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abstract

The ocean is vital for human survival and development, serving as the birthplace of life and a

source of food, minerals, and scienti�c research materials. It plays a crucial role in global trade,

economic growth, climate regulation, and ecological balance. Underwater positioning technology

is fundamental to marine engineering, with underwater acoustic passive positioning being essential

for sonar source localization. Active and passive acoustic systems help measure underwater noise

and determine target locations. Passive systems rely on signals emitted by targets, while active

systems use interaction signals for positioning. This study applies machine learning to improve

acoustic beacon signal recognition in underwater positioning. Results show that machine learning

enhances recognition speed by 8% and detection accuracy by 9% compared to traditional methods.

By optimizing underwater acoustic signal recognition, this approach enhances positioning accuracy,

reduces costs, and advances intelligent marine technology, providing innovative solutions for complex

marine environments.

Keywords: underwater acoustic active and passive positioning system, machine learning, acoustic

beacon, signal recognition

1. Introduction

China is vast and rich in resources, especially with a 10,000-kilometer-long coastline, and it was once

predicted that the century would be the century of the ocean. With the development of science and

technology, the global demand for energy is increasing, people are no longer satis�ed with just mining
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energy on their own land, they will look to the ocean [15, 3, 16]. Human beings will rely more on

marine resources, get more food, energy, minerals from the ocean, and explore the mysteries of the

earth through the study of the ocean. At the same time, the ocean is also an important arena for

international political, economic and military struggles, countries are vigorously developing marine

resources, but also in the development of their own naval military force, this is because if there is

not a su�ciently deterrent to the opponents of the naval force, we can not protect our undersea

resources, can not consolidate our sea defense [8, 2, 12].

According to the needs of the development of the current international situation, China has also

correspondingly increased investment in naval construction, especially increased investment in the

research and development of high-tech equipment. With the natural camou�age of seawater, the

development of underwater weapons has been the focus of attention [13, 5, 22]. With the rapid

development of underwater weaponry, it is very necessary to introduce a set of e�ective underwater

positioning system to complement the experiment [4].

Hydroacoustic positioning system is an instrumentation system that utilizes the time or phase

di�erence between underwater acoustic pulses propagating along di�erent distance paths to locate

targets on the surface and in the water [6, 18]. Hydroacoustic positioning system according to the

length of the positioning baseline can be divided into three types long baseline positioning system

help, short baseline positioning system, ultra-short baseline positioning system [14, 21].

Hydroacoustic beacons typically send pulsed signals at a frequency of 37.5 kHz, which can transmit

acoustic signals from thousands of meters of water [23]. Once a hydroacoustic beacon is operational,

it will send a pulsed signal once per second and continue for about a month, and this pulsed signal can

be detected by sonobuoys and acoustic locators [10, 20]. Automatic identi�cation of hydroacoustic

signal is an important �eld in the research of underwater target identi�cation technology, and it is

also an outstanding problem in the �eld of hydroacoustic signal processing [19]. The early hydroa-

coustic signal processing method used abroad is blind source separation, and the main hydroacoustic

signal processing methods used in China at present are Fourier transform (short-time Fourier trans-

form, fractional-order Fourier transform), wavelet transform, Hilbert's yellow transform, and error

superposition algorithm, etc [7, 11]. The current hydroacoustic signal processing methods have more

mature applications in the �eld of hydroacoustic signal processing [1]. However, for the detection and

identi�cation of hydroacoustic beacon signals in the sea, these commonly used methods are easily

a�ected by the propagation loss in the water and the background noise of the marine environment,

which makes it di�cult to realize the e�ective detection and identi�cation of acoustic beacon signals

in the long-distance range [9, 17].

