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abstract

In this paper we study a new graph parameter, the stacking number. De�ned in relation to the

eternal domination game, we show that there are highly connected graphs for which it is bene�cial

to allow multiple guards to occupy a vertex, answering an open question of Finbow et al. In fact,

we show that for any sequence (si), allowing sj guards to occupy a vertex can save arbitrarily many

guards in comparison to allowing fewer than this on a vertex. We also show that the stacking number

is 1 for all trees.
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1. Introduction

The eternal domination game is a two player game played on a graph G between an attacker and a

defender. Taking turns, the attacker selects a vertex to attack, and the defender must defend against

the attack by moving one of the guards they control on to the attacked vertex (other guards may

also move). If the defender is ever unable to defend against an attack, the attacker wins. Otherwise,

the defender wins. The most well studied aspect of this problem is the eternal domination number,

de�ned as the minimum number of guards the defender needs in order to win.

This problem was introduced by Burger et al. [1], where the problem considered had the additional

restriction of only allowing a single guard to move in response to an attack. In this model they were

able to show that there is no bene�t to allowing multiple guards to occupy a vertex. Goddard et

al. [3] conjectured that there would similarly be no bene�t to allowing multiple guards on a vertex

when all guards are allowed to move. This was shown to be false by Finbow et al. [2] who showed

that there are graphs for which it is bene�cial to allow 2 guards to occupy a vertex, and that the

number of guards this saves can be arbitrarily large.
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An example of their construction can be seen in Figure 1. The numbers indicate the number of

guards on that vertex. When only 1 guard is allowed to occupy a vertex, 9 guards are needed whereas

when 2 or more are allowed, 8 guards su�ces. This implies that the stacking number for this graph

is at least 2. In Theorem 3.8 we show that this is the minimum number of guards needed in all cases,

and that this graph has stacking number exactly 2.

Fig. 1. An example of a graph constructed by Finbow et al. demonstrating that there are graphs with stacking

number 2. On the left and right are con�gurations from eternal dominating strategies where at most 1 and 2 guards

are allowed to occupy a vertex respectively. Each con�guration can recon�gure to the other in its pair

In this paper we use DS(G; k) to denote the eternal domination number of G when at most k

guards are allowed to occupy a vertex. We use DS(G;∞) to denote the number of guards needed

to eternally dominate G when any number of guards may occupy a vertex. Clearly as we increase

k, the number of guards needed does not increase, and the minimum is achieved when we allow any

number of guards to occupy a vertex. This is summarized by the following proposition:

Proposition 1.1. For any graph G and integer k, we have

DS(G;∞) ≤ DS(G; k) ≤ DS(G; 1).

The minimum number of guards required to defend G is DS(G;∞). Clearly there is no advantage

to placing more than DS(G;∞) guards on a single vertex, and as such there exists some minimum
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l0 such that DS(G; l0) = DS(G;∞). We refer to this number as the stacking number of G, which

we denote by S(G). Phrased in terms of this new parameter, the results of Finbow et al. show that

there are graphs which have stacking number at least 2. However, the graphs they constructed all

contain a cut-vertex, leading them to pose the following problem:

Problem 1.2. [2] Is true that for any integer c, there exists a 2-connected graph such that DS(G; 1)−
DS(G;∞) ≥ c?

In Section 3 we answer Problem 1.2 in the a�rmative and in the process show that for any k and

s, there are in�nitely many k-connected graphs with stacking number s. In Section 4 we show that

if T is a tree, then S(T ) = 1.

2. De�nitions & terminology

Let G = (V,E) be a graph. We use N(v) and N [v] to denote the open and closed neighbourhoods

of the vertex v respectively, where

N(v) = {u : uv ∈ E(G)},
N [v] = N(v) ∪ {v}.

If S is a set of vertices, the open and closed neighbourhoods of S are de�ned similarly:

N(S) = {u : u ∈ N(v) for some v ∈ S} \ S,
N [S] = N(S) ∪ S.

A set D ⊆ V is called a dominating set if for all v ∈ V either v ∈ D or v has some neighbour

u ∈ D. Alternatively, D is a dominating set if N [D] = V (G). The size of a minimum dominating

set for a graph G is denoted as γ(G).

