GWO algorithm

In Figure 5, the GWO algorithm searches for the optimal solution by simulating the social hier-

archy and hunting strategy of grey wolves. In the study, the GWO algorithm is utilized to adjust

the parameters of sag stress and speci�c load to optimize the performance of the prediction model.

Through this approach, research can more accurately simulate the actual operating status of trans-

mission lines under di�erent environmental and load conditions, thereby improving the reliability of

early warning systems. The speci�c schematic of attack behavior and search behavior is shown in

Figure 6.

In Figure 6, the attacking behavior includes three stages: surrounding prey, approaching prey, and

ultimately capturing prey. During the encirclement phase, the gray wolf pack forms a encirclement

circle, gradually narrowing the range of their encirclement of prey. During the approach phase,

the position and speed are adjusted based on the prey's reaction and environmental conditions to

approach the prey in the most e�ective way. During the capture phase, grey wolves utilize the

power and speed advantage of their group to launch fast and precise attacks on their prey, ensuring

successful capture. The search behavior is that when the prey moves, the gray wolf needs to constantly

evaluate the position and speed of the prey, predict its possible movement trajectory, in order to

adjust the search strategy in a timely manner and maintain tracking of the prey. The objective of

the optimization process is to minimize the covariance between the true values and predicted results.
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Online monitoring and real-time warning of wire safety on transmission towers is realized through

the above operations.

Fig. 6. Speci�c indication of attack behavior and search behavior

3. Result

To validate the e�ectiveness of the proposed online monitoring system for transmission towers based

on computer video algorithms, a series of experiments were designed and analyzed. The experi-

mental environment included simulation environment and �eld environment. Simulation experiment

was organized on MATLAB software. The simulation environment was used to simulate the oper-

ating conditions of various transmission towers, to test the accuracy and robustness of algorithms

without actual physical equipment. The on-site environmental experiment was conducted on a real

transmission tower in location A.

3.1. Rationality analysis of applying wind speed stress correction and temperature condition

classi�cation

To further reduce the impact of wind speed on sag prediction, the study introduced a wind speed stress

correction mechanism. To verify the rationality of the application of this mechanism, a comparison

would be made between the prediction errors before and after correction using this mechanism. The

result is shown in Figure 7.

Fig. 7. Comparison of prediction errors before and after stress correction

In Figure 7(a), before stress correction, the error �uctuation range of the model was between

-0.8 and 0.8. In Figure 7(b), after stress correction, the error �uctuation range of the model was
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reduced to between -0.5 and 0.4. This indicated that the correction factor proposed in the study

could e�ectively eliminate prediction errors caused by changes in wire stress due to external wind

speed.

To further alleviate the impact of temperature environment on the accuracy of line sag prediction,

the study used fuzzy logic and relative entropy methods to divide the operating conditions, and

predicted the sag of the wires on the transmission tower in a targeted manner based on the division

results. To verify the rationality of this method, a comparison was made between the prediction error

values before and after the optimization of the applied operating condition division. The comparison

results are shown in Figure 8.

Fig. 8. Comparison of prediction errors before and after stress correction

In Figure 8(a), under spring climate conditions, the mean square error of both models increased

with the increase of iteration times. The average mean square error of the improved model was

only 0.05, which was signi�cantly better than the original model. In Figure 8(b), in summer, the

performance of the improved model was also superior to that of the original model. In Figure 8(c),

in the autumn season, which is usually windless and has moderate temperatures, the error values

of both models were relatively low. The error value of the improved model was signi�cantly lower,

with an average of only 0.04. In Figure 8(d), the mean square error of the model after introducing

optimized operating condition classi�cation was signi�cantly lower than before. This indicated that

the proposed working condition classi�cation method could e�ectively avoid prediction errors caused

by temperature e�ects.

3.2. Optimization e�ect analysis of sag prediction model

To improve the training accuracy of BPNN and further ensure the accuracy of sag prediction results

obtained during the monitoring process, GWO and PSO algorithms were studied and applied for

optimization and improvement. To test the improvement e�ect, the study compared the error values

and �tness curves of a single BPNN with PSO-BPNN, GWO-PSO-BPNN models. The results are

shown in Figure 9.

In Figure 9(a), the optimized GWO-PSO-BPNN model exhibited signi�cant advantages in predic-

tion error. Compared with a single BPNN model, the error value of the GWO-PSO-BPNN model
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was signi�cantly reduced. In Figure 9(b), the �tness curve of the GWO-PSO-BPNN model became

smoother during the iteration process and ultimately converged to a lower �tness value. This indi-

cated that the model could more e�ectively �nd the global optimal solution during the optimization

process, thereby improving the accuracy of prediction.

