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Preface

The purpose of these notes is to give a comprehensive treatment of results and methods for
estimation of the L1-norms of linear means of multidimensional Fourier series, the so-called
Lebesgue constants.

My teacher R. M. Trigub upon seeing me return again and again to these problems, once
suggested that now is a proper time to assemble a comprehensive survey on the Lebesgue
constants of multiple Fourier series and that I should try to fill this gap. I am very grateful
to him for “infecting” me with this tempting idea as well as for repeatedly encouraging me
to continue with the work.

Of course, there already were several related surveys in the literature (see [Zh, AIN,
AAP, Go, Dy3]), as well as several important books on different aspects of multidimensional
Fourier Analysis; those by E. M. Stein (see [SW, S3]) should be mentioned first (for the sake
of completeness, let us mention also the book [Ya] devoted just to multiple trigonometric
series; unfortunately, it is badly written and moreover has many gaps and mistakes). Much
can be found in the recent monograph by Trigub and Belinsky [TB]. But in no one of these
works is a real attempt to draw the entire picture of the L1 aspects of multiple Fourier series.
As for myself, I continued to be uncertain as to the justification for such a work, and for a
long period I did no more than to collect all known references on the subject.

An impetus has been given to me by E. M. Stein - once he asked me whether I can
outline just the results on the Lebesgue constants in which the Fourier transform methods
are involved. A brief survey of such results became the first version of these notes. I would
like to use this opportunity to express my gratitude to E. M. Stein.

The up-to-date situation in this topic may be characterized by the words “a topic now in
disrepute due to its difficulty”, the words said about a related field in the marvellous book of
Davis and Chang [DC]. Indeed, important problems continue to be open for decades, while
interesting publications have seldom appeared during this period. Nevertheless, the contin-
uing vitality of questions related to the topic and efforts which are being made by several
enthusiasts, reluctant to give up this circle of ideas, instills hope for new growth of popularity
of this part of Fourier Analysis. A brief survey of the main results on Lebesgue constants of
multiple Fourier partial sums is given in author’s article [L15] in Math. Encyclopedia.

One may see already from the table of contents that the structure of the work is determined
by geometrical features rather than analytical ones. It is partly a matter of taste, since both
aspects are strongly connected and work hand-in-hand. Numerous appearances of Number
Theory tools also should not be underestimated.

The outline of these notes is as follows. After some preliminaries (a brief survey of one-
dimensional results among them), in Section 1 we first of all prove a two-sided estimate of
the Lebesgue constants of spherical partial sums. The upper estimate is due to V. A. Yudin,
while the lower one is essentially based on an idea due to V. A. Ilyin. From this it progresses
to certain generalization. In Section 2 we give very general results mostly due to E. Belinsky.
Section 3 is devoted to various connections between Fourier series and Fourier integrals; all
these “equiconvergence” results are related to Lebesgue constants. In Section 4 we investigate
various generalizations of the Bochner-Riesz means. The next Section 5 is also devoted to
generalizations of the Bochner-Riesz means but of a different nature. What is preserved is
the spherical way of summation. In Section 6 a collection of “polyhedral” results is given.
Some of them are very subtle; actually the number of interesting problems in this case is
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much larger than one would probably expect. In Section 7 results are considered in which
partial sums or more general linear means are taken with respect to “hyperbolic crosses”.
Then, in Section 8, we present some cases in which the operator of taking partial sums
turns out to be unbounded. In Section 9 we give some results on integrability of multiple
trigonometric series. In the next section we consider results concerning the Nikolskii type
problem for Lebesgue constants. It is intimately connected with the previous section. In
the last section we give some more results which are not proved by means of the Fourier
transform methods. I have tried to cover the literature on the subject completely as well as
to discuss all essential results on the topic - some of them are very recent.

My friends and colleagues E. Belinsky, M. Skopina, and especially A. Podkorytov were
the readers of earlier variants of this work. Many improvements are due to their precise
remarks and stimulating discussions.

Unfortunately, E. Belinsky untimely passed away in 2004. His influence, inspiration and
support were very important to me during all my life. These notes are dedicated to his
memory.

I would like to acknowledge their efforts and sincere interest. I thank J. Marshall Ash,
G. Henkin, C. Horowitz, A. Iosevich, F. Nazarov, M. Pinsky, and W. Trebels for helpful
discussions.

I am very grateful to the referee for careful reading of the whole manuscript and for
suggesting numerous improvements.

Finally I wish to mention that only one person deserves “acknowledgements” for possible
mistakes, misprints and all poor passages. “It’s Me, O Lord...”, as R. Kent entitled his book.
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0 Preliminaries

First we give a brief survey of one-dimensional results, then some notation and preliminary
discussions for several dimensions will follow.

0.1. Let us draw the state of affairs in the one-dimensional case. The well-known asymp-
totic result would apparently come back to one’s mind at the sight of the words “Lebesgue
constants”:

π−1

∫
T

∣∣∣∣1/2 +
N∑
k=1

cos kx

∣∣∣∣ dx = 4π−2 lnN +O(1),

where T = (−π, π]. This relation, whose left-hand side is traditionally called the Nth
Lebesgue constant, can be found in any textbook or monograph (see, e.g., [Br], [Zg]) dealing
with the Fourier series ∑

k

f̂(k)eikx,

where

f̂(k) = (2π)−1

∫
T

f(t)e−iktdt

is the kth Fourier coefficient. Since the Lebesgue constants are the norms of partial sums of
the Fourier series, the relation itself expresses the fact that the partial sums of the Fourier
series of a continuous function fail to converge to the function at some points. Of course, in
view of Carleson’s celebrated theorem [Cl], it converges almost everywhere, but the Fourier
series of an integrable function may diverge already at each point; the latter fact is Kol-
mogorov’s famous result [K2]. It is known long ago that considering the sequence of the
arithmetic (Fejér, Cesáro) means

(N + 1)−1

N∑
k=0

Sk(f ;x)

instead of the sequence of the partial sums

SN(f ;x) =
N∑

k=−N

f̂(k)eikx

improves the situation in the sense that convergence and approximation properties of such
means are better. The same is true for many other linear means

LλN(f ;x) =
∑
k

λN,kf̂(k)eikx.

In view of the Banach-Steinhaus theorem, the question whether these means define a regular
method of summability (convergent, to the same sum, for convergent series) or not can be
derived from the behavior of the sequence of norms of operators LλN taking L1(Tn) into
L1(Tn), or C(Tn) into C(Tn) which is the same. We will call these norms the Lebesgue
constants as well. The uniform boundedness of this sequence yields the regularity of the
method, otherwise some information on the growth in N of this sequence may be helpful.
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Usual Lebesgue constants (see above) appear when taking λN,k = 1 for |k| ≤ N and λN,k = 0
otherwise.

General necessary and sufficient conditions for the regularity of the method of summability
LλN(f ;x) were obtained by J. Karamata and M. Tomic̆ [KT]. These are:

1) lim
N→∞

λN,k = 1 for all k.

2) For every N there exists a number MN , such that for all m

π∫
0

∣∣∣∣λN,0/2 +
m∑
k=1

λN,k cos kx

∣∣∣∣ dx ≤MN .

3) The total variation of the functions

xλN,0/2 +
m∑
k=1

k−1λN,k sin kx

is uniformly bounded.
In the case of triangular matrices, that is, those with λN,k = 0 for k ≥ N, only two

conditions remain to be valid, namely, the first one and the second with m = N − 1 and
absolute constant instead of MN - this was established already by Lebesgue.