The main results of this paper concern the eternal domination game, played on a graph G between

two players, the Attacker and the Defender. We give the speci�c rules of this game shortly, but

begin with some necessary preliminary de�nitions. For some �xed k, the Defender controls a set of

k mobile guards who occupy the vertices of the graph. Formally, this can be treated as a function

c : V → 2[k] such that {c(v) : v ∈ V } forms a partition of [k]. We refer to such an assignment as a

k-con�guration (of guards)1, and use the notation Sc to denote the set of vertices which have a

guard on them, i.e. Sc = {v : |c(v)|≥ 1}. A con�guration is called a dominating con�guration if

Sc is a dominating set of G.

We say that two k con�gurations c1 and c2 can recon�gure to one another if it is possible to move

the guards in c1 to adjacent vertices such that they form c2. Note that we explicitly allow all guards

to move.

Given a graph G, the k eternal domination game is a game played on G between two players,

the Attacker and the Defender. To begin, the Defender places k guards on the vertices of G such in

some k dominating con�guration. The Attacker and Defender then take turns doing the following:

� The Attacker selects some vertex t of G to attack.

� The Defender defends against the attack by recon�guring their guards so that the result is a

dominating con�guration with a guard on t.

1 We use this particular de�nition as it allows us to refer to speci�c guards with labels.
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The Attacker wins if the Defender is unable to defend against an attack. Otherwise, the Defender

wins. The minimum value of k for which the Defender has a winning strategy is known as the eternal

domination number of G, denoted here as D(G).

We note that the above de�nition explicitly allows an arbitrary number of guards to occupy a

single vertex in each con�guration. As mentioned in the introduction, this paper is concerned with

the variation of limiting the number of guards allowed to occupy any given vertex. As such, we use

the notation DS(G; l) to denote the minimum number of guards needed for the Defender to win the

game of eternal domination when they are allowed to place at most l guards on a vertex in any

con�guration of their strategy.

The stacking number of a graph is then the minimum l0 such that DS(G; l0) = D(G). We denote

this as S(G). In other words, it is the minimum number of guards we must allow to occupy a vertex

in order for the Defender to have a strategy which uses the minimum number of guards over all

strategies without restriction. This is equivalent to saying l is the maximum number of guards which

occupy a vertex in any con�guration in any optimal strategy when minimized over all strategies.

The name stacking number is in reference to the notion of the guards being physical tokens

occupying vertices, and needing to stack them on one another when multiple occupy a vertex. As

mentioned in the introduction, the stacking number can be viewed as an example of how the number

of guards needed may drop as the number of guards allowed to occupy a vertex increases. Accordingly,

we de�ne the stacking sequence of a graph G as DS(G; 1), DS(G; 2), . . . , DS(G;∞). The stacking

number and the stacking sequence are clearly related, as the stacking number is simply the maximum

index i such that DS(G; i− 1) > DS(G; i).

3. Airports

We seek to show that for any k and s there are in�nitely many k-connected graphs with stacking

number s. To accomplish this, we construct a graph we refer to as an airport. This graph is

constructed from several pieces called wings, gates, and terminals, de�ned below:

Let k ≥ 1 and s ≥ 2 be integers. We refer to copies of Kk+2 − e as a k-terminal or simply a

terminal if k is clear. If the missing edge is e = uv then we will call the vertices u and v thematched

pair of the terminal, and the rest of the vertices the gates.

Let W (k, s) be the graph de�ned as follows:

� Begin by taking s disjoint k-terminals.

� Attach a universal vertex u.

We call such a graph a wing with capacity s. For a given wing W , we will denote its universal

vertex by uW . See Figure 2 for an example of these graphs within our larger construction.

Note that for a wing W , removing uW disconnects the graph. However, removing any other k − 1

vertices does not do so. We will use several wings to construct the �nal graph we are interested in.

Now, take the following assumptions:

� Let k ≥ 1 be a positive integer;

� S = {si} be some strictly increasing �nite sequence of integers bounded below by 2;

� C = {ci} be some �nite sequence of integers such that for each i we have 2ksi < ci.

Then, construct the graph G(k, S, C) as follows:

� For each i, add ci distinct copies of W (k, ksi), labelled Wi,1, . . . ,Wi,ci .
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� Add a copy of Kk, denoted B, disjoint from all wings2.

� Join the vertices of B to the gates of each terminal by adding all possible edges between them.

We call G(k, S, C) an airport. See Figure 2 for an example of each piece of this construction.

Fig. 2. A depiction of the airport G(2, (2), (5)). Some wings and edges have been omitted in the interest of clarity

and space. The gates of each terminal are the square vertices. The universal vertex of each wing is connected all

vertices in its respective terminals. The vertices of B are adjacent to all gates

We can now begin proving results about these graphs, beginning with a few useful lemmas.