Underwater acoustic beacons play an important role in underwater reception, navigation and

identi�cation systems. Moreover, its performance has a huge impact on the positioning accuracy and

the position distance estimation of the target. The underwater acoustic positioning system can set

sonar markers on the measured target, and accurately align with the tracking target on the signal

processing of the known sonar markers to achieve positioning and tracking. Therefore, the accuracy of

the sonar positioning system depends on the detection technology of the sonar signal. The innovation

of the research in this paper lies in the application of machine learning to optimize the beacon

signal recognition of the underwater acoustic positioning system, which signi�cantly enhances the

positioning accuracy and e�ciency. Experimental comparison con�rms that this method far exceeds

traditional technologies in recognition speed and accuracy, highlights the importance of machine

learning in underwater navigation recognition, and contributes a new strategy to the progress of

sonar positioning technology.
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2. Overview of underwater acoustic positioning system

2.1. Introduction to underwater acoustic positioning system

The underwater acoustic active and passive positioning measurement system is a long-baseline po-

sitioning system, and its array distance is generally more than 2 kilometers. Its main purpose is to

detect and measure underwater acoustic beacon signals. After the experiment, the target location

of the rescue operation is determined. The underwater acoustic positioning system can be divided

into active and passive working modes. The most convenient is the passive working mode, because

no target combination is required, and the underwater target does not require any additional test

equipment. In contrast, the active mode of operation is cumbersome, requiring the addition of voice

symbols or hardware platforms to the target for signaling compatibility.

2.2. Function of underwater acoustic active and passive positioning system

Currently widely used underwater active and passive positioning systems have three functions. The

�rst is to track underwater targets in real-time, show three-dimensional trajectories and save data.

The second is a buoy with strong environmental adaptability, corrosion resistance and low power

consumption to ensure stable operation. The third is that the system is self-controlled, reliable and

portable, supports multiple power supplies, and adapts to unattended operations, as shown in Figure

1. First, it can quickly measure the position of the underwater target in real-time and display the

three-dimensional motion path, and can save and revisit the original data of the underwater target.

Second, the buoy is designed to meet the power requirements of low-power batteries. The quality

and arrangement of buoys can meet the requirements of o�shore operations, and meet the operating

conditions of high temperature resistance, humidity resistance, low salinity resistance and seawater

corrosion resistance, so as to achieve accurate positioning. Third, the system has self-control ability,

high reliability, and is easy to carry. The embedded processing system has multiple �xed power

sources.

Fig. 1. Functions of underwater acoustic active and passive positioning system

2.3. The working principle of the active and passive positioning system

The passive method is to receive the radiated noise of the underwater target through the buoy array,

process the signal and calculate the trajectory of the underwater target. In passive mode, the naviga-

tion path is measured through the azimuth single intersection of the vector sensor assembly, and the
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multi-dimensional positioning technology measures the target depth. In the post-processing process,

hyperbolic cross-positioning and Doppler compensation methods are used, combined with di�erent

positioning algorithms, to obtain high-precision trajectory data. In active mode, sound markers are

added to the underwater target, and the buoy matrix is used to receive the pulsed signal of the

underwater acoustic signal by transmitting the pulsed signal during the movement of the underwater

target through the underwater acoustic signal. The time when the underwater acoustic signal arrives

at the buoy can be measured in real-time to obtain the time di�erence between the signal and the

buoy. The embedded computer can use this time interval to solve the trajectory of the underwa-

ter target in real-time through the hyperbolic convergence method. The asynchronous positioning

method can be used to accurately measure and locate the trajectory of the aircraft. In active mode,

a marker is sent to an underwater target; the arrival time of the acoustic signal is recorded; the time

di�erence is calculated. The computer uses time di�erence information and the principle of hyper-

bolic intersection to calculate the target position in real-time to ensure accurate tracking. Through

the Doppler e�ect and positioning algorithm, the positioning accuracy and stability are improved.