As it frequently happens to conditions that are simultaneously necessary and sufficient, at
best, their verification can be a cumbersome work, and in a sense, impossible in many cases.
The problem arises of finding verifiable sufficient conditions in terms of multipliers λN,k. For
triangular matrices this problem has been posed by S. M. Nikolskii [N]; he also succeeded
to solve the problem for λN,k being convex or concave. Actually, some results of such type
incidentally appeared earlier (see, e.g., the papers by Hille and Tamarkin [HT] or Sz.-Nagy
[SN]), but real interest to the problem and prgress has been visible just after the paper [N].
These results are partly surveyed in [Br, Ch.VII] and [Ti, Ch.VIII]. One can find a kind of
survey in [Te2]. A detailed survey is given in [T1]. The following result by Telyakovskii [Te]
is one of the most developed.

Theorem 0.1. If a triangular method of summability LλN satisfy

N−1∑
k=0

|∆λN,k| ≤ C,

where ∆λN,k = λN,k − λN,k+1, and

N−2∑
k=2

∣∣∣∣q(k.l)∑
l=1

∆λN,k−l −∆λN,k+l
l

∣∣∣∣ ≤ C,

then for the regularity of the method there necessary and sufficient 1) above and∣∣∣∣N−1∑
k=1

λN,k
N − k

∣∣∣∣ ≤ C.
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Here and in what follows by C we denote various constants, generally speaking, different.
The last condition in Theorem 0.1 has already appeared in Nikolskii’s paper [N]; the point

is that the assumptions in [N] were much more restrictive.
These problems are intimately related to the well-known problem of integrability of

trigonometric series: given a trigonometric series

a0/2 +
∞∑
k=1

(ak cos kx+ bk sin kx)

under which assumptions on its coefficients this series is the Fourier series of an integrable
function. The assumptions considered are such that the series converges to a function con-
tinuous everywhere except one point. Thus, the problem whether this series is the Fourier
series is reduced to that of integrability of the sum of the series, or as it is used to say,

integrability of the series. We will say in this case that a sequence belongs to L̂1.
Frequently, the cosine series

a0/2 +
∞∑
k=1

ak cos kx

and the sine series
∞∑
k=1

bk sin kx

are investigated separately, since there is a difference in their behavior. Usually, integrability
of the latter requires additional assumptions.

Of course, considered were series of the form

∞∑
k=−∞

cke
ikx

(see, e.g., [Mo4]) as well, but this does not add anything essential to our consideration.

To the best of our knowledge, there exists no convenient description of L̂1 in terms of a
given sequence alone. Actually, there are some characterizations, e.g., [E, Ro, Ry, Sa], but
they are too complicated to be applied to concrete problems and they involve properties

of functions. Hence, certain subspaces of L̂1 are studied so that they are both as wide as
possible and described in terms convenient for applications.

Let us be more precise. First of all, in view of the Riemann-Lebesgue theorem L̂1 itself
is a subspace of c0, the space of null sequences.

In 1922, Sidon [Si1] (see also [B, vol.I]) gave an example of an even monotone null sequence

which is not in L̂1. This means that also the space of sequences of bounded variation

bv =

{
d = {dk} : ‖d‖bv =

∞∑
k=0

|∆dk| <∞

}

is not a subspace of L̂1. Here ∆dk = dk − dk+1.
It is well-known (see, e.g., [B,Zy]) that possessing a null sequence of bounded variation

as its Fourier coefficients, the cosine series converges for every x 6= 0(mod 2π), while the sine
series converges everywhere.
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In 1913 W.H. Young [Yo] proved that if {ak} is a convex null sequence, that is,

∆2ak = ∆(∆ak) ≥ 0

for k = 0, 1, 2, . . . , then the cosine series is the Fourier series of an integrable function.
In 1923 Kolmogorov [K] extended this result to the class of quasi-convex sequences {ak},
namely those satisfying

∞∑
k=0

(k + 1)|∆2ak| <∞.

In 1934 Pfleger [P] proved that like every real sequence of bounded variation is a difference
of two monotone sequences, every real quasi-convex sequence is a difference of two convex
sequences.

The first period of investigation was over, in a sense, in 1956 when R.P. Boas generalized
all previous results [Bo1].

Let us give a list of spaces χ all of which are subspaces of L̂1 and ensure the integrability of
corresponding trigonometric series. This list does not pretend to be comprehensive. Though
most of the strongest known conditions are in this list, the selection is partly a matter of
taste.

1) The so-called Boas-Telyakovskii condition (see, e.g., [Te2]). Let

sd =
∞∑
n=2

∣∣∣∣∣∣
n/2∑
k=1

∆dn−k −∆dn+k

k

∣∣∣∣∣∣ ,
then d = {dk} ∈ bt if

‖d‖bt = ‖d‖bv + sd <∞.

This was a generalization of Boas’ result in the way that in [Bo1] the sign of absolute value
in the representation for sd was inside the second sum.

2) A.G. Fomin’s condition [Fo2] (see also [BTM1,2], [GM], [GM2]):

‖d‖ap =
∞∑
n=0

2n/p
′

{
2n+1−1∑
k=2n

|∆dk|p
}1/p

<∞, 1 < p <∞, 1/p+ 1/p′ = 1.

3) The Sidon-Telyakovskii condition [T6]:

Ak ↓ 0 (k →∞),
∞∑
k=0

Ak <∞ and |∆dk| < Ak.

4) The Buntinas–Tanovic-Miller condition (see, e.g., [BTM2]).
Let {kn} be an increasing sequence and {mn}, 1 ≤ mn ≤ kn+1, a non-decreasing sequence.

Then d ∈ hvp if

∞∑
n=0

m1/p′

n

{
kn+1−1∑
k=kn

|∆dk|p
}1/p

+
∞∑
n=0

ln

(
kn+1

mn

) kn+1−1∑
k=kn

|∆dk| <∞.

If kn = 2n and mn = 2n+1, we get ap. If mn = 1, then
∞∑
n=1

|∆dn| lnn < ∞. They also

introduced a scale of HV p spaces each of which is a linearization of hvp.
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Recently amalgam spaces (see [AF1, BTM3]), in which the condition for a sequence d is

∞∑
n=0


∞∑
m=1

(m+1)2n−1∑
k=m2n

|∆dk|

2
1/2

<∞,

were used in these problems; for further analysis see [Fi].
For various reasons we would like to pay more attention to Telyakovskii’s results. First

of all, some other results simply follow from his results. In addition, besides direct answers
to the question which has arisen, estimates of the integral

I =

∫ ∣∣∣∣∣a0/2 +
∞∑
k=1

(akcoskx+ bk sin kx)

∣∣∣∣∣ dx
were obtained over either the entire period or some smaller interval.

Just such estimates give rise to important applications: in summability (more precisely,
in estimates of Lebesgue constants), in estimating deviations of functions from the means of
their Fourier series, and in best approximation of infinitely differentiable functions.

A typical strong result due to Telyakovskii is the following

Theorem 0.2. Let {an}, {bn} be null sequences. Then

π∫
0

∣∣∣∣a0/2 +
∞∑
k=1

ak cos kx

∣∣∣∣ dx = O(||a||bv + sa),

and uniformly with respect to p = 1, 2, ...

π∫
π/(2p+1)

∣∣∣∣ ∞∑
k=1

bk sin kx

∣∣∣∣ dx =

p∑
k=1

|bk|
k

+O(||b||bv + sb),

and trigonometric series are the Fourier series of integrable functions.