Lemma 3.1. Let W = W (k, s) be a wing with universal vertex uW . Then D(W ) = 2.

Proof. We �rst demonstrate that there is an eternal dominating strategy for W using two guards.

As usual, let uW be the universal vertex in W ; we will maintain a guard on uW at all times. Place

the other guard on an arbitrarily chosen vertex. If some vertex t is attacked, we can move the guard

on uW to t and the other guard to uW .

To see that a single guard is insu�cient, observe that the only way to form a dominating con�gura-

tion with one guard is to place that guard on uW . If some vertex other than uW is then attacked, we

must necessarily move the guard to that vertex, and thus no longer have a dominating con�guration.

The result follows.

Lemma 3.2. Let W = W (k, s) be a wing with universal vertex uW . Let W ′ be the graph obtained by

joining the gates of W to a clique (of any size) with all possible edges. If D ⊆ V (W ′) is a dominating

set not containing uW , then D must contain at least one vertex from each terminal.

Proof. Suppose for contradiction that D does not contain any vertices in some terminal. Let x and

y be the matched pair in this terminal. These vertices are only adjacent to the gates of their terminal

and uW , and so D is not a dominating set.

2 B for baggage.
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Lemma 3.3. Let G = G(k, S, C) be an airport. Consider playing the eternal domination where s

guards are allowed to occupy a vertex on G. In any winning strategy, there must be there must be at

least two guards on each wing with strictly more than s terminals at the end of each round.

Proof. Suppose for contradiction that the Defender has a winning strategy where they end a round

in some con�guration c which places fewer than 2 guards on some wing W . If we have at most one

guard and there is no guard on uW , then we clearly do not have a dominating con�guration, which

is a contradiction.

We now consider the case where there is exactly 1 guard on W , located on uW . Let v1 be a vertex

in some matched pair in W and consider attacking it. The guard on uW must move to defend against

this attack. Any resulting con�guration will not have a guard on uW and thus by Lemma 3.2 we

must have at least one guard on each terminal. The only guards that can move into the terminals

must come from B, and by construction there can be at most kj of them. However, since j < si, we

have kj < ksi and so the resulting con�guration cannot be a dominating set. The claim follows.

We can now begin the proof of our main results. We �rst show that G(k, S, C) is k-connected.

Lemma 3.4. The graph G(k, S, C) is k-connected.

Proof. Let G = G(k, S, C), with B given as above. Let R be some set of k−1 vertices, and consider

G′ = G \R. We will show that G′ is connected, thus implying that G is k-connected.

As |B|= k, there must be some vertex v ∈ B such that v ̸∈ R. We will show that there is a walk

from any other vertex in G′ to v. Let u ̸= v be some vertex in G′. If u ∈ B, or u is a gate in some

terminal, then uv ∈ E(G′) and there is trivially a walk from u to v.

Let T be some terminal in wing Wi,j. By construction T has k gates and thus there must be at

least one gate remaining. Call this vertex g. The vertices of the matched pair in T are adjacent to

g, as is the universal vertex of Wi,j. Thus there is a walk from each of these vertices to v. The result

follows.

We approach the problem of determining the values of an airport's stacking sequence in four parts,

each below. Parts of these proofs are based on the proof of Theorem 2 in [2].

Lemma 3.5. Let G = G(k, S, C) be an airport with stacking sequence (aj). If j < s1, then aj =

1 +
|S|∑
l=1

2cl.

Proof. We need to show that when up to s1 guards are allowed to stack, it is both necessary and

su�cient to use 1 +
|S|∑
l=1

2cl guards to eternally dominate G.

To see that this number of guards is su�cient, note that by Lemma 3.1 we can defend each wing

with 2 guards. This leaves only B, which can be trivially defended using a single guard as it is a

clique.

We now show that DS(G; 1) ≥ 1+
|S|∑
l=1

2cl. Suppose we have only
|S|∑
l=1

2cl guards. By Lemma 3.3 we

must have at least 2 guards in each wing at the end of each round, and thus there can be no guards

in B at the end of a round. This means it is impossible to defend against an attack on a vertex in
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B, a contradiction. Thus, we need at least 1 +
|S|∑
l=1

2cl guards, and the result follows.

