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abstract

Given a prime p, a p-smooth integer is an integer whose prime factors are all at most p. Let Sp be

the multiplicative subgroup of Q generated by −1 and the p-smooth integers. De�ne the p-smooth

partial �eld as Sp = (Q, Sp). Let g be the golden ratio (1 +
√
5)/2. Let Gp to be the multiplicative

subgroup of R generated by g, −1, and the p-smooth integers. De�ne the p-golden partial �eld

as Gp = (R, Gp). The partial �eld S2 is actually the well-known dyadic partial �eld and S3 has

sometimes been called the Gersonides partial �eld. We calculate the fundamental elements of S5,

G2, G3, and G5. Our proofs make use of the SageMath computational package.

Keywords: partial �eld, golden ratio, p-smooth integer, matroid representation, matroid orientation

1. Introduction

The introduction of this paper assumes that the reader is familiar with matroid theory and linear

optimization; however, these subjects are only necessary for motivating our study. The remainder of

the paper is readable for any mathematically literate person.

A partial �eld P is a pair (R,G) in which R is a unitary ring (in this paper R will also be

assumed to be commutative) and a subgroup G of the multiplicative group of units of R for which

−1 ∈ G. A matrix A is a P-matrix when every non-zero sub-determinant of A is in G. One of the �rst

widely studied examples of such matrices are totally unimodular matrices which are U0-matrices with

U0 = (Q, {+1,−1}). Consider the polyhedron Ax ≤ b in which b is any integral vector. Ho�man

and Kruskal [3] showed that every vertex of this polyhedron is integral for any b if and only if A

is totally unimodular. This implies that linear optimization and integer optimization are equivalent

precisely when A is totally unimodular. This is highly signi�cant in that integer optimization is

NP-hard in general while linear optimization is quasi-polynomial (and is widely conjectured to be

polynomial).
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More recently studies concerning partial �elds and P-matrices have proliferated; in particular,

within the �eld of matroid theory. Included among the many highly in�uential works are those of

Tutte [15], Seymour [12], Lee [4, 5], Whittle [17, 18], and Pendavingh and Van Zwam [9, 10].

One thread of investigations concerns the relationship between the matroids which are both ori-

entable and representable over some �nite �eld. The dyadic partial �eld is D = (Q, {±2i : i ∈ Z})
and the golden-mean partial �eld is G = {R, {±gi : i ∈ Z}) in which g is the golden ratio 1+

√
5

2
. A

matroid M is P-representable when there is a P-matrix A for which M = M(A).

Theorem 1.1 (Bland and Las Vergnas [1] and Minty [8]). If M is a GF (2)-representable (i.e.,

binary) matroid, then M is orientable if and only if M has a U0-representation.

Theorem 1.2 (Lee and Scobee [6]). If M is a GF (3)-representable matroid, then M is orientable

if and only if M has a D-representation.

Theorem 1.3 (Robbins and Slilaty [11]). If M is a GF (4)-representable matroid, then M has a

consistently ordered orientation if and only if M has a G-representation.

While Theorems 1.1 and 1.2 tell us that the relatively simple partial �elds U0 and D completely

describe all orientations of GF (2)- and GF (3)-representable matroids, Theorem 1.3 reveals that

GF (4)-representable matroids have enough complexity so that a simple partial �eld like G is not

enough to describe all orientations. This leaves us with two obvious questions. One, how might we

describe the remaining orientations of GF (4)-representable matroids? Two, what about orientations

of GF (q)-representable matroids for q > 4?

Since R-representable matroids are a proper subset of orientable matroids, partial �elds P = (R,G)

in which R ≤ R are naturally of importance in analyzing matroids which are both orientable and

GF (q)-representable. In order to utilize any given partial �eld P (for example, to prove results of the

above type) it is necessary to know what are the fundamental elements of a P. The elements of P are

just the elements of G∪0. An element f ∈ P is fundamental when 1−f ∈ P. A fundamental element

is trivial when f ∈ {0, 1}. In this paper we will de�ne and calculate the fundamental elements of one

rational partial �eld and three new real partial �elds. Aside from the possible utility of these partial

�elds, we feel this study is also appealing in that we utilize several rather old and interesting results

from number theory.