A traditional way to prove such results were the so-called Sidon type inequalities. Those
are various inequalities related to the one obtained by Sidon [Si2]

(N + 1)−1||
N∑
k=0

ckDk||L1 ≤ max
0≤k≤N

|ck|,

where Dk are the Dirichlet kernels of order k and ck are arbitrary numbers. For generaliza-
tions and applications, see, e.g., a survey by Fridli [Fi].

In [L5], a new approach to these problems was introduced.
First, let us consider a locally absolutely continuous function f on [0,∞) such that

lim
x→∞

f(x) = 0

and f ∈ X, where X is a subspace of the space of functions of bounded variation; in addition
denote

‖f‖BV =

∞∫
0

|f ′(x)|dx <∞.
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The spaces X that are already investigated within this scope generalize the known spaces
of sequences (see 1)-3) above).

1) Set

Sf =

∞∫
0

∣∣∣∣∣∣
u/2∫
0

f ′(u− x)− f ′(u+ x)

x
dx

∣∣∣∣∣∣ du.
Then f ∈ BT if ||f ||BV + Sf <∞.

It is very interesting that the finiteness of the right-hand side means that the even con-
tinuation of f has a derivative in the real H1 space, that is, this derivative itself and its
Hilbert transform are both integrable. Similar relations take place also for sequences and
are investigated by Fridli (see [Fi] and especially [Fi1]) .

2) The following spaces first were used in a paper by D. Borwein [Bo]. For integrability
problems, they were thoroughly investigated in various papers, first of all in those by Móricz
and Giang [Mo, GM0,1, Mo2,3]. Thus f ∈ Ap, 1 < p <∞, if

∞∫
0

(
u−1

∞∫
u

|f ′(x)|p dx
)1/p

du <∞.

3) The case of p = ∞ is of special interest. We have f ∈ A∞ if

∞∫
0

ess sup|x|>u |f ′(x)| du <∞.

For this, see [T11, BLT]; for various relations between these spaces and history, see [L11].
Let us go on to the Fourier transform approach. We consider

f̂c(y) =

∞∫
0

f(x) cos xy dx

and

f̂s(y) =

∞∫
0

f(x) sinxy dx,

the cosine and sine Fourier transforms of f, respectively.

Theorem 0.3. Let f be as above. Then for any y > 0 we have

f̂c(y) = θγ(y),

and
f̂s(y) = y−1f (π/(2y)) + θγ(y),

where |θ| ≤ C and
∫∞

0
|γ(y)|dy ≤ ‖f‖X .

Such results are of great interest by themselves. Not many of them are known. We
mention Trigub’s result on asymptotics of the Fourier transform of a convex function (see
[T3,4]); this was a generalization and strengthening of Shilov’s result [Shi] on the behavior
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of the Fourier coefficients of a convex function). Next results were due to Trigub [T11] and
Giang-Móricz [GM2]. These cover the cases 2) and 3) of the space X. More general result
was recently obtained in [L13].

Now we are able to strengthen the known integrability results. Given cosine and sine
series with the null sequence of coefficients in χ. Set for x ∈ [k, k + 1]

A(x) = ak + (k − x)∆ak, a0 = 0.

Passing now from Fourier integrals to trigonometric series (and vice versa; see Theorem 0.7)
we arrive at

Corollary 0.1. For each y, where 0 < y ≤ π, we have

∞∑
k=1

ak cos ky = θγ(y)

∞∑
k=1

ak sin ky = y−1A(π/(2y)) + θγ(y)

where |θ| ≤ C and
π∫
0

|γ(y)| dy ≤ ||a||bv + sa.

Theorem 0.2 follows now immediately, merely by integrating the formulas obtained, but
one can imagine more sophisticated use of these formulas, say, integration over some other
sets.

A brief survey on the integrability of trigonometric series is given in author’s article [L14]
in Math. Encyclopedia.

Let us return to estimates of Lebesgue constants. We are going to give some results due
to Trigub. In the 60s he made a further step by obtaining a series of results connecting
summability to problems of absolute convergence of Fourier series and Fourier integrals. If
the Lebesgue constants ||LλN || increase infinitely as N increases, then there is no regularity
of the means LλN(f). To provide the convergence of LλN(f) to f, some smoothness should be
added to f related to the rate of growth of LλN .

If to replace the Fourier coefficients f̂(k) (integrals) by f̂N(k) via the rectangle formula
for the uniform partition xp = 2pπ

2N+1
, with |p| ≤ N, we get

L̃λN(f ;x) =
N∑

k=−N

λN,kf̂N(k)eikx,

where

f̂N(k) =
1

2N + 1

N∑
p=−N

f(xp)e
−ikxp .

Coefficients f̂N(k) are called the Fourier-Lagrange coefficients. When λN,k = 1 for all k ∈
[−N,N ] we have that L̃λN(f) is the interpolation polynomial defined by the values f(xp) for
p ∈ [−N,N ].

The convergence of LλN(f) to f at a point x for every f ∈ C(T) is reduced to the
boundedness in N of the norms of functionals, the Lebesgue functions.
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Theorem 0.4. We have

sup
||f ||C≤1

|L̃λN(f ;x)| = (π/2)| sin(N + 1/2)x|||LλN ||

+ θ sup
||f ||C≤1

|L̃λN(f ; 0)|,

where |θ| ≤ C.

In the following theorem a trigonometric polynomial TN of order not greater than N
is replaced by piece-wise sinusoidal function (see a)), which allows one to calculate the
asymptotics of integral norms of TN (see b)). For this, let us introduce a sequence of
functions ϕN corresponding to {λN,k}Nk=−N and satisfying the only condition ϕN(xk) = λN,k
for k ∈ [−N,N ]. For instance, ϕN may be a polynomial or piece-wise linear function. Denote
also ψN(x) = xϕN(x).

Theorem 0.5. Two assertions are true.
1) For every x ∈ [−π, π] and p =

[
1
2

+ 2N+1
2π

x
]

the following inequality holds∣∣∣∣TN(x)− (−1)p

2N + 1
T ′N(xp) sin(N + 1/2)x

∣∣∣∣
≤ C

N∑
k=−N

|TN(xk)|
(2N + 1)2

(2|p− k|+ 1)2(4N + 1− 2|p− k|)2
.

2) The following asymptotic equality holds∫
T

∣∣∣∣ N∑
k=−N

λN,ke
ikx

∣∣∣∣ dx = (4/π)
N∑

k=−N

|ψ̂N(k)|+ θ
N∑

k=−N

|ϕ̂N(k)|

with |θ| ≤ C.

As an application, one can derive asymptotics for the Lebesgue constants for the general

sums of Bernstein-Rogosinski type
N∑

k=−N
µkSN(f ;x+ xk) with the remainder term θ

∑
|µk|.

What is of special interest is the case when λN,k = λ(k/N) for some fixed function λ (for
instance, it contains the case of partial sums λ being the indicator function of the interval
[−1, 1]). It was Trigub who started a systematic study of this case. The main point is that
there exists a close connection between summability problems and behavior of the Fourier
transform λ̂ of the function λ generating the method.

Theorem 0.6. The following assertions hold.
1) If λ ∈ C(T) and λ(π) = λ(0) = 0, then

sup
N
||LλN ||M =≤ C

∞∑
k=−∞

|λ̂(k)| ln(|k|+ 1).