3. Problem of acoustic beacon signal identi�cation of underwater

acoustic active and passive positioning system

3.1. The in�uence of the ocean on sound propagation

The in�uence of the marine environment on sound propagation mainly includes three aspects, as

shown in Figure 2. The �rst sea surface and ocean are the extreme boundaries of underwater

sound propagation. The actual sea surface is a rough and uneven surface due to waves and other

phenomena. Backscattering and reverberation caused by the inhomogeneity of the sea surface are

important factors of ocean noise. The ocean �oor is another lower boundary of the underwater

acoustic channel. Underwater structures are very complex and a�ect the absorption and dispersion of

acoustic re�ections. Second, in the marine environment, the reverberation as the underwater acoustic

background is the signal scattering caused by the inhomogeneity of various marine di�users and their

boundaries collected at the receiving point. Third, underwater noise mainly includes target radiation

noise, ocean natural noise and radiation noise of the receiver itself, which is generally considered to

be the interference of Gaussian noise or white noise. The positioning system must capture some

characteristic values of the emission target noise for data acquisition and position positioning.

Fig. 2. Impact of marine environment on sound propagation
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3.2. Acoustic beacon signal detection and identi�cation

Signal search and detection can be divided into two steps: retrieving relevant features to extract

statistics, and then identifying from the visible statistics, as shown in Figure 3. Time-frequency

analysis focuses on the �rst step to improve the characteristics of the original signal, while machine

learning adds variation in the second step. In time-frequency analysis, the signal is discovered by

changing, modulating, and scaling the principal functions in time and frequency. Machine learning

involves creating models and learning from historical data, making predictions and analysis of data

by �nding it. Therefore, bandpass �lters can be used directly in signal processing to �lter frequencies

other than the target frequency point, thereby avoiding interference from ambient noise (including

noise from the receiving platform) and frequency characteristics during signal extraction.

Fig. 3. Signal detection and identi�cation

3.3. Problems faced in the identi�cation of acoustic beacon signals of underwater acoustic active

and passive systems

At present, there are three main problems in the signal recognition of underwater acoustic positioning

system, as shown in Figure 4.

Fig. 4. Problems faced by signal recognition of underwater acoustic positioning system

3.3.1. Passive localization of sound sources in marine environment. In practice, the marine envi-

ronment varies with nature, and it is di�cult to obtain accurate sea�oor parameters. The key to

getting accurate positioning is how to create machine learning models in unsafe marine environments.

The �rst approach is to collect actual data on various hydrological and underwater parameters as

training data for machine learning models. However, it is di�cult to obtain measurement data from

di�erent environmental conditions and sound sources. By using simulated sound data as training
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data, more data can be obtained in enough environments with the lowest cost, but it also causes

the quality of the training data to be more dependent on the accuracy of the sound simulation. In

order to meet the challenge of passive positioning, it is necessary to integrate �eld measurement and

remote sensing technology to comprehensively collect hydrological parameters of di�erent sea areas

and seasons. Through cooperation and data sharing, measured data is integrated to improve data

reliability. Combining high-precision ocean models and simulation technologies, simulated sound

data is generated and veri�ed to enhance the generalization ability of machine learning models.

3.3.2. Passive noise localization. At present, research mainly focuses on localization under high

signal-to-noise ratio conditions, and the localization of existing models is signi�cantly reduced com-

pared with low noise. The corresponding solution is to improve the signal-to-noise ratio in the

network by using traditional signal processing methods such as beamforming or spatial �ltering, or

it uses noisy data as training data to improve the strength of mechanically trained models under low

signal-to-noise ratio conditions.

3.3.3. Simultaneous localization of multiple sound sources. In fact, multiple sound sources (or uni-

directional sound sources) can exist simultaneously. The existing machine learning model is just a

sound source, and how to build a multi-dimensional trainer model is also a hot topic in the �eld

of underwater acoustic localization. Therefore, in order to ensure the accuracy of localization, it is

often necessary to collect noise signals from multiple sound sources.