Many of our proofs rely on computer calculations. We do these calculations in SageMath version

9.3 installed on a personal computer running the Windows-11 operating system. The code and output

of our calculations are contained in the unpublished technical report [13].

2. Preliminaries

A partial �eld P is a pair (R,G) in which R is a unitary ring (in this paper R will also be assumed

to be commutative) and a subgroup G of the multiplicative group of units of R for which −1 ∈ G.

A matrix A is a P-matrix when every non-zero subdeterminant of A is in G.

The elements of a partial �eld P = (R,G) are just the elements of G ∪ 0. A fundamental element

of P is an element a for which 1− a ∈ G. A fundamental element a is trivial when a = 0 or 1. If a
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is a non-trivial fundamental element of P, then its associates are the elements of the set

Assoc(a) =

{
a, 1− a,

1

a
,

1

1− a
,

a

a− 1
,
a− 1

a

}
.

The relation of being associates is an equivalence relation on the set of non-trivial fundamental

elements of P. Thus it is customary to describe the set of fundamental elements of P by a set of

representatives from each equivalence class.

Proposition 2.1. If a ∈ C\{0, 1}, then |Assoc(a)|= 6 if and only if a /∈ {−1, 2, 1
2
, ζ6, ζ

−1
6 } in which

ζ6 is a primitive 6th root of unity.

Proof. Let a be an unknown element of C\{0, 1} and assume that |Assoc(a)|< 6. It must be the

case that some two distinct rational expressions in unknown a from Assoc(a) are equal. There are

15 possible pairs and if we solve for a in each, we always obtain a ∈ {−1, 2, 1
2
, ζ6, ζ

−1
6 }, as required.

Conversely, if a ∈ {−1, 2, 1
2
, ζ6, ζ

−1
6 }, then |Assoc(a)|= {−1, 2, 1

2
} or {ζ6, ζ−1

6 }.

Some examples of partial �elds are the following. The dyadic partial �eld is D = (Q, {±2i : i ∈ Z}).
It is easy to show that the non-trivial fundamental elements of D are Assoc(2) = {−1, 1

2
, 2}. The

Gersonides partial �eld is GE = (Q, {±2i3j : i, j ∈ Z}). Gersonides' Theorem can be used to

show [16, Lemma 2.5.40] that the non-trivial fundamental elements of GE are Assoc(2)∪Assoc(3)∪
Assoc(4) ∪ Assoc(9).

3. The p-smooth partial �elds

Let p be a prime. A p-smooth integer is an integer whose largest prime factor is at most p. Pairs of

consecutive p-smooth integers were characterized by Störmer [14]. Building upon this work Lehmer

[7] calculated the complete tables of consecutive p-smooth pairs for every prime p ≤ 41.

Let Gp be the multiplicative subgroup of Q generated by −1 along with the p-smooth integers and

de�ne the p-smooth partial �eld as Sp = (Q, Gp). As stated in Section 2, the fundamental elements

are known for S2 = D and S3 = GE. Theorem 3.1 gives the complete list of fundamental elements

of S5. Our proof of Theorem 3.1 relies on Propositions 3.2 and 3.3 and so extending both results

to p-smooth integers for p ≥ 7 would be required for determining the fundamental elements of Sp.

Indeed, Lehmer [7] accomplished the former task for all p ≤ 41; however, extensions of Proposition

3.3 to three-term vanishing sums of p-smooth integers seems to be unexplored.

Theorem 3.1. The there are 99 non-trivial fundamental elements of S5. They partition into classes

of associates of the following rational numbers.

3

128
,
2

27
,
5

32
,
9

25
,
3

8
,
2

5
,
4

9
, 2, 3, 4, 5, 6, 9, 10, 16, 25, 81.

Proposition 3.2 (Lehmer [7, Table IA]). The only pairs of consecutive (and positive) 5-smooth

integers are the following.

(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (8, 9), (9, 10), (15, 16), (24, 25), (80, 81).

Proposition 3.3. Consider positive-integer triples (a, b, c).
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(1) The only solutions to 2a + 3b = 5c are (1, 1, 1) and (4, 2, 2).