And if, in addition, λ is a continuous real even function with alternating, with respect to
sign, Fourier coefficients in a cosine series, starting with the first one, then the opposite
inequality is valid too.
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2) If λ ∈ C(T) and λ(π) = λ(−π) = λ(0) = 0, then denoting λ0(x) = λ(x) sign x we have

sup
N
||LλN ||M ≤ C

∞∑
k=−∞

|λ̂(k)| ln(|k|+ 1),

under the assumption that the series on the right-hand side converges.

Many details and references may be found in [T1,5,8,13]. Some results are due to Belinsky
but mainly he extended this approach to the multidimensional case.

Theorem 0.7. Let ϕ be a function of bounded variation and lim
|x|→∞

ϕ(x) = 0. Then for any

ε > 0

sup
0<|y|≤π

∣∣∣∣
+∞∫
−∞

ϕ(x)e−ixy/ε dx− ε

+∞∑
−∞

ϕ(εk)e−iky
∣∣∣∣≤ 2ε||ϕ||BV .

This result is due to Trigub [T11, Th.4]. In [T12] this is Lemma 1 given as a partial
case of more general result; an earlier version for functions with compact support is due to
Belinsky [Be0]).

This brief survey of one-dimensional results by no means pretends to be comprehensive.
The idea was to introduce the reader to the subject. Mostly the results are emphasized
that will be extended to the multidimensional case. For this, we are going to give some
preliminaries as well as some general remarks.

0.2. Let f be an integrable function on Tn, n = 2, 3, ..., 2π-periodic in each variable.
Consider the Fourier series of this function∑

k

f̂(k)eikx (0.1)

where x = (x1, ..., xn) is a point in the real n-dimensional Euclidean space Rn, k = (k1, ..., kn) ∈
Zn, the lattice of points in Rn with integer coordinates, kx = k1x1 + ...+ knxn is the scalar
product, and

f̂(k) = (2π)−n
∫
Tn

f(x)e−ikxdx

is the kth Fourier coefficient of f .
Kolmogorov’s theorem [K2] applied in each variable asserts that the series (0.1) may be

divergent at each point of Tn. Thus, it is quite natural to consider the sequence of linear
operators

LλN : f(x) 7→ LλN(f ;x) =
∑
k

λN,kf̂(k)eikx,

where λN,k is a sequence of numbers (multipliers), or an important special case when λN,k =
λ(k/N))

LλN : f(x) 7→ LλN(f ;x) =
∑
k

λ(k/N)f̂(k)eikx, (0.2)

where λ is a bounded measurable function (of course, it should be defined at the points of
type k/N), and study properties of this sequence in order to derive some information about
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the function f , or some space of such functions. One receives much information from the
behavior of the norms of these operators. When the operators map C(Tn) into C(Tn), or
L1(Tn) into L1(Tn), and λ ≡ 1 on some set and vanishes outside (in the other words, λ is the
indicator function of this set) the norms are traditionally called the Lebesgue constantsṪhis
term is frequently saved for the general situation of the norms of multipliers defined by a
sequence {λN,k} or {λ(k/N)}.

0.3. It is well-known [SW, Ch.VII,Th.3.4] that the operator LλN is bounded if and only
if the series ∑

k

λ(k/N)eikx (0.3)

is the Fourier series of some measure µN , and ‖LλN‖ = ‖µN‖. And if this series is the Fourier
series of an integrable function, the following relation takes place:

‖LλN‖ = (2π)−n
∫
Tn

∣∣∣∣∑
k

λ(k/N)eikx
∣∣∣∣dx. (0.4)

This occurs, for instance, when λ has compact support.
If to take formally an integral instead of the sum on the right-hand side of (0.4), and to

fulfil some simple computations (also formal for a moment), considering k as a continuous

parameter, one can expect something like (2π)−n
∫
NTn |λ̂(x)|dx in place of the right-hand

side of (0.4). Here

λ̂(x) =

∫
Rn

λ(u)e−iux du

is the Fourier transform of λ. This process looks so natural and so attractive (and so short!)
but this simplicity is deceptive. It may be very subtle and sometimes very cumbersome in
reality. We will see below that sometimes it is invalid in some sense!

It is written in [DC] that “the best trick will be to transfer problems” (of convergence of
Fourier series) “from Fourier series to Fourier integrals. This is good because it is easier to
compute an integral explicitly than to sum a series in a closed form. On the other hand, this
is bad because the integrals defining Fourier transforms do not converge absolutely”.

We try to consider some problems in which “this is good” (or at least we think so). Even
in the cases when “this is bad” (in the mentioned sense), we obtain certain information
studying the order of “badness”.

It is clear that problems of behavior of the Fourier transform are hardly of the same
interest and value as those we are going to consider. Observe that in principle two different
types of results might be needed. First, these are the conditions of integrability of the
Fourier transform. Though in a recent paper [SK] no one result either due to Trigub or to
the author is mentioned (and we dare to think these are of certain interest and importance),
it may be considered as more or less comprehensive survey of the cases and conditions of
integrability of multidimensional Fourier transform. But we mostly are interested in more
subtle results on asymptotic behavior of the Fourier transform. Actually, there are not so
many papers devoted to such precise results, even in the one-dimensional case. Nevertheless,
neither a (sub)survey on these results nor even a systematic collection of those is given
here. Penetrating deeply into details might lead us far away from the initial problems of
summability of the Fourier series. Instead, we are giving the results needed in proper places
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of the text (see Theorem 1.1, Theorem 4.3, Theorems 5.1, 5.2 and 5.3, Theorem 7.1, and
Theorem 9.2 with corollaries).

0.4. Just the definition of a partial sum of the multiple Fourier series reveals many
problems and points of interest that are of geometric nature. Very often in these notes
we run into geometric ideas and techniques. Some geometric argument appears already in
simple calculations in the proof of Theorem 1.1 and then throughout the whole subsection
1.2. Geometric effects are essential for generalizations of the Wiener’s result in Section 3. In
Section 4, geometry appears naturally when a wide class of sets is considered instead of the
ball. Here is where geometric ideas related to curvature enter (see also Section 1).

As Ch. Fefferman writes in [F3]: “One of the most fascinating themes in Fourier analysis
in the last two decades has been the connection between the Fourier transform and curvature.
Stein has been the most important contributor to this set of ideas”. For this, see, e.g., the
paper [S2] as a representative example in a series of Stein’s works devoted to the role of the
Gaussian curvature in Fourier Analysis; mention also his recent book [S3].

Peculiar geometric problems appear in Sections 6 and 8.

0.5. Since the behavior of Lebesgue constants strongly depends on the number and order
of location of lattice points in sets investigated, close relations of the problem considered
to delicate results in Number Theory do not seem surprising. A classical example of such
possible relation is Siegel’s proof of Minkowski’s theorem via the Fourier transform and
Poisson summation formula (see, e.g., [SW, Ch.VII]). But in concrete situations involving
Number Theory results may nevertheless seem impressive. Given in formulations or hidden
in proofs, such connections are quite frequent in our considerations. First, mention that K. I.
Babenko has systematically exploited the Riemann Zeta Function as well as sharp estimates
of the number of lattice points in balls and on spheres. Number Theory is a permanent tool
in Sections 6 and 8. It is very probable that further development in the problems considered
in these sections are waiting for advances in related problems of Number Theory.