Recall that the wings of an airport are labelled as Wi,j where i is the capacity of the wing, and j

is simply an arbitrary label.

Lemma 3.6. Let G = G(k, S, C) be an airport with stacking sequence (aj). Fix 1 ≤ i ≤ |S| and let

K =
i∑

l=1

cl +
|S|∑

l=i+1

2cl + 2ksi. If j ≥ si, then aj ≤ K.

Proof. We will prove this result by demonstrating a strategy using K guards. We will do this by �rst

providing an initial con�guration. This con�guration splits the guards into several groups depending

on their initial locations. We will then show that a con�guration satisfying some conditions can

defend against an attack on any vertex while still satisfying the conditions. In particular, our initial

con�guration satis�es these conditions, giving us an eternal dominating strategy. We begin with the

initial con�guration:

� For each wing Wt,r place a guard gUt,r on the universal vertex of Wt,r.

� For each wing Wt,r with t > si place a guard gHt,r on some other vertex in Wt,r.

� Place si guards on each vertex in B, labelled as gBt for 1 ≤ t ≤ ksi.

� Arbitrarily place another ksi guards on the gates of some wings, labelled gBt for ksi + 1 ≤ t ≤
2ksi.

For the sake of notation, let gU , gH , and gB denote the sets of guards of the form gUt,r, g
H
t,r, and

gBt respectively. Observe that this initial con�guration uses exactly K guards and is a dominating

con�guration as there is a guard on the universal vertex of each wing, and there are (many) guards

on the vertices of B.

We may now move on to the second part of this proof. Consider the set of following conditions:

� For each wing Wt,r, either g
U
t,r is on the universal vertex u or it is in some terminal T and each

terminal has exactly one guard from gB in it.

� There are always si guards from gB on each vertex of B.

� The other guards from gB are located in the neighbourhood of B.

� For each t and r, gUt,r remains in N [uWt,r ].

Observe that the initial con�guration given above satis�es all of these conditions. We will now show

that any con�guration satisfying these conditions can defend against any attack while still satisfying

these conditions.

Suppose we are in some con�guration satisfying the conditions above and that some vertex v has

been attacked. We can trivially defend against this attack if v ∈ B. So suppose v belongs to some

wing Wt,r. If t > si we can defend against the attack by Lemma 3.1. So suppose t ≤ si. We have

two further cases depending on the location of gUt,r:

� If gUt,r is currently on u, then we can move it to v. By Lemma 3.2 we must move at least one

guard to each terminal. We can accomplish this by moving a guard from B to a gate in each

terminal of Wt,r. This is always possible as there are at most ksi terminals in Wt,r, and exactly

ksi guards on B.

� If gUt,r is not on u, then it is located in some terminal along with another from gB. Let c be the

current con�guration and consider G′ = G[Sc ∪ {v}]. By our conditions, there is a path from
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gUt,r to v in G. Let P be a shortest such path and note that all vertices on P have a guard on

them except v. Consider moving these guards along P toward v, while swapping the labels of

gUt,r and the guard which moves to v. We do not need to do any further relabelling as any other

guards moved belong to gB, and the labels of these guards is arbitrary.

In any of the above cases, we may need to make some of the following moves in order to maintain

the conditions we began with:

� If there are any wings Wt,r with t ≤ si which were not attacked and for which gUt,r is not located

on uWt,r we move gUt,r to uWt,r .

� For each guard of gB which left B, move some guard of gB which began in N(B) to replace it.

Note that this is always possible, as we move at most ksi guards out of B in any round, and

by our conditions have exactly ksi guards located in N(B).

To see that our conditions have been maintained, observe the following:

� Each wing Wt,r with t ≤ si which was not attacked has gUt,r on uWt .

� If a wing Wt,r with t ≤ si was attacked we have either moved a guard from B to each terminal,

or began with such guards already there.

� Each wing Wt,r with t > si always has 2 guards in it, one of which is always located on uWt,r .

� We never move the guards in gB outside of N [B] and always maintain ksi guards on B.

Thus our conditions are always maintained, and so we have an eternal dominating strategy. The

result follows.

Lemma 3.7. Let G = G(k, S, C) be an airport with stacking sequence (aj). Fix 1 ≤ i ≤ |S| and let

K =
i∑

l=1

cl +
|S|∑

l=i+1

2cl + 2ksi. Now,

� If i ≤ |S|−1 and j < si+1;

� or if i = |S| and j > si,

then aj ≥ K.