(2) The only solutions to 2a + 5c = 3b are (2, 2, 1) and (1, 3, 2).

(3) The only solutions to 3b + 5c = 2a are (3, 1, 1), (5, 3, 1), and (7, 1, 3).

Proof. (1) This is a well-known exercise in basic number theory. There are many independent proofs

available online.

(2) By checking all values for a, b, c ∈ {1, 2, 3} we �nd that the only two solutions are those listed.

So now assume by way of contradiction that a, b, c ≥ 4 and 2a+5c = 3b. Reducing the equation mod

6 we obtain 2a + (−1)c ≡ 3 mod 6 which requires that a ̸≡ c mod 2. Reduce the equation mod 5

to obtain 2a ≡ 3b mod 5 which requires that a ≡ b mod 2. In the �rst case say that a and b are

both odd and c is even. Thus

2a = 3b − 5c = (1 + 2)b − (1 + 4)c =

(
1 + 2b+ 22

(
b

2

)
+ . . .

)
−
(
1 + 4c+ 42

(
c

2

)
+ . . .

)
.

Dividing both sides by 2 now yields

2a−1 = b+ 2

(
b

2

)
+ 22

(
b

3

)
+ · · · − 2c− 23

(
c

2

)
− 25

(
c

3

)
− . . . .

In this equation, however, the left hand side is even while the right is odd, a contradiction.

In the second case assume that a = 2a′ and b = 2b′ are both even and c is odd. Now

5c = 3b − 2a = (3b
′ − 2a

′
)(3b

′
+ 2a

′
),

which implies that 5m = 3b
′ − 2a

′
and 5n = 3b

′
+ 2a

′
for some 0 ≤ m ≤ n. Adding we get that

5m + 5n = 2 · 3b′ . Since the right-hand side of this equation is not divisible by 5, we must have

that 5m + 5n is not divisible by 5 which can only happen if m = 0. In the case that m = 0 we

have 1 = 3b
′ − 2a

′
which is a di�erence of two consecutive 3-smooth integers. Again in [7, Table

IA] we obtain that the only pairs of consecutive 3-smooth integers are (1, 2), (2, 3), and (3, 4). Thus

b′ = a′ = 1 which makes b = a = 2 which contradicts the assumption that a, b, c ≥ 4.

(3) This part of the proof uses SageMath calculations. These are contained in Annex A of [13].

For a ≤ 9 any solution also has b ≤ 5 and c ≤ 3. Thus we can easily verify by computer that (3, 1, 1),

(5, 3, 1), and (7, 1, 3) are the only solutions with a ≤ 9. As a consequence we have also determined

all possible solutions with b and c ≤ 3 because any such solution requires a ≤ 8.

Now assume by way of contradiction that (a, b, c) is a positive-integer solution with a ≥ 10. Split

the remainder of this proof into two cases. In Case 1 say that b or c ∈ {1, 2} and in Case 2 that b

and c ≥ 3.

Case 1. Because a ≥ 10, if we reduce our equation mod 1024, then we obtain 3b+5c ≡ 0 mod 1024.

Now 3, 5 ∈ (Z/1024Z)× and both have order 256 in this multiplicative group. De�ne S1024 to be the

set of all pairs (b, c) modulo 256 which satisfy 3b + 5c ≡ 0 mod 1024.

Reduce our integer equation mod 257 to obtain 3b + 5c ≡ 2a mod 257. Now 2, 3, 5 ∈ (Z/257Z)×

and respectively have orders 16, 256, and 256 in this multiplicative group. De�ne S257 to be the set

of all pairs (b, c) modulo 256 for which 3b + 5c ≡ 2a mod 257 for some a ∈ {0, . . . , 15}.

Thus the positive-integer solution (a, b, c) to the integer equation produces a mod-256 pair (b, c) ∈
S1024 ∩ S257. We use SageMath to calculate that

S1024 ∩ S257 = {(19, 25), (83, 217), (147, 153), (211, 89)}.