4. Acoustic beacon recognition design of underwater acoustic active and

passive positioning system based on machine learning

4.1. Algorithm stage of machine learning positioning

Machine localization algorithms are divided into learning and prediction phases. During the training

phase, the raw sound pressure data is used for preprocessing when entering the mechanical training

model. The size of the data used in training depends on or is related to the location of the sound

source. For return machines, the distance or depth of the sound source should be displayed contin-

uously. For classi�ers, the distance or depth of the sound source is usually encoded by a potential

vector. If the corresponding model brand and output match, the unknown parameters of the model

are determined using a speci�c preparation loss function, and the model is trained. Machine learning

models are used to predict data from unknown preparation stages. The introduction of machine

learning models in the prediction phase is the result of the same preprocessing of the measurement

data.

4.2. Analysis of acoustic beacon recognition method under underwater acoustic positioning system

under machine learning

In a machine learning underwater acoustic positioning system, the time, frequency, and intensity

characteristics of the signal are �rst extracted; machine learning models such as support vector ma-

chines or neural networks are used to classify and identify the features to distinguish di�erent acoustic

beacon signals; signal recognition and sensor data are combined to achieve precise positioning and

tracking of underwater targets, and the positioning accuracy and response speed are improved. There

are three di�erences between the underwater acoustic positioning system under machine learning and
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the traditional positioning system. First, the implementation strategy of an algorithm di�ers from

its e�ciency. Machine learning can be viewed as an autonomous learning and network prediction

strategy. During the model preparation phase, intensive computation is performed centrally. The

models created at this stage are measurably computed during the prediction stage, which facilitates

real-time processing of the data. In contrast, traditional methods are based on network matching

strategies in a single parameter space. If the parameter space is large, the computational e�ciency

would be greatly reduced and real-time processing cannot be performed. Second, the cost function

used for localization is di�erent. Machine learning methods are based on regression or ranking prob-

lems. Learning a cost function is primarily used to minimize mean squared error or entropy. Humans

use the appropriate method when dealing with match �elds. The third is strong data processing abil-

ity. Machine learning techniques can combine large datasets with deep learning models. As long as

there is more data, the closer it is statistically to the actual data distribution, both simulated and

actual data can be used as training data. However, traditional processing methods cannot e�ciently

process large amounts of data. The reason is that traditional methods often rely on manual feature

engineering. When faced with high-dimensional data, manual design of e�ective features becomes

extremely di�cult and time-consuming; at the same time, they lack automatic feature learning ca-

pabilities like deep learning, and cannot automatically extract advanced features through multi-layer

abstraction, so the e�ciency and e�ectiveness of processing large-scale data sets are limited.

4.3. Acoustic beacon recognition scheme design of underwater acoustic active and passive system

under machine learning

Supported by machine learning algorithms, buoy technology is used for real-time measurements,

and the clocks of di�erent buoys are synchronized to establish an accurate underwater positioning

system. The passive measurement method is to measure the noise of the target motor and calculate

the trajectory of each buoy. The active measurement method is a wireless signal pulse signal with a

transit time. The system completes the location of the underwater target by measuring the arrival

time of the signal. The acoustic beacon is mainly composed of a signal source board, a power ampli�er

driver board, a converter matching circuit, a power control panel, an energy storage capacitor and

a battery. The working process of the acoustic beacon signal is the main power supply before

the signal is transmitted from the underwater target, and it is realized by a low-power single-chip

microcomputer. However, the power ampli�er is driven by the driver, and after the underwater

target is activated, the acoustic beacon signal does not work immediately, and the transmitter waits

for the signal to be sent. If the ignition delay sends a sound wave, the trigger signal is displayed.

When the signal is working, the display detects the transmission status of the input and transmits

pulses. After a few minutes, the signal searches for transmission status. The transmission interval

is extended and the transmission frequency is reduced. The radio signal is activated when the �nal

target is recovered, as shown in Figure 5.