Proof. Suppose for contradiction that we have an eternal dominating strategy which uses strictly

fewer than K =
i∑

l=1

cl +
|S|∑

l=i+1

2cl + 2ksi guards. We begin by determining the locations of some of

these guards. By Lemma 3.2 there are at least
|S|∑

l=i+1

2cl guards in the wings with capacity at least

si+1. In order to have a dominating set there must be at least one guard in each wing with capacity

at most si, so there are at least
i∑

l=1

cl guards on these wings. This leaves at most 2ksi − 1 guards

whose locations we have not determined.

By assumption there are at least 2ksi + 1 wings of capacity si, each of which has ksi terminals.

Thus there are at least two such wings with exactly one guard on them, call them Wsi,1 = W1 and

Wsi,2 = W2 without loss of generality. Let g1 and g2 be the guards located onW1 andW2 respectively.

Consider attacking a matched vertex v1 in some terminal T of W1. Any resulting con�guration must

place g1 on the attacked vertex. As g1 was the only guard in W1, there cannot be a guard on uW1 .

Thus, by Lemma 3.2 we must have a guard on each terminal other than T . Additionally, as g1 is not

adjacent to the other matched vertex in T , we must move another guard to T as well. Thus, there

are now ksi + 1 guards on W1, and at most ksi − 1 guards whose locations we do not know.
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Consider attacking a matched vertex of some terminal T ′ of W2. By a similar argument as before,

we must move ksi guards to W2 to defend against this attack. However only ksi − 1 guards can

possibly make such moves, so we cannot defend against this attack and obtain a contradiction. The

result follows.

We can now combine the above lemmas to give us an exact description of the stacking sequence

of an airport.

Theorem 3.8. Let G = G(k, S, C) be an airport with |S|= |C|= l and stacking sequence (aj). Each

of the following is true:

� If j < s1, then aj = DS(G; j) = 2
l∑

k=1

ck + 1.

� If si ≤ j < si+1, then aj = DS(G; j) =
i∑

k=1

ck + 2
l∑

k=i+1

ck + 2ksi.

� If sl ≤ j, then aj = DS(G; j) =
l∑

k=1

ck + 2ksl.

Proof. Each claim follows directly from applying the results of Lemmas 3.5, 3.6, and 3.7.

Finally, we show that there are in fact graphs with arbitrary stacking number and connectivity.

Corollary 3.9. For any k, s there is a k-connected graph G with S(G) = s.

Proof. Let k and s be given and consider G = G(k, (s), (2s+ 1)). Recall that the stacking number

is equivalent to the last index at which the stacking sequence of G decreases. By Theorem 3.8 this

occurs exactly at s for G, thus S(G) = s. G is k-connected by Lemma 3.4, and the result follows.

We can also use the characterization of the stacking sequence of an airport to show that one can

completely specify the location and size of any decreases in a graph's stacking sequence.

Corollary 3.10. Let k be some integer and A some positive non-increasing sequence of integers. Let

S ′
i = (i : ai − ai−1 < 0) and let C ′

i = (2(ai−1 − ai) + 1 : i ∈ Si). Then A is a stacking sequence for a

k-connected graph when the following conditions hold:

� maxA = 2
∑

c′i + 1,

� minA = k ·max s′i +
∑

c′i,

� 2ksi < ci holds for all i.

Proof. Consider the graph G(k, S ′, C ′). The result then follows from Theorem 3.8.

Corollary 3.11. For any integers k and c, there exists a k-connected graph G such that DS(G; 1)−
DS(G;∞) ≥ c.

Proof. Consider the airport G(k, S, C) where S = (2) and C = (c + 4k). The result then follows

from Theorem 3.8.
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4. Stacking number of trees

We now show that trees have stacking number 1. The proof of this relies on two reductions commonly

used for determining the eternal domination number of a tree, known as R1 and R2 [4]. Let T be a

tree:

� The reduction R1 can be applied to a vertex x with deg(x) = 2 and which is adjacent to

exactly one leaf, y. It removes both x and y.

� The reduction R2 can be applied to a vertex x with deg(x) ≥ 3 and which is adjacent to

exactly one internal vertex of T . It removes all leaves adjacent to x.

As mentioned these reductions can be used to compute the eternal domination number of a tree

by repeatedly applying the following theorem. We will use this result in our proof that all trees T

have S(T ) = 1.

Theorem 4.1. [4] Let T be a tree.

� If we apply R1 to T and obtain H, then D(T ) = D(H) + 1.