We have now reached a contradiction because our assumption in Case 1 is that b or c ∈ {1, 2}.
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Case 2. Consider M = 732,375 = 33 · 53 · 7 · 31 and reduce our equation to obtain 3b + 5c ≡ 2a

mod M . In ZM , 3b ∈ {3, 9} if and only if b ∈ {1, 2} and 5c ∈ {5, 25} if and only if c ∈ {1, 2}.
Our assumption in this case is, of course, that b, c ≥ 3 so we let L3 = {3b mod M : 3 ≤ b ≤ M},
L5 = {5c mod M : 3 ≤ c ≤ M}, and L2 = {2a mod M : 0 ≤ a ≤ M}. We calculate these three sets

in SageMath and then calculate that (L3 + L5) ∩ L2 = ∅ as sets in ZM which implies that (a, b, c) is

not a solution to 3b + 5c ≡ 2a mod M , a contradiction.

Proof of Theorem 3.1. The �nal calculation in Annex A of [13] is to check that the union of

the sets of associates of the numbers listed contains 99 = 3 + 6(16) distinct numbers. Thus these 17

classes of associates are mutually disjoint.

If f is a fundamental element of S5, then either Assoc(f) contains an integer or does not contain an

integer. In Case 1 we determine all integer fundamental elements of S5 and in Case 2 we determine

the fundamental elements f for which Assoc(f) does not contain an integer.

Case 1. Consider a non-negative integer a. If a a non-trivial fundamental element of S5, then its

associate 1− a is a negative integer that is a fundamental element of S5. Thus (a− 1, a) is a pair of

positive and consecutive 5-smooth integers. If −a is a non-trivial fundamental element of S5, then

its associate 1 + a is a positive integer that is a fundamental element of S5. Again, (a, a + 1) is a

pair of positive and consecutive 5-smooth integers. The only such pairs are given by Proposition 3.2.

Thus the associates of 2, 3, 4, 5, 6, 9, 10, 16, 25, 81 are all of the fundamental elements of S5 which are

either integers or associates of integers.

Case 2. Let {p1, p2, p3} = {2, 3, 5} and ±pe11 pe22 pe33 be a fundamental element which is neither an

integer nor the associate of an integer. We now have

1 = ±pe11 pe22 pe33 ± pf11 pf22 pf33 . (1)

Since pe11 pe22 pe33 is not an integer, neither is its associate pf11 pf22 pf33 . Thus some ei < 0 and some

fj < 0.

We claim that some ei > 0 and some fj > 0 as well. By way of contradiction, if each ei ≤ 0, then

±pe11 pe22 pe33 is the reciprocal of a 5-smooth integer which means that both ±pe11 pe22 pe33 and ±pf11 pf22 pf33
are associates of a 5-smooth integer. This is contrary to our assumption.

We also claim that for a �xed i, one of ei and fi is non-positive. Suppose by way of contradiction

that hi = min{ei, fi} > 0. We now have

1

phi
i

= a+ b,

in which a and b are rational numbers which when written in lowest terms do not have a factor of pi
in their denominator, a contradiction.

Suppose without loss of generality that e1, f2 > 0 which now implies that f1, e2 ≤ 0. Again without

loss of generality assume that e3 ≤ f3 which implies that e3 ≤ 0. Eq. (1) now yields the integer

equation;

p−f1
1 p−e2

2 p−e3
3 = ±pe1−f1

1 ± pf2−e2
2 pf3−e3

3 , (2)

in which p−f1
1 p−e2

2 p−e3
3 ̸= 1 (because otherwise, Eq. (1) becomes a di�erence of two p-smooth integers).

Since a prime factor is shared by no more than two of the three terms in Eq. (2), each prime factor is
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contained in at most one of the three terms. Hence Eq. (2) is actually one of 2a+3b = 5c, 2a+5c = 3b,

and 3b + 5c = 2a. The seven possible solutions to these equations are given in Proposition 3.3. Each

of the seven solutions produces six equations of the form 1− a = b and so describes six fundamental

elements of S5 which form a complete class of six associates. These seven classes of associates are

exactly the associates of the seven fractions listed in Theorem 3.1.