5. Application of support vector machine algorithm in active and passive

underwater acoustic positioning system

In order to analyze the acoustic beacon identi�cation method of the underwater acoustic active

and passive positioning system, this paper analyzes and researches it through the support vector

machine algorithm. SVM (Support vector machines) are excellent machine learning methods that
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can e�ciently process high-dimensional and noisy sound signals and adapt to linear and nonlinear

data. The SVM model is easy to understand and helps to analyze the relationship between sound

characteristics and categories. First, the classi�er of the acoustic beacon is obtained by introducing

slack variables, where the classi�cation model is:

Fig. 5. Acoustic beacon recognition scheme design of underwater acoustic active and passive system based on machine

learning

zn = αTxn + β. (1)

The distance from xn to the projection is:

xn = x0 + d
α

∥α∥2
. (2)

Then by transforming, it can be obtained:

d (xn) = yn
αTxn + β

∥α∥2
. (3)

Then Formula (3) is converted to maximize the interval, and it can be obtained:

yn
αTxn + β

∥α∥2
≥ dmax, n = 1, 2, · · · , N. (4)

It can be converted to:

dmin
1

2
∥α∥2 ≤ 1 ≤ yn

(
αTxn + β

)
. (5)

Then according to the classi�cation of acoustic beacons, the categories with errors can be found,

and the optimization problem of acoustic beacons at this time is:

dmin
1

2
∥α∥2 + C

N∑
n=1

εn ≤ 1− εn ≤ yn
(
αTxn + β

)
. (6)

C is greater than 0 and is the optimal weight of the acoustic beacon. Then, continuing the error

analysis of the minimum classi�cation of acoustic beacons can be obtained:

Aδ (yn − xn) = |yn − xn| − δ. (7)

Then, regression analysis can be performed on the branches of the acoustic beacon to obtain:

mn =
1

n

N∑
n=1

Aδ (yn − xn) , (8)
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R (xn) =
N∑

n=1

(mn − yn)
2 . (9)

Formulas (8) and (9) are combined to analyze, and it ban be obtained:

ai =
n∑

j=1

αijxj + αi0, i = 1, 2, · · · ,m (10)

Then, the mutual entropy transformation of the training cost can be performed to obtain:

Tn (mn, A (xn, yn)) = −
N∑

n=1

mn lnAn. (11)

For N samples, the corresponding cross-entropy mean and optimal weight are:

T (i) = − 1

N

N∑
i=1

N∑
n=1

mn lnAn, (12)

i = imin

[
− 1

N

N∑
i=1

N∑
n=1

mn lnAn

]
. (13)

Then the optimized cost error function can be obtained as:

T (i) =
1

2

N∑
n=1

|(A (xn, yn)−mn)|2 . (14)

Then the mean square error calculation can be performed on the classi�ed text of the acoustic

beacon, and it ban be obtained:

Qmse =
1

n

N∑
n=1

(yn − xn)
2 , (15)

Qmae =
1

n

N∑
n=1

|yn − xn| , (16)

Qmape =
10

n

N∑
n=1

∣∣∣∣yn − xn

yn

∣∣∣∣2 . (17)

Among them, Formula (15) is the mean error; Formula (16) is the mean absolute error; Formula

(17) is the mean percentage error.

6. Experiment analysis of acoustic beacon signal detection of underwater

acoustic active and passive positioning system under machine learning

In order to further understand the acoustic beacon detection e�ect of the underwater acoustic po-

sitioning system, the machine learning algorithm is used to analyze its performance evaluation. In

this paper, two companies are selected to investigate their satisfaction with the underwater acoustic

positioning system, each of which has 100 employees, as shown in Table 1.

It can be seen from the table that the two companies are relatively satis�ed with the underwater

acoustic positioning system, accounting for more than half of the total number of people. In their
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view, the water color positioning system can not only actively detect the acoustic beacon signal, but

also locate by the signal frequency of the acoustic beacon, which is very bene�cial to the detection

and positioning of underwater targets. However, for those who are not satis�ed, they feel that the

underwater acoustic positioning system under machine learning is not as convenient as the traditional

positioning system, and it is not conducive to target detection.