0.6. There still exist some challenging problems concerning the Lebesgue constants. The
main open problem is the asymptotic behavior of the Lebesgue constants of the Bochner-
Riesz means of order below critical (see discussion after Theorem 2.2); the case of spherical
partial sums is included as well (see Section 1). It was posed almost 30 years ago and till now
defies all the assaults. Of course, the same problem is still open for various generalizations
(see, e.g., Section 7). A problem of finding minimal conditions on the set defining partial
sums such that the corresponding Lebesgue constants are of logarithmic order is posed in
Section 6 (see also Theorem 6.2 and below). Section 1 is concluded with an open problem as
is Section 8. Theorem 6.3′ is important step, highlighting how much is unclear rather than
solving the appropriate problem. Some problems appear in related areas when tools from
these areas are applied to solving the problems for Lebesgue constants. In our opinion, there
is still enough room for interested researches.

0.7. We do not touch the related problems in more general setting, say, for spherical
harmonics or even for compact Lie groups. Mention only that the problem of behavior
of Lebesgue constants for Lie groups started in 70s by Dreseler and then continued by G.
Travaglini and his colleagues (see, e.g., [GT]) is of considerable interest and is very specific.
Further, it turned out that the above mentioned main open problem for trigonometric case,
for Cesàro means of spherical harmonic expansions was affirmatively solved in a recent paper
[L10].
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We also do not touch applications of the results considered to approximation, though
some of them are known. Moreover, in many cases estimates of the Lebesgue constants
immediately imply corresponding estimates of the rate of approximation on related classes
of functions.

Among other applications let us just mention that of estimating one-dimensional trigono-
metric sums by means of multi-dimensional polyhedral Lebesgue constants (see [KS]) and
relations between positive definiteness and Lebesgue constants (see, e.g., [Gn] and [Zas]).
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1 Spherical partial sums and some generalizations

Main problems arise in multidimensional Fourier Analysis because of various possibilities to
define partial sums of the Fourier series. Different geometry implies very important differ-
ences in the behavior of such partial sums and, as a consequence, very different convergence
and approximate properties of the function considered. It is known that in many respects
spherical partial sums are characteristic in a wide range of problems.

1.1. Let us begin with a very exemplary case. Consider the spherical partial sums SN of
the Fourier series of a function f

SN(f ;x) =
∑
|k|≤N

f̂(k)eikx,

where |k|2 = k2
1 + · · ·+k2

n. It is well-known (see, e.g., [SW, Ch.VII, Thm.3.4]) that the norm
of the operator

SN : f(x) 7→ SN(f ;x)

taking C(Tn) into C(Tn) (or L1(Tn) into L1(Tn) that is the same) equal the L1-norm of
the corresponding Dirichlet kernel

‖SN‖ = (2π)−n
∫
Tn

∣∣∣∣∑
|k|≤N

eikx
∣∣∣∣ dx. (1.1)

The following ordinal estimate holds.

Theorem 1.1. There exist positive constants C1, and C2, where C1 < C2, depending only
on n, such that

C1N
(n−1)/2 ≤ ‖SN‖ ≤ C2N

(n−1)/2. (1.2)

Proof. We give an outline of the proof which illustrates rather general method. It turned
out that first the estimate from below was obtained by V.A. Ilyin [I] (even for more general
expansions corresponding to the Laplace operator), and after that two-sided estimates were
obtained in [Ba2] and [IA]. All those proofs were rather complicated. We will follow a very
simple proof of the upper estimate proposed by V. Yudin [Y1] in more general setting; the
earlier proof of the upper estimate in (1.2) due to H. Shapiro [Sh] essentially is almost the
same. Then, using a trick proposed in [I], we will adjust this proof to the estimate from
below as well.

If Ik is the cube with the edge of length 1 and the center at the point k , and AN =⋃
k:|k|≤N Ik, then ∫

AN

eiuxdu =
∑

k:|k|≤N

∫
Ik

eiuxdu

=
∑

k:|k|≤N

eikx
n∏
j=1

2 sin(xj/2)

xj
=

n∏
j=1

2 sin(xj/2)

xj

∑
k:|k|≤N

eikx.
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Thus, we obtain

‖SN‖ ≤ (2π)−n(π/2)n
∫
Tn

∣∣∣∣ ∫
AN

eiux du

∣∣∣∣ dx
≤ 4−n

∫
Tn

∣∣∣∣ ∫
|u|≤N

eiux du

∣∣∣∣ dx+ 4−n
∫
Tn

∣∣∣∣ ∫
WN

±eiux du
∣∣∣∣ dx, (1.3)

where WN is symmetric difference of the set AN and the ball BN = {u : |u| ≤ N}. Taking
into account that mesWN ≤ CNn−1 and applying the Cauchy-Schwarz inequality to the last
summand on the right-hand side of (1.3), we obtain, by virtue of Parseval’s identity, that

‖SN‖ ≤ 4−n
∫
Tn

∣∣∣∣ ∫
|u|≤N

eiuxdu

∣∣∣∣ dx+O(N (n−1)/2)

= 4−n
∫

NTn

∣∣∣∣ ∫
Rn

χ1(u)e
iuxdu

∣∣∣∣ dx+O(N (n−1)/2)

= 4−n
∫

NTn

|χ̂1(x)| dx+O(N (n−1)/2),

(1.4)

where χ1 is the indicator function of the unit ball B1 = {u : |u| ≤ 1}. Now standard
computations of χ̂1 via the Bessel functions (see, e.g., [SW, ?]) and consequent integration
complete the upper estimate in (1.2).

In order to obtain the lower estimate, let us introduce a small parameter ε, 0 < ε < 1, as
it was done in [I]. Instead of the equality (1.1), we obtain here an obvious inequality from
below

‖SN‖ ≥ (2π)−n
∫
εTn

∣∣∣∣∑
|k|≤N

eikx
∣∣∣∣ dx.

Now we can proceed as in the obtaining (1.3) and (1.4), but with estimates from below
instead of those from above and signs“−” instead of “+” on appropriate places. This gives

‖SN‖ ≥ (2π)−n
∫

εNTn

|χ̂1(x)| dx− C3ε
n/2N (n−1)/2. (1.5)

The afore-mentioned computations involving Bessel functions yield here the following esti-
mate from below

‖SN‖ ≥
(
C4ε

(n−1)/2 − C3ε
n/2
)
N (n−1)/2.

It remains only to choose ε such that C1 = C4ε
(n−1)/2−C3ε

n/2 > 0. The proof is complete.

In the less known paper by Podkorytov [P0] similar technique was elaborated indepen-
dently. This allowed to obtain the following interesting result. To indicate that partial sums
correspond to certain set B, we will denote them by

SB(f ;x) =
∑
k∈B

f̂(k)eikx. (1.6)
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Theorem 1.2. Assume that a set B ⊂ Rn satisfies the following conditions:

1) For some N1 ≥ N2 ≥ ... ≥ Nn ≥ 0 we have

B ⊂ [−N1, N1;−N2, N2; ...;−Nn, Nn].

2) For all j = 1, ..., n and all x1, ..., xj−1, xj+1, ..., xn the set

Bj(x1, ..., xj−1, xj+1, ..., xn)

={xj : (x1, ..., xj−1, xj, xj+1, ..., xn) ∈ B}

is either empty or is an interval.
Then

||SB|| = O

(√
N2 · · ·Nn

(
1 + ln(N1/N2)

))
.

1.2. The proof of Theorem 1.1 is very typical for obtaining estimates of the Lebesgue
constants of either partial sums or linear means of Fourier seriesẆe have already mentioned
that such was V. Yudin’s estimate from above [Y1] for very general sets B, generating the
corresponding partial sums, namely, those which are balanced (with each point x the whole
set δx, |δ| ≤ 1, belongs to B), and having the finite upper Minkowski measure:

lim sup
ε→0

(1/ε) mes{x : ρ(x, ∂B) < ε} <∞,

where ρ(x, y) is the distance between two points x, y ∈ Rn, and

ρ(x, ∂B) = inf
y∈∂B

ρ(x, y).