4. The p-golden partial �elds

Let g be the golden ratio 1+
√
5

2
; that is, the positive root of the polynomial x2−x−1. The golden-mean

partial �eld is G = (R, {±gi : i ∈ Z}). The non-trivial fundamental elements of G are Assoc(g) =

{g,−g, g−1,−g−1, g2, g−2}. For a prime p, de�ne the p-golden partial �eld Gp = (R, {±gis : i ∈
Z and s ∈ Sp}).
An interesting geometric property of G2 is that cos(nπ

5
) ∈ {±1,±g

2
,± 1

2g
} ⊆ G2 for every n ∈ Z

and, furthermore, cos(π
5
) = g

2
and cos(3π

5
) = −1

2g
are both fundamental elements of G2.

4.1. Fundamental elements of G2

Theorem 4.1. The there are 27 non-trivial fundamental elements of G2. They partition into classes

of associates of the following numbers.

2, g, 2g2, g3, g6.

In order to prove Theorem 4.1 we use the relationship between the golden ratio and the Fibonacci

numbers. For n ≥ 0, de�ne the nth Fibonacci number fn using f0 = 0, f1 = 1, and fn = fn−1 + fn−2

for n ≥ 2. Proposition 4.2 is well known and can easily be proven by induction.

Proposition 4.2. For n ≥ 0, gn = fng + fn−1 and g−n = (−1)n(−fng + fn+1).

Theorem 4.3 (Carmichael [2]). If n /∈ {1, 2, 6, 12}, then fn has a prime factor which is not a factor

of fm for any m < n.

Lemma 4.4. If ±2igj is a non-trivial fundamental element of G2 with j ̸= 0, then −6 ≤ i ≤ 3 and

|j|∈ {1, 2, 3, 6}.

Proof. Fundamental element ±2igj yields the equation

1± 2igj = ±2agb, (3)

in which ±2agb is also a fundamental element. Proposition 4.2 now implies that 2if|j|g = 2af|b|g

and so we have that f|j| = 2a−if|b|. Using Theorem 4.3 and inspecting the values f0, . . . , f12 we �nd

that |j|, |b|∈ {1, 2, 3, 6} and |a − i|≤ 3. Going back to (3) and again using Proposition 4.2 we get

that 1 ± 2ifx = ±2afy where x ∈ {|j|−1, |j|+1} and y ∈ {|b|−1, |b|+1}. Thus 1 = |2ifx ± 2afy|=
2i|fx ± 2a−ify| where |fx ± 2a−ify| is nonzero and is at most (f7 + 8f7) = 117 and at least 1

8
. This

along with the fact that 26 < 117 < 27 imply that −6 ≤ i ≤ 3.

Proof of Theorem 4.1. A rational fundamental element of G2 must be a fundamental element

of D = S2. Thus Assoc(2) = {−1, 2, 1
2
} are the rational fundamental elements of G2. Any other
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fundamental element ±2igj must have j ̸= 0. By Lemma 4.4, the set P = {±2igj : −6 ≤ i ≤
3 and |j|∈ {1, 2, 3, 6}} contains the remaining fundamental elements of G2. From here we use the

SageMath software package to check if 1 − a ∈ P for each a ∈ P . The calculations are in Annex

B of [13]. We also con�rm that the classes of associates of the elements listed in our theorem are

mutually disjoint and so contain 27 distinct elements in total.

4.2. Fundamental elements of G3

Theorem 4.5. The there are 81 non-trivial fundamental elements of G3. They partition into classes

of associates of the following numbers.

2, 3, 4, 9, g, 2g2,
8

3
g2, 3g2,

1

3
g3, g3, 2g4, 8g4, g6, 18g6.

Lemma 4.6. If ±2i3jgk is a non-trivial fundamental element of G3 with k ̸= 0, then −16 ≤ i ≤ 8,

−10 ≤ j ≤ 5, and |k|∈ {1, 2, 3, 4, 6, 12}.

Proof. Fundamental element ±2i3jgk yields an equation

1± 2i3jgk = ±2a3bgc, (4)

in which ±2a3bgc is also a fundamental element. Proposition 4.2 now implies that

2i−a3j−bf|k| = f|c|.