Fig. 9. Comparison of prediction errors before and after stress correction

In addition, the study also conducted a comparative analysis of sag predictions proposed by re-

search under di�erent weather conditions. Comparative indicators included prediction error, pre-

diction accuracy, response time, and area under the receiver's operating curve (AUC). The speci�c

results are shown in Table 1.

Table 1. Performance comparison of sag prediction models under di�erent weather conditions

Project Prediction error (%) Prediction accuracy (%) Response time (s) AUC

Rainy day

BPNN 12.5 82.3 1.5 0.78

PSO-BPNN 8.7 89.5 1.2 0.85

GWO-PSO-BPNN 5.3 93.6 0.9 0.92

Snow

BPNN 15.2 79.6 1.8 0.72

PSO-BPNN 10.4 86.7 1.4 0.81

GWO-PSO-BPNN 6.8 91.2 1.1 0.89

Clear weather

BPNN 7.6 90.1 0.8 0.88

PSO-BPNN 4.1 94.8 0.6 0.94

GWO-PSO-BPNN 2..2 97.3 0.4 0.97

From Table 1, under rainy conditions, the GWO-PSO-BPNN model had the smallest prediction

error of only 5.3%, the highest prediction accuracy of 93.6%, the shortest response time of 0.9

seconds, and the highest AUC value of 0.92. Under snowy conditions, the GWO-PSO-BPNN model

also performed the best, with a prediction error of 6.8%, a prediction accuracy of 91.2%, a response

time of 1.1 seconds, and an AUC value of 0.89. Under clear weather conditions, the prediction error

of the GWO-PSO-BPNN model was further reduced to 2.2%, the prediction accuracy was as high as

97.3%, the response time was shortened to 0.4 seconds, and the AUC value reached 0.97.

3.3. Analysis of the application e�ect of online monitoring system based on computer video

algorithm

To further prove the application e�ectiveness of the proposed online monitoring system (System 1),

a comparative experiment was conducted with the currently popular transmission line online mon-

itoring system. The comparative methods included the monitoring system (System 2) in reference,

the monitoring system (System 3) in reference, and the monitoring system (System 4) in reference.

The study applied these four systems together to the elevated transmission system of A site, and



research on online monitoring system of transmission 497

installed them on di�erent transmission towers for testing. The experiment lasted for 4 months, and

the results of warning frequency and accuracy within 4 months are shown in Figure 10.

Fig. 10. The results of warning frequency and warning accuracy of each system in four months

In Figure 10(a), System 1 was signi�cantly better than the other three systems in terms of warning

frequency, with an average of 12 warnings in four months, while System 2, System 3, and System

4 had an average of 8, 7, and 6 warnings, respectively. In Figure 10(b), the warning accuracy of

System 1 reached over 98.57%, which was higher than other systems.

To further assess the performance of the proposed system, the response time, warning accuracy,

false negative rate, and false positive rate of four systems were recorded during the experimental

period. The speci�c results are shown in Table 2.

Table 2. Performance comparison of each system in �eld experiments

Project Response time (s) Warning accuracy rate (%) False positive rate (%) False negative rate (%)

System 1 0.5 98.15 2.0 0.5

System 2 0.8 95.22 3.0 1.6

System 3 0.6 97.12 2.5 1.0

System 4 0.7 94.32 3.6 1.7

From Table 2, System 1 performed the best in response time, with an average response time of 0.5

seconds. At the same time, it also achieved a warning accuracy of 98%, with a false positive rate of

2% and a false negative rate of 0.5%, demonstrating high performance. Compared to other systems,

its performance was relatively better.

4. Conclusions

To further ensure the safe operation of elevated transmission lines and provide users with reliable

and stable electrical energy, a transmission tower online monitoring system based on computer video

algorithm was proposed. This system achieved intelligent warning by predicting the sag of the

line. Through experimental analysis, it can be concluded that the introduction of wind speed stress

correction and temperature factor classi�cation mechanism signi�cantly reduced the prediction error

of the model, by about 20%. In addition, the prediction accuracy of the model was further improved

through the PSO algorithm and GWO algorithm improvement. In adverse weather conditions, the

prediction accuracy of GWO-PSO-BPNN remained at 91.2%. During the �eld testing process, the

warning accuracy of the system reached over 98.57%, and the response time was only 0.5 seconds.

The false positive and negative rates were both below 2%. From this, it can be seen that the proposed
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online monitoring system for transmission towers based on computer video algorithms can maintain

high monitoring accuracy and help sta� maintain the safety of the transmission network in a timely

manner. In future research, the impact of humidity and regional speci�city on transmission lines can

be further considered to raise the accuracy of the monitoring system.
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