A similar method was applied to obtain the estimate from below in [L2], where conditions
are less restrictive than in the earlier paper [CaS] and the later papers [Br1,2]; above all,
they are local.

Theorem 1.3. ([L2,3]) Let the boundary of a domain B contain a simple (non-intersecting)
piece of a surface of smoothness [(n + 2)/2] in which there is at least one point with non-
vanishing principal curvatures. Then there exists a positive constant C depending only on B
such that ∫

Tn

∣∣∣∣∣ ∑
k∈NB∩Zn

eikx

∣∣∣∣∣ dx ≥ CN (n−1)/2

for large N .

More details will be given below when considering a generalization of this theorem (see
Theorem 4.2). And now let us give one related two-dimensional result.

Theorem 1.4. ([Gu]) Assume that a convex set B is included into T2. Then for sufficiently
large N the inequality

||SNB|| ≥ CN1/2

(∫
T

√
ρ(ϕ) dϕ

)2
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holds, where ρ(ϕ) is the curvature radius of ∂B at the point where

max{x1 cosϕ+ x2 sinϕ : x ∈ B}

is attained.
If

lim inf ||SNB||/N1/2 = 0,

then the boundary of the set B is degenerate, i.e. for almost all directions ϕ its curvature
radius is equal to zero.

In this theorem as well as in [P7] no assumptions on smoothness of ∂B are involved.
Of course, convexity itself yields some minimal smoothness. Since only two-dimensional
statements are obtained in [P7] and [Gu], this gives rise to the question: what are the
minimal smoothness assumptions for such estimates in case of arbitrary dimension.
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2 General estimates

Certainly, in the previous section the Fourier transform is applied to estimates of Lebesgue
constants in a comparatively simple situation, while in more general and more complicate
situations some steps may be really tedious and entailed with considerable technical difficul-
ties. For example, even for the Fejér type means generated by convex sets, the proof of the
boundedness of the norms of corresponding operators in [P1] is rather complicate even in
the two-dimensional case, and non-trivial estimates of Fourier transforms are continuously
used.

2.1. Let us give now one Belinsky result in which the Fourier transform method is realized
in a very general setting. Belinsky was apparently the first to begin a systematic study of
connections between summability of multi-dimensional Fourier series and integrability of the
Fourier transform of a function, generating the method of summability.

Theorem 2.1. ([Be2]) Let λ be a bounded measurable function with compact support. Then
for the norms of a sequence of linear operators (0.2) we have the estimate from above

‖LλN‖L1(Tn)→L1(Tn) ≤ (2π)−n
∫

NTn

n∏
j=1

xj
2N sin(xj/(2N))

|λ̂(x)| dx

+
m−1∑
j=1

(π/2)(j+1)n

∫
NTn

|λ̂(x)| |x/N |j dx

+ ω1

∫
(2π)−1Tn

· · ·
∫

(2π)−1Tn

(∑
k

∣∣∆m
k/N (λ;u1/N, ..., um/N)

∣∣2)1/2

du1...dum,

(2.1)

and the estimate from below

Cp‖LλN‖Lp(Tn)→Lp(Tn) ≥

(2π)−n
∫

εNTn

∣∣∣∣∣
n∏
j=1

xj
2N sin(xj/(2N))

λ̂(x)

∣∣∣∣∣
p

dx


1/p

−
m−1∑
j=1

(π/2)(j+1)n


∫

εNTn

|λ̂(x)|p |x/N |jp dx


1/p

− ωpε
n/p−n/2Nn/p−n

×
∫

(2π)−1Tn

· · ·
∫

(2π)−1Tn

(∑
k

∣∣∆m
k/N (λ;u1/N, ..., um/N)

∣∣2)1/2

du1...dum,

(2.2)

where ωp = πnm+n/p−n/22−nm+n/p−n/2.

Here ε, 0 < ε ≤ 1, is an arbitrary real number, m is integer, and 1 ≤ p ≤ 2. The mth
difference ∆m

z (λ;h1, ..., hm) is defined recursively by the formulas

∆1
z(λ;h1) = λ(z + h1)− λ(z)
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and
∆m
z (λ;h1, ..., hm) = ∆m−1

z+hm
(λ;h1, ..., hm−1)−∆m−1

z (λ;h1, ..., hm−1),

with hj, z ∈ Rn. When p > 2, in view of duality (see, e.g., [SW, Ch.I,Th.3.20]) the estimate
(2.2) is still valid with p′ = p/(p− 1) instead of p.

Proof. We follow the argument from [Be2]. We have by definition

‖LλN‖Lp(Tn)→Lp(Tn)

= sup
||f ||Lp(Tn)≤1

(2π)−2n

∫
Tn

∣∣∣∣∣∣
∫
Tn

f(x− u)
∑
k

λ(k/N)eiku du

∣∣∣∣∣∣
p

dx


1/p

.

For p = 1, we have

||LλN || = (2π)−n
∫
Tn

∣∣∣∣∑
k

λ(k/N)eikx
∣∣∣∣ dx. (0.4)

For p > 1, assume, without loss of generality, that λ = 0 when |xj| > 1, j = 1, 2, ..., n, and
set

f(x1, ..., xn) = C−1
p Nn/p−n

n∏
j=1

DN(xj),

where DN(xj) is the Dirichlet kernel. A constant Cp is chosen to guarantee the function f
to be in the unit ball, that is, ||f ||Lp(Tn) ≤ 1. We obtain

Cp‖LλN‖Lp(Tn)→Lp(Tn) ≥ Nn/p−n

(2π)−n
∫
Tn

∣∣∣∣∑
k

λ(k/N)eikx
∣∣∣∣p dx


1/p

.

Using the obvious equality

kj+1/2∫
kj−1/2

eixjvj dvj = eikjxj2 sin(xj/2)/xj, j = 1, 2, ..., n,

replace the sum by the Fourier transform of λ as in [Y1] (see also [Zg, Ch.V, Th.2.29]; cf.
the proof of Theorem 1.1):

Cp‖LλN‖Lp(Tn)→Lp(Tn)

= Nn/p−n
{

(2π)−n
∫
Tn

∣∣∣∣ n∏
j=1

xj
2 sin(xj/2)

×
∑
k

∫
k+(2π)−1Tn

λ(k/N)eixv dv

∣∣∣∣p dx}1/p

.
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Obviously, for 0 < ε < 1 we have

Cp‖LλN‖Lp(Tn)→Lp(Tn)

≥ Nn/p−n
{

(2π)−n
∫
εTn

∣∣∣∣ n∏
j=1

xj
2 sin(xj/2)

×
∑
k

∫
k+(2π)−1Tn

λ(k/N)eixv dv

∣∣∣∣p dx}1/p

.

The following simple inequality 2/πt ≤ sin t true for 0 ≤ t ≤ π/2, and Minkowski’s inequality
yield the estimate from below

CpN
n−n/p(2π)n‖LλN‖Lp(Tn)→Lp(Tn)

≥


∫
εTn

∣∣∣∣ n∏
j=1

xj
2 sin(xj/2)

∑
k

∫
k+(2π)−1Tn

λ(v/N)eixv dv

∣∣∣∣p dx


1/p

−

(π/2)np
∫
εTn

∣∣∣∣∑
k

∫
k+(2π)−1Tn

[
λ(k/N)− λ(v/N)

]
eixv dv

∣∣∣∣p dx


1/p

.

