
A remark on Bourgain’s distributional inequality on

the Fourier spectrum of Boolean functions

Hamed Hatami
Department of Computer Science

University of Toronto
E-mail: hamed@cs.toronto.edu

Submitted: September 24, 2005; Accepted: May 2, 2006; Published: May 5, 2006

Abstract

Bourgain’s theorem says that under certain conditions a function f : {0, 1}n
2 → {0, 1} can be approximated by a

function g which depends only on a small number of variables. By following his proof we obtain a generalization for
the case that there is a nonuniform product measure on the domain of f .

1 Introduction

Fix 0 < α < 1. Consider the measure space (Fn
2 , µα) where µα is the product measure

defined as µα(x) = α|x|(1 − α)n−|x| with |x| =
∑n

i=1 xi. Let f : (Fn
2 , µα) → {0, 1} be a

Boolean function. We want to show that under certain conditions f can be approximated by
a function g which depends only on a small number of variables. More formally, there exist
indices 1 ≤ i1 < . . . < im ≤ n such g(x) = g(y), if xij = yij for every 1 ≤ j ≤ m. Moreover
by g approximates f we mean that

‖f − g‖2
2 ≤ ε. (1)

Here m and ε are parameters which depend on each other and the conditions on f . We are
interested in the conditions that come from the Fourier-Walsh spectrum of f . The results
of this type have many applications in combinatorics and computer science [1, 7, 3, 4, 8, 6].
Let

h =
∑
|S|≥k

|f̂(S)|2, (2)

denote the second norm squared of the Fourier transform of f on large frequencies, i.e.,
|S| ≥ k. It is usually the case that when h is small, f can be approximated by a function g
which depends only on a few number of variables. The result of this type for k = 2, α = 1/2
has been proven in [4], and for k = 2 in the more general setting of the uniform measure
on Fn

r in [1] and [5]. So far, the most general known result is Bourgain’s distributional
inequality [2] which deals with α = 1/2 and the general k (See Khot and Naor [6] for a
quantitative version).

In all the mentioned results the measure is assumed to be uniform. In [7] Kindler and
Safra tried to generalize these results to arbitrary values of α, and proved a theorem which
deals with the general values of k and α. That result requires h to be very small, and for
α = 1/2 is not as strong as Bourgain’s theorem. In the present note we show that by following
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Bourgain’s proof one can obtain a theorem (Corollary 2.2) for general values of α which does
not require h to be as small as in [7]. However we should mention that this theorem does not
completely cover their result, and for sufficiently small h, their approximation is stronger.

One notion that has been used in both [2] and [7] is the hypercontractivity of the Bonami-
Beckner operator. Remember that the Bonami-Beckner operator can be defined as Tδf =∑

δ|S|f̂(S)ws where wS are the bases of the Fourier-Walsh expansion. For 1 ≤ p ≤ q < ∞
and 0 < η < 1, we say that a function f : (Fn

2 , µα) → F is (p, q, η)-hypercontractive, if

‖Tηf‖q ≤ ‖f‖p.

The classic Bonami-Beckner Theorem says that for α = 1/2, f is (2, q, 1√
q−1

)-hypercontractive.

Recently P. Wolff proved the following theorem (see also [9] and [10]).

Theorem 1.1. [11] Let f : (Fn
2 , µα) → R, q ≥ 2, 1/q + 1/q′ = 1, and A = 1−α

α
. Define

ηq′(α) = ηq(α) =

(
A1/q′ − A−1/q′

A1/q − A−1/q

)−1/2

.

Then

1. f is (2, q, ηq(α))-hypercontractive.

2. f is (q′, 2, ηq′(α))-hypercontractive.

Remark. Since Tδ is self-adjoint, by duality of Lp spaces, (1) and (2) are equivalent. Note
that in Theorem 1.1, ηq(1/2) and ηq′(1/2) are not defined. However having Bonami-Beckner
Theorem in mind, we define ηq(1/2) = ηq′(1/2) = 1√

q−1
.

For simplicity we will write ηp for ηp(α). Next we want to state Kindler and Safra’s
theorem. Let

Iκ =

i ∈ {1, . . . , n} :
∑

i∈S,|S|≤k

f̂(S)2 ≥ κ

 . (3)

The goal is to show that for small values of h and κ, f essentially depends only on the
variables with indices in Iκ. First note that

κ|Iκ| ≤
n∑

i=1

∑
S:i∈S,|S|≤k

f̂(S)2 ≤ k

which follows
|Iκ| ≤ k/κ. (4)

Let g =
∑

S⊆Iκ
f̂(S)wS. Note that g depends only on the variables with indices in Iκ.

Moreover
‖f − g‖2

2 =
∑
S*Iκ

f̂(S)2. (5)

So we have to bound the right hand side of (5).
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Theorem 1.2. (Kindler and Safra [7]) There exists a global constant C such that for h, κ ≤
η16k

4 /C, we have ∑
S*Iκ

f̂(S)2 ≤ h(1 + 1266η−4k
4 h1/4).

the next lemma estimates ηp(α). In the following we write x . y to indicate that there is
a universal constant c > 0 such that x ≤ cy.

Lemma 1.3. For α ≤ 1/2, and 1 ≤ p = 1 + x ≤ 2, we have

• If α ≤ e−1/x, then

ηp(α) & α
2−p
2p .

• If α > e−1/x, then

ηp(α) & α
2−p
2p

√
ln(1/α)x.