Using Theorem 4.3 and inspecting the values f0, . . . , f12 we �nd that |k|, |c|∈ {1, 2, 3, 4,
6, 12}, |i − a|≤ 4 and |j − b|≤ 2. Going back to (5) and again using Proposition 4.2 we get that

1± 2i3jfx = ±2a3bfy where x ∈ {|k|−1, |k|+1} and y ∈ {|c|−1, |c|+1}. Thus 1 = |2i3jfx ± 2a3bfy|=
2i3j|fx± 2a−i3b−jfy| where |fx± 2a−i3b−jfy| is nonzero and is at most (f13+144f13) = 33, 785 and at

least 1
144

. This along with the fact that neither 144 nor 33,785 is a power of 2 or a power of 3 imply

that −16 ≤ i ≤ 8 and −10 ≤ j ≤ 5.

Proof of Theorem 4.5. The rational fundamental elements of G3 must be the fundamental

elements of GE = S3. These are the associates of 2,3,4,9. Any other fundamental element ±2i3jgk

must have k ̸= 0. By Lemma 4.6 the set P = {±2i3jgk : −16 ≤ i ≤ 8 and − 10 ≤ j ≤ 5 and |k|∈
{1, 2, 3, 4, 6, 12}} contains all of the remaining fundamental elements of G3. From here we use the

SageMath software package to check if 1 − a ∈ P for each a ∈ P . The calculations are in Annex

C of [13]. We also con�rm that the classes of associates of the elements listed in our theorem are

mutually disjoint and so contain 81 distinct elements in total.

4.3. Fundamental elements of G5

Theorem 4.7. The there are 195 non-trivial fundamental elements of G5. They partition into classes

of associates of the following numbers.

3

128
,
2

27
,
5

32
,
9

25
,
3

8
,
2

5
,
4

9
, 2, 3, 4, 5, 6, 9, 10, 16, 25, 81,

5

8
g, g, 2g2,

5

2
g2,

8

3
g2, 3g2,

1

3
g3, g3, 2g4, 5g4, 8g4,

1

8
g5,

1

3
g5, 2g5, g6, 18g6.
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Lemma 4.8. If ±2i3j5kgℓ is a non-trivial fundamental element of G5 with ℓ ̸= 0, then −17 ≤ i ≤ 9,

−10 ≤ j ≤ 5, and −7 ≤ k ≤ 4, and |ℓ|∈ {1, 2, 3, 4, 5, 6, 12}.

Proof. Fundamental element ±2i3j5kgℓ yields an equation

1± 2i3j5kgℓ = ±2a3b5cgd, (5)

in which ±2a3b5cgd is also a fundamental element. Proposition 4.2 now implies that

2i3j5kf|ℓ|g = 2a3b5cf|d|g,

which yields

2i−a3j−b5k−cf|ℓ| = f|d|.

Using Theorem 4.3 and inspecting the values f0, . . . , f12 we �nd that |ℓ|, |d|∈ {1, 2, 3, 4,
5, 6, 12}, |a − i|≤ 4, |b − j|≤ 2, and |c − k|≤ 1. Going back to (5) and again using Proposition

4.2 we get that 1 ± 2i3j5kfx = ±2a3b5cfy where x ∈ {|ℓ|−1, |ℓ|+1} and y ∈ {|d|−1, |d|+1}. Thus

1 = 2i3j5k|fx ± 2a−i3b−j5c−kfy|. The expression |fx ± 2a−i3b−j5c−kfy| is nonzero and is at most

(f13 + 720f13) = 167, 993 and at least 1
720

. This implies that −17 ≤ i ≤ 9, −10 ≤ j ≤ 5, and

−7 ≤ k ≤ 4.

Proof of Theorem 4.7. The rational fundamental elements of G5 must be the fundamental

elements of S5. These are listed in Theorem 3.1. Any other fundamental element ±2i3j5kgℓ must

have ℓ ̸= 0. By Lemma 4.6 the set P = {±2i3j5kgℓ : −17 ≤ i ≤ 9 and − 10 ≤ j ≤ 5 and − 7 ≤ k ≤
4 and |ℓ|∈ {1, 2, 3, 4, 5, 6, 12}} contains all of the remaining fundamental elements of G3. From here

we use the SageMath software package to check if 1− a ∈ P for each a ∈ P . The calculations are in

Annex D of [13]. We also con�rm that the classes of associates of the elements listed in our theorem

are mutually disjoint and so contain 195 distinct elements in total.
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