Summing the integrals over {k + (2π)−1Tn} and changing the variables, we reduce the first
term on the right-hand side to the form claimed. Let us estimate the second term. The
change of variables vj → vj + kj, for j = 1, ..., n, and the generalized Minkowski’s inequality
yield 

∫
εTn

∣∣∣∣∑
k

∫
k+(2π)−1Tn

[
λ(k/N)− λ(v/N)

]
eixv dv

∣∣∣∣p dx


1/p

≤
∫

(2π)−1Tn


∫
εTn

∣∣∣∣∑
k

[
λ(k/N)− λ(k + v/N)

]
eikx
∣∣∣∣p dx


1/p

dv

=

∫
(2π)−1Tn


∫
εTn

∣∣∣∣∑
k

∆1
k/N(λ;u1/N)eikx

∣∣∣∣p dx


1/p

du1.

Note that the inner integral on the right-hand side is of the same form as that in the beginning
of the proof, so the same argument is applicable to it. In what follows we need only estimates
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from above. Taking into account that∫
Rn

[
λ(u2)− λ(u2 + u1/N)

]
e−iu2x du2

=

∫
Rn

λ(u2)[e
−iu2x − e−i(u2−u1/N)x] du2

= (1− eiu1x/N)

∫
Rn

λ(u2)e
−iu2x du2 = (1− eiu1x/N) λ̂(x),

we obtain ∫
(2π)−1Tn


∫
εTn

∣∣∣∣∑
k

∆1
k/N(λ;u1/N)eikx

∣∣∣∣p dx


1/p

du1

≤ (π/2)n
∫

(2π)−1Tn


∫

εNTn

∣∣∣∣[1− eiu1x/N ] λ̂(x)

∣∣∣∣p dx


1/p

du1

+ (π/2)n
∫

(2π)−1Tn

∫
(2π)−1Tn

∫
εTn

∣∣∣∣∑
k

∆2
k/N(λ;u1/N, u2/N)eikx

∣∣∣∣p dx


1/p

du1 du2.

Using the simple inequality
|1− eiu1x/N | ≤ |u1||x|/N,

we obtain ∫
(2π)−1Tn


∫

εNTn

∣∣∣∣(1− eiu1x/N)λ̂(x)

∣∣∣∣p dx


1/p

du1

≤


∫

εNTn

|x/N |p|λ̂(x)|p dx


1/p

.

Repeating the same computations m− 2 times yields (2.2) with the remainder term

∫
(2π)−1Tn

...

∫
(2π)−1Tn


∫
εTn

∣∣∣∣∑
k

∆m
k/N(λ;u1/N, ..., um/N)eikx

∣∣∣∣p dx


1/p

du1...dum

times Nn/p−n(2π)−n/p(π/2)nm. In order to complete the proof, apply Hölder’s inequality, with
the power 2/p, to the inner integral, and then Parseval’s identity. The converse inequality
(p = 1) can be obtained similarly.
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2.2. We mention that Theorem 1.1 follows from Theorem 2.1 as a technical corollary.
But to demonstrate the strength of this theorem the following more general result seems to
be more impressive.

Let
λ(x) = Rα = (1− |x|2)α+.

Corresponding linear means generated by this function are called the Bochner-Riesz means.
An unbreakable interest in these means goes back to Bochner’s celebrated paper [Bc].

Theorem 2.2. ([I, Ba2, IA]) There exist positive constants C1 and C2, C1 < C2, depending
only on n and α, such that for 0 ≤ α < (n− 1)/2

C1N
(n−1)/2−α ≤

∥∥LRα
N

∥∥
L1(Tn)→L1(Tn)

≤ C2N
(n−1)/2−α. (2.3)

This is the best known result for the Lebesgue constants of the Bochner-Riesz means of
order less than critical (and consequently for the partial sums). Some rough estimates can
be found in the old papers by J. Mitchell [M1-3].

The problem of the asymptotic behavior of ||LRα
N ||, that is, the existence of the limit of

||LRα
N ||Nα−(n−1)/2 as N →∞ (see [Ba2, Sh]), is still open and may be considered, in a sense,

as the main open problem in this subject.
The following estimate obtained earlier by Babenko (see [Ba2, Ba3]) is also a compara-

tively simple consequence of Theorem 2.1.

Corollary 2.1. The following estimate holds:

∥∥LRα
N

∥∥
Lp(Tn)→Lp(Tn)

≥ C

(
Np(αp−α) − 1

p(αp − α)

)1/p

, (2.4)

where 1 ≤ p ≤ 2n/(n+ 1), and 0 ≤ α < αp = n/p− (n+ 1)/2. For α = αp this estimate is
understood to be the limit as α→ αp, which gives a logarithmic order of growth.

Proof of Theorem 2.2 and Corollary 2.1. The Fourier transform of Rα is very well known
(see, e.g., [SW, Ch.4]):

R̂α(x) = 2−n/2+απ−n/2Γ(α+ 1)|x|−n/2−αJn/2+α(|x|), (2.5)

where Jν is the Bessel function of the first kind and order ν. Let us estimate the terms with
the Fourier transform in (2.1). Extending in each one the domain of integration to the ball
of radius

√
nπN and then passing to spherical coordinates, we obtain

||LRα
N || ≤ C

√
nπN∫
0

∣∣∣∣Jn/2+α(r)rn/2+α

∣∣∣∣rn−1 dr +R,

where R denotes the last summand in (2.1) or (2.2). We are going to estimate it separately.
Let us use the following asymptotic formulas for Bessel functions

(see, e.g., [BE, 7.12(8),7.13.1(3)]):

Jν(t) =
(t/2)ν

Γ(ν + 1)
+O(|t|ν+2), (2.6)
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as t→ 0, and
Jν(t) =

√
2(πt)−1/2 cos(t− νπ/4− π/4) +O(t−3/2), (2.7)

as t→∞.
These yield

√
nπN∫
0

∣∣∣∣Jn/2+α(r)

rn/2+α

∣∣∣∣rn−1 dr ≤ C
N (n−1)/2−α − 1

(n− 1)/2− α
+O(N (n−3)/2).

Let us estimate now the remainder R. Split the sum into two ones:

sup
u1,...,um∈(2π)−1Tn

{∑
k

∣∣∣∣∆m
k/N

(
Rα;u1/N, ..., um/N

)∣∣∣∣2}1/2

= sup
u1,...,um∈(2π)−1Tn

{ ∑
|k|<N−m−2

+
∑

N−m−2≤|k|≤N

}1/2

.

Estimate each summand in the second sum by the maximal value of the function. Since Rα

is monotone increasing near the origin, we have∑
N−m−2≤|k|≤N

≤ CN−2α
∑

N−m−2≤|k|≤N

1 ≤ CNn−1−2α.

The latter value follows from the well-known estimates of the number of points of Zn in the
n-dimensional ball of radius N. The mean-value theorem for the directional derivative yields
that the first sum is

N−2m
∑

|k|<N−m−2

∣∣∣∣ ∂mRα

∂u1...∂um
(k/N + θ1u1/N + ...+ θmum/N)

∣∣∣∣2
with 0 < θj < 1, j = 1, 2, ...,m. Choose m such that m ≥ α + 1. If α is integer then the
derivative is bounded and ∑

|k|<N−m−2

≤ CNn−2−2α.

If α is fractional then estimating the derivative by its maximal value on the interval, we have∑
|k|<N−m−2

≤ CN−2m
∑

|k|<N−m−2

(
1− (|k|+m+ 2)2N−2

)2(α−m)

.