Proof. Notice that

ηp(α) = A
p−2
2p

(
1− A−2/p

1− A−2/p′

)−1/2

≥ α
2−p
2p

(
1− e−2 ln(A)/p

1− e−2 ln(A)/p′

)−1/2

≥ α
2−p
2p

√
1− e−2 ln(A)/p′ . (6)

First assume that α ≤ e−1/x. Then since p′ = 1 + 1/x, we have

ln(A)/p′ ≥ ln(1/(2α))

p′
≥ 1/x− ln(2)

1/x + 1
≥ 1/10.

So
(6) & α

2−p
2p .

Next consider α > e−1/x. We can assume that −2 ln(A)/p′ > −1 as otherwise the theorem
becomes clear. Using the fact that for 0 < y < 1, e−y ≤ 1− y/2, we get

(6) & α
2−p
2p

√
ln(A)/p′ & α

2−p
2p

√
ln(1/α)x.

2 Main Result

In this section we state our main result.

Theorem 2.1. Let 0 < α ≤ 1/2, and f : (Fn
2 , µα) → {0, 1} be a Boolean function. For

2 < k ≤ n and 0 < κ < 1, h and Iκ are defined as in (2) and (3), respectively. If

φ =
log2(1/α) +

√
log2(1/h) log2 log2 k

16 log2(1/h)
,

then

γ =
∑

|S|<k,S 6⊆Iκ

f̂(S)2 .
√

k2
log2 log2 k

φ

(
h/α + α− k+1

2 κ1/4
)

+ (log2 k)
√

h. (7)
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Proof. To prove the theorem in the special case of α = 1/2, [2] used the following facts:

‖f‖p ≥

 ∑
A⊆{1,...,n}

ηp(α)2|A|f̂(A)2

1/2

≥ ηp(α)

(
n∑

i=1

f̂({i})2

)1/2

, (8)

and if a function f satisfies f̂(S) = 0, for every |S| ≥ k, then

‖f‖4 = ‖Tη4Tη−1
4

f‖4 ≤ ‖Tη−1
4

f‖2 ≤ η−k
4 ‖f‖2,

or
‖f‖4

4 ≤ η−4k
4 ‖f‖4

2. (9)

By substituting (8) and (9) for general value of α in the proof, we obtain the following
inequality instead of Equation (20) in [2]:

δp/2ρt0 .
η−p

p δ

2t0

 ∑
t<log2 k

2tρt

+ η−p
p h + (δh)p/2 + (η−2k

4

√
κ)p/2, (10)

for every 1 ≤ t0 < log2 k, 0 < δ < 1, and 1 ≤ p ≤ 2, where

ρt =
∑

2t−1≤|S\Iκ|<2t

f̂(S)2. (11)

We distinguish two cases:
Case 1: ∑

t<log2 k

2tρt ≥ γ
√

k,

where γ is defined in (7). Choose t0 to satisfy

2t0ρt0 ≥
∑

t<log2 k 2tρt

log2 k
.

It follows that ρt0 ≥ γ√
k log2 k

. Assume p ∈ (3/2, 2) so that we can use Lemma 1.3 and obtain

ηp & α
2−p
2p . Substituting these in (10) we get(

δp/2 − α
p−2
2 δ log2 k

) γ√
k log2 k

. α
p−2
2 h + (δh)p/2 + (η−2k

4

√
κ)p/2. (12)

Now taking δ = α(log2 k)
2

p−2

4
we obtain

δp/2 γ√
k log2 k

. α
p−2
2 h + (δh)p/2 + (η−2k

4

√
κ)p/2. (13)

We can assume that √
kh/α < 1, (14)

as otherwise (7) becomes clear. Let p = 2 − 4φ. Note that (14) implies p > 3/2, and by a
straightforward calculation that the first term on the right hand side of (13) is greater than
the second term. So

γ . 2
log2 log2 k

2φ

(√
kh/α +

√
k(η−2k

4

√
κ/α)1−2φ

)
. (15)
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Case 2: ∑
t<log2 k

2tρt ≤ γ
√

k.

In this case we choose t0 such that ρt0 ≥ γ
log2 k

. Substituting these in (10) we get(
δp/2

log2 k
− η−p

p δ
√

k

)
γ . η−p

p h + (δh)p/2 + (η−2k
4

√
κ)p/2. (16)

Taking δ ≈ α
k(log2 k)4

and p = 1 + 1
6 log2 k

we get

ηp ≥ α
2−p
2p (log2 k)−1/2,

and so

γ .
1

α

√
k(log2 k)4h + (log2 k)

√
h +

(
η−2k

4

√
κk(log2 k)6

α

)1/2

. (17)

From (15) and (17) we obtain

γ . 2
log2 log2 k

φ

(√
kh/α + (η−2k

4

√
κk/α)1/2

)
+ (log2 k)

√
h.

Corollary 2.2. Let f : (Fn
2 , µα) → {0, 1} be a Boolean function. Let 2 < k ≤ n, and h and

Iκ be defined as in (2) and (3) respectively. If 0 < κ < h4α2k−2 and

φ =
log2(1/α) +

√
log2(1/h) log2 log2 k

16 log2(1/h)
,

then ∑
S*Iκ

f̂(S)2 .
√

k2
log2 log2 k

φ h/α + (log2 k)
√

h.

Proof. Note that
∑

S*Iκ
f̂(S)2 ≤ γ + h, where γ is defined in Theorem 2.1. Moreover we

can assume that
√

h
2
≥ h as otherwise the corollary becomes obvious. Now the assumption

κ < h4α2k−2 completes the proof.
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