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Abstract

Bourgain’s theorem says that under certain conditions a function f : {0,1}5 — {0,1} can be approximated by a
function g which depends only on a small number of variables. By following his proof we obtain a generalization for
the case that there is a nonuniform product measure on the domain of f.

1 Introduction

Fix 0 < o < 1. Consider the measure space (F%,p,) where p, is the product measure
defined as p,(z) = all(1 — @)1 with 2| = 37 2. Let f @ (F%, pa) — {0,1} be a
Boolean function. We want to show that under certain conditions f can be approximated by
a function g which depends only on a small number of variables. More formally, there exist
indices 1 <i; < ... <, < nsuch g(x) = g(y), if 25, = y;; for every 1 < j < m. Moreover
by g approximates f we mean that

If =gl <e (1)

Here m and e are parameters which depend on each other and the conditions on f. We are
interested in the conditions that come from the Fourier-Walsh spectrum of f. The results
of this type have many applications in combinatorics and computer science [1, 7, 3, 4, 8, 6].

Let N
h="Y_1f(9, (2)

|S|>k

denote the second norm squared of the Fourier transform of f on large frequencies, i.e.,
|S| > k. Tt is usually the case that when h is small, f can be approximated by a function g
which depends only on a few number of variables. The result of this type for k =2, a = 1/2
has been proven in [4], and for k¥ = 2 in the more general setting of the uniform measure
on F” in [1] and [5]. So far, the most general known result is Bourgain’s distributional
inequality [2] which deals with @ = 1/2 and the general k£ (See Khot and Naor [6] for a
quantitative version).

In all the mentioned results the measure is assumed to be uniform. In [7] Kindler and
Safra tried to generalize these results to arbitrary values of «, and proved a theorem which
deals with the general values of £ and «. That result requires h to be very small, and for
a = 1/2is not as strong as Bourgain’s theorem. In the present note we show that by following
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Bourgain’s proof one can obtain a theorem (Corollary 2.2) for general values of o which does
not require h to be as small as in [7]. However we should mention that this theorem does not
completely cover their result, and for sufficiently small h, their approximation is stronger.

One notion that has been used in both [2] and [7] is the hypercontractivity of the Bonami-
BeckneAr operator. Remember that the Bonami-Beckner operator can be defined as Tsf =
S 081 f(S)ws where wg are the bases of the Fourier-Walsh expansion. For 1 < p < ¢ < oo
and 0 < n < 1, we say that a function f : (F}, u,) — F is (p, g, n)-hypercontractive, if

1Ty fllg < W f1lp-

The classic Bonami-Beckner Theorem says that for a = 1/2, fis (2, g, \/%)-hypercontractive.
Recently P. Wolff proved the following theorem (see also [9] and [10]).

Theorem 1.1. [11] Let f : (F3, pa) = R, ¢>2, 1/q+1/¢ =1, and A = =2, Define

Al _ A=\ T2
Mg (@) = 1g(er) = (m)

Then
1. f is (2,q,ny(a))-hypercontractive.
2. fis (¢, 2,ny(a))-hypercontractive.

Remark. Since T} is self-adjoint, by duality of L, spaces, (1) and (2) are equivalent. Note
that in Theorem 1.1, n,(1/2) and 7,(1/2) are not defined. However having Bonami-Beckner
Theorem in mind, we define 1,(1/2) = n,(1/2) = ql_l.

For simplicity we will write n, for n,(«). Next we want to state Kindler and Safra’s
theorem. Let

I,=<ie{l,...,n}: Z FS?>ky. (3)

i€S,|S|<k

The goal is to show that for small values of h and k, f essentially depends only on the
variables with indices in [,.. First note that

AL <> N f9)?P <k

i=1 S:ieS,|S|<k

which follows
1] < k/k. (4)

-~

Let g = > gc; f(S)ws. Note that g depends only on the variables with indices in .
Moreover R
I =gll3=">_ F(5)*. (5)

S¢IL

So we have to bound the right hand side of (5).
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Theorem 1.2. (Kindler and Safra [7]) There exists a global constant C' such that for h,k <
nis* /C', we have
> F(S)? < (1 + 12660, *h4).
S¢I,
the next lemma estimates 7,(a). In the following we write < y to indicate that there is
a universal constant ¢ > 0 such that x < c¢y.