� If we apply R2 to T and obtain H, then D(T ) = D(H) + 1.

Theorem 4.2. Let T be a tree. Then S(T ) = 1.

Proof. Let T be a tree. We will prove this result by induction on both the order and diameter of T .

Suppose for induction that the result is true for all trees T ′ with diam(T ′) < diam(T ), and also for

all trees T ′ where diam(T ′) = diam(T ) but |V (T ′)|< |V (T )|. The result is obviously true for trees

with diameter at most 1. Any tree with diameter 2 is a star, and by a similar proof to Lemma 3.1

we can defend T with 2 guards. Clearly, there is no advantage to placing both of these guards on

a single vertex. Now, by Theorem 1.1 we need only show that DS(T ;∞) ≥ DS(T ; 1). We have two

cases depending on which reductions we can apply to T .

First suppose that we can apply R2 to delete the vertex x and an adjacent leaf y from T to

obtain T ′. By induction we know that DS(T
′;∞) = DS(T

′; 1), and by Theorem 4.1 we know that

DS(T ; 1) = DS(T
′; 1) + 1. Suppose for contradiction that DS(T ;∞) < DS(T ; 1); then there is some

strategy Λ which allows for k ≥ 2 guards to be stacked and uses fewer than DS(T ; 1) guards. Note

that in order to maintain a dominating con�guration, there must always be a guard on x or y in

every state of Λ. Let Λ′ be the strategy where we have removed any moves along the edge connecting

x to the rest of T . Then Λ′ must be an eternal dominating strategy when restricted to T ′, which

uses at most DS(T ;∞)− 1 guards. Thus,

DS(T
′;∞) ≤ DS(T ;∞)− 1 < DS(T ; 1)− 1 = DS(T

′; 1),

which is a contradiction.

Next suppose that we obtain T ′ by applying R1 to delete the leaves l1, . . . , lt, with t ≥ 2. By

induction we again know that DS(T
′;∞) = DS(T

′; 1), and again by Theorem 4.1 we know that

DS(T ; 1) = DS(T
′; 1) + 1. Suppose for contradiction that DS(T ;∞) < DS(T ; 1) and let Λ be a

strategy which uses this number of guards. We construct an eternal dominating strategy Λ′ for T ′ as

follows: copy Λ, and for each state let g be some guard which is either on x or some li (guaranteed to

exist by de�nition of a dominating set). Delete g from that state, and then move any other guards

on a leaf li to x. This clearly forms an eternal dominating strategy for T ′ which uses DS(T ;∞)− 1
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guards, and we again get a chain of inequalities:

DS(T
′;∞) ≤ DS(T ;∞)− 1 < DS(T ; 1)− 1 = DS(T

′; 1),

which is again a contradiction. Thus S(T ) = 1 for any tree T .

5. Conclusion

In this paper we have presented the stacking number, and answered an open question of Finbow et

al. [2]. We did so by constructing a speci�c class of graphs with the desired properties. However,

there remain many open questions regarding more general results for this parameter.

Problem 5.1. Which other graphs, provided they exist, have stacking number greater than 1?

Problem 5.2. Are there other classes of graphs for which the stacking number can be bounded,

similar to what we have done for trees?

We introduce one last new parameter which may be of interest. Let G be a graph with n vertices

and Λ an eternal dominating strategy of G. Let σs(G,Λ) denote the set of vertices in G which have

more than s guards placed on them in some state of Λ. Let Λ0 be an eternal dominating strategy

of G using D(G) guards taken to minimize the value of |σs(G,Λ0)|
n

. We call the minimum such value

the s-stacking proportion of G. Finally, let S+(s) denote the maximum value of the s-stacking

proportion when taken over all graphs.

Corollary 5.3. For any s we have that S+(s) ≥ 1
2s2+s+1

.

Proof. Let G = G(k, (s), (2s+ 1)) and note that G has the following number of vertices:

(2s+ 1)(s(k + 1) + 1) + k = k(2s2 + s+ 1) + (2s+ 1)2,

The stacking number of G is s, and k vertices are required have s guards stacked on them in any

optimal strategy. Therefore we get that

S+(s) ≥ k

k(2s2 + s+ 1) + (2s+ 1)2
.

If we take the limit as k goes to in�nity the result follows.

Problem 5.4. What is the asymptotic behaviour of S+(s)? In particular, is it true that S+(s) ∈
Ω(1)?
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