Table 1. Enterprise satisfaction with underwater acoustic positioning system

Satis�ed Commonly Dissatis�ed

Enterprise A 75 12 13

Enterprise B 81 15 4

Total 156 27 17

6.1. The receiving frequency and performance analysis of the acoustic beacon signal of the

underwater acoustic positioning system under machine learning

In order to further understand the use e�ect of the underwater acoustic positioning system, this

paper analyzes and studies the receiving frequency and performance degree of the acoustic beacon

signal through the machine learning algorithm, as shown in Figure 6.

Fig. 6. Receiving frequency and performance analysis of acoustic beacon signal of underwater acoustic positioning

system under machine learning

It can be seen from the �gure that with the continuous increase of water depth, the signal receiving

frequency and performance of the underwater acoustic positioning system are also increasing. This

shows that machine learning can more e�ectively assist underwater acoustic positioning systems

in target recognition and detection in the deep sea, and the signal reception frequency of acoustic

beacons in the deep sea is still normal. The performance is almost the same as that of the shallow

sea, which is very conducive to the normal operation of deep sea target detection. Therefore, machine

learning can improve and make up for the shortcomings of the deep sea �eld.

6.2. Application analysis of underwater acoustic positioning system under the support vector

machine algorithm

In order to further test the accuracy of the underwater acoustic positioning system, the support

vector machine algorithm is used to analyze the mutual entropy value and optimal weight of the

acoustic beacon signal identi�cation. The speci�c results are shown in Figure 7.

As can be seen from the above �gure, with the increase of time, the mutual entropy value and

optimal weight of the water color positioning system are constantly increasing. The mutual entropy
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value is about 1.90, and the optimal weight is about 1.38. The continuous improvement of the signal

mutual entropy value of the underwater acoustic active and passive positioning system under machine

learning shows that machine learning can promote the signal recognition e�ect of the underwater

acoustic active and passive positioning system, so that the deep-sea target signal can be sent out more

quickly, which is convenient for signal reception and detection. The continuous growth of the optimal

weight indicates that the proportion of machine learning in the active and passive determination of

underwater acoustics is constantly increasing.

Fig. 7. Application Analysis of underwater acoustic positioning system based on machine learning algorithm

6.3. Analysis of recognition speed and detection accuracy of underwater acoustic positioning

system under machine learning

In order to better understand the acoustic beacon detection e�ect of the underwater acoustic posi-

tioning system, this paper analyzes the recognition speed and detection accuracy of the underwater

acoustic positioning system under machine learning and the traditional underwater acoustic posi-

tioning system, as shown in Figure 8.

Fig. 8. Analysis of recognition speed and detection accuracy of underwater acoustic positioning system under machine

learning

As can be seen from the �gure, the recognition speed and detection accuracy of the acoustic

beacon signal under machine learning are much higher than the traditional recognition mode, and

the recognition speed is about 8% higher, and the detection accuracy is about 9% higher. Because
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the target detection e�ect of the underwater acoustic positioning system under machine learning

is better, the data processing and analysis of the target can be performed to judge the movement

trajectory of the target, thereby promoting the improvement of the recognition speed and detection

accuracy. However, the traditional underwater acoustic positioning system can only locate the target

in a fuzzy way, and it takes a lot of manpower and material resources to further search, which is not

conducive to the identi�cation and detection of the target.

7. Conclusion

Active and passive underwater positioning systems are external tracking systems used for the trajec-

tory of underwater high-speed targets. The system uses the residual network to capture the signals

of high-speed underwater moving targets (passive positioning model) or high-speed underwater mov-

ing targets (active positioning model) in real-time, and synchronously collects the data between the

residuals through the receiver. This data is then collected through wireless communication with a

computer display control panel and measures the target's trajectory in the water. Then, by adjusting

the appropriate converter circuit, the impedance adjustment of the converter is realized, so that the

converter can work most e�ectively. Finally, through the design and debugging of the power ampli�er

circuit, the power design of the transmitter signal is realized.
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