Lemma 1.3. Fora <1/2, and 1 <p=1+x <2, we have

o Ifa<e Y/ then
2—p

7717(0‘) 2o,
o Ifa>e Y then
2—p
np(a) 2 az \/In(1/a)z.

Proof. Notice that

2 (1= A-2/p N\ "2 o (1= e—2In(A)/p\ ~1/2
(o) =A% | 5 = @ 1 — e 2m(@)/y
2—p

> a1 —e2(A)/P, (6)

1/

First assume that o < e~!/*. Then since p’ = 1+ 1/z, we have

In(A)/p > In(1/(2c)) S 1/z —1In(2)

> 1/10.
- o - 1/z+1 =1/

So -
(6) 2 a5

Next consider a > e~!/*. We can assume that —21In(A)/p’ > —1 as otherwise the theorem
becomes clear. Using the fact that for 0 <y < 1, e ¥ <1 —y/2, we get

(6) > a /In(A) Jp > a7 /In(1/a)z.

2 Main Result

In this section we state our main result.
Theorem 2.1. Let 0 < o < 1/2, and [ : (F%, o) — {0,1} be a Boolean function. For
2<k<nand0<k <1, h and I, are defined as in (2) and (3), respectively. If

b — logy(1/a) 4 \/logy(1/h) log, log, k
B 16log,(1/h) ’

then
1= Y (9 S VR (ot o) 4 (g, bV, ()

|S|<k,SZI.

Online Journal of Analytic Combinatorics, Issue 1 (2006), #3 3



Proof. To prove the theorem in the special case of a = 1/2, [2] used the following facts:

1/2

1/2
IFl> | D m@fAa)? | >nla <§:fﬁ ) , (8)

AC{1,...,n}
and if a function f satisfies f(S) = 0, for every |S| > k, then
1A lls = 1T T flla < NToa fllz < 0"l s

or
A5 < ma 1 F1l2- (9)

By substituting (8) and (9) for general value of « in the proof, we obtain the following
inequality instead of Equation (20) in [2]:

S 2 | i hA (SRR + (R, (10)

t<log, k

for every 1 <ty <log, k, 0 <d<1,and 1 < p <2, where

= Y R (1)

2t=1<|S\I,.|<2t

We distinguish two cases:
Case 1:

Z 2tpt Z /y\/Ea

t<log, k

where 7 is defined in (7). Choose ty to satisfy

t
Zt<10g2 k 2 Pt

200y >
P log, k

0 —

It follows that py, > ﬁ&k

N 2 a’w Substituting these in (10) we get

. Assume p € (3/2,2) so that we can use Lemma 1.3 and obtain

(510/2 — a%élogQ k) \/E+gk S a%h + (5h)p/2 + (774*276\/%)10/2 (12)
2
2
Now taking § = %W we obtain
5p/2\/E+gk < T bt (B2 + (7 R), (13)
2

We can assume that

Vkh/a < 1, (14)

as otherwise (7) becomes clear. Let p = 2 — 4¢. Note that (14) implies p > 3/2, and by a
straightforward calculation that the first term on the right hand side of (13) is greater than
the second term. So

72 (VEh/a+ Vi Vi) ). (15)
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Case 2:

Z Qtpt < ”Y\/E-

t<logy k

In this case we choose ¢y such that p;, > @. Substituting these in (10) we get

§p/2
_ P < P p/2 —2k p/2
(o = "0V ) 3 S 1 B+ (VR (16)

Takingé%mandpzl—i-@weget

> ' (logy k) ™2,

and so

1 7k (logy k)
’yfja\/%(logzk)‘*h—i-(logzk)\/ﬁjL (774 \/Eof 082 ) ) : (17)

From (15) and (17) we obtain
72 (VEh o+ (%R ) ?) + (logg k)Y

O

Corollary 2.2. Let f: (F%, uo) — {0,1} be a Boolean function. Let 2 < k <n, and h and
I be defined as in (2) and (3) respectively. If 0 < k < h*a**=% and

_ logy(1/a) + \/IOgQ(l/h> log, log, k
16log,(1/h) ’

¢

then

> TS 5 VR h/a + (logy k) V.
S¢I.

Proof. Note that ZS@K f(S)? < v+ h, where v is defined in Theorem 2.1. Moreover we

can assume that ‘/TE > h as otherwise the corollary becomes obvious. Now the assumption
k < h*a®~2 completes the proof. O
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