In view of monotonicity of the function it is possible to make use of integrals in place of
sums. This yields ∑

|k|<N−m−2

≤ CNn−1−2α,

and finally
R ≤ CN (n−1)/2−α. (2.8)
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This gives the right-hand side of (2.3). Use now (2.6), (2.7), and (2.8). The formula (2.2)
yields

||LRα
N ||Lp(Tn)→Lp(Tn) ≥ C1

[
Np(αp−α) − 1

p(αp − α)

]1/p

εαp−α

− C2N
αp−αεαp+1/2.

Choose ε so that
C1ε

αp−α − C2ε
αp+1/2 ≥ C > 0,

and this completes the proof of the corollary. By this we obtain the left-hand side of (2.3)
as well.

The original proofs are much more tedious. For instance, properties of Riemann’s Zeta
Function is the main tool in [Ba2].

For the sake of convenience, we will give Corollary 2.2 in one of the next sections, Section
4.

2.3. Let us give some other results which are due to Belinsky [Be1]. These results are
based on the Poisson summation formula and a certain technique of estimating trigonometric
sums and integrals via the Fourier transform.

Consider a function λ(x) bounded on Rn and continuous at the points of Zn, and construct
the formal trigonometric series for any f ∈ C(Tn)∑

k∈Zn

λ(k)f̂(k)eikx. (2.9)

Denote

UN(f ;x) = (2π)−n
∫
Tn

f(x+ u)
∑
m

λ(m/N)e−imu du.

The following two propositions are very useful in many applications. They are the corollaries
to Theorem 1 in [Be1]. We do not formulate the theorem itself because just these propositions
have proved to concentrate its main benefits.

Proposition 2.1. Suppose UN(f ;x) is defined as above. If λ ∈ C(Rn) and λ̂ ∈ L1(Rn),
then

‖UN‖ = (2π)−n
∫
Rn

|λ̂(u)| du+ θ(2π)−n
∫

Rn\(NTn)

|λ̂(u)| du,

where −2 ≤ θ ≤ 0, and, in general, the constant θ depends on N .

Proposition 2.2. If λ is compactly supported and continuous, then

sup
N
‖UN‖ = (2π)−n

∫
Rn

|λ̂(u)| du. (2.10)

All the norms here are the uniform norms. Note, that a similar upper estimate may be

found in [SW, Ch.VII, §2] provided both λ and λ̂ are integrable:∫
Tn

∣∣∣∣∑
k

λ(k/N)eikx
∣∣∣∣ dx ≤ ∫

Rn

|λ̂(x)| dx. (2.11)
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2.4. In a very precise form such relations are given in [T10]. It is to these results that
we now turn.

Let B = B(Rn) be the algebra of functions representable in the form

λ(x) =

∫
Rn

e−ixu dµ(u)

with ||λ||B = inf varµ, where µ is a finite Borel measure on Rn.
Let A = A(Rn) be the algebra of functions which expand in an absolutely convergent

Fourier integral

λ(x) = ĝ(x) =

∫
Rn

g(u)e−ixu du

with

||λ||A = ||g||L1 =

∫
Rn

|g(u)| du <∞.

Denote by ||LλN ||M the norm of the operator LλN taking L∞(Tn) into L∞(Tn) instead of
earlier considered cases L1(Tn) → L1(Tn) or C(Tn) → C(Tn), where λ is a locally Riemann-
integrable function.

Theorem 2.3. The following relations hold.

1) If λ ∈ B(Rn), then λ ∈M(Rn) and ||λ||M ≤ ||λ||B.
2) If λ ∈M(Rn), the function λ can be adjusted on its set of discontinuities so that it belongs
to B(Rn) and ||λ||B ≤ ||λ||M .

Corollary 2.2. A continuous function on Rn belongs to M and B simultaneously, and
||λ||M = ||λ||B.

This assertion was known earlier - see, e.g., [SW], namely, Ch.I, Theorem 3.19 and Ch.VII,
§3, especially Theorem 3.4.

Theorem 2.4. If λ ∈ B and outside some neighborhood of zero λ has bounded Vitali varia-
tion (see the next section), while lim

|x|→∞
λ(x) = 0, then λ ∈ A and

||λ||B = (2π)−n
∫
Rn

|λ̂(x)| dx,

where for
n∏
j=1

xj 6= 0 we have

λ̂(x) = lim
minNj→∞,
j=1,2,...,n

N1∫
−N1

...

Nn∫
−Nn

λ(u)e−ixu du.
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3 Fourier series and Fourier integrals

The above estimates were given in terms of absolute integrability of the Fourier transform of
the function λ generating a method of summability. Suppose that this function is compactly
supported. For its periodical continuation preserving the same notation will not result in
any confusion. Knowing already that the Lebesgue constants are estimated via the Fourier

transform λ̂, let us ask ourselves the following question:
Is it possible to estimate the Lebesgue constants in terms of absolute convergence of the

Fourier series of the generating function?
The following result of N. Wiener gives a hint at this (see [W, §12]):

If the support of λ is of diameter 2π − ε, ε > 0, then λ̂ is integrable over R if and only if λ
has an absolutely convergent Fourier series.

Absolute convergence of Fourier series is well studied; see the monograph by Kahane [Kh]
and corresponding chapters in general monographs [Br] or [Zg].

3.1 In the general situation, that is, where nothing is known except suppλ ⊂ T, Wiener’s
result is no longer the case. Denoting by λ1(x) = xλ(x), we have the following result which
is due to Trigub (see [T2,3]; a very simple proof can be found in [BLT]):

We have λ̂ ∈ L1(R) if and only if λ and λ1 have absolutely convergent Fourier series; the
two conditions are independent.

It is to be noted that for 1 < p < ∞, Plancherel and Polya [PP] showed that when

suppλ ⊂ T we have λ̂ ∈ Lp(R) if and only if there holds∑
m

|λ̂(m)|p <∞.

Let us first give a generalization of Trigub’s result (see [L]). Set λν(x) = xνλ(x) where
ν = (ν1, ..., νn) and xν = xν11 ...x

νn
n . If ν = (0, ..., 0, 1, 0, ..., 0) with νj = 1, let us denote

λν := λj.

Proposition 3.1. Let suppλ ⊂ Tn. Then λ̂ ∈ L1(Rn) if and only if for every ν = (ν1, ..., νn)
with νj = 0 or 1, the function λν after 2π-periodic continuation has absolutely convergent
Fourier series, written λν ∈ A(Tn).

Proof. The necessity of these conditions is a very simple generalization of the corresponding
one-dimensional result and can be found in [Be1, Lemma]. Let us prove the converse part
of the proposition. We use an inductive argument similar to that used in [PP] for Lp with
p > 1.

We already have the one-dimensional result (see above). Assuming its validity for the
dimension n − 1, let us prove it for the n-dimensional case. Denote k′ = (k1, ..., kn−1) and
x′ = (x1, ..., xn−1); obviously k = (k′, kn) and x = (x′, xn). Since for any un ∈ R

λ̂(k′, un) =

∫
R

[ ∫
Rn−1

λ(x)e−ik
′x′ dx′

]
e−iunxn dxn

is the one-dimensional Fourier transform in the xn-variable of the function∫
Rn−1

λ(x)e−ik
′x′ dx′
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with compact support, Trigub’s result yields for any k′ ∈ Zn−1∫
R

|λ̂(k′, un)| dun ≤ C
∑
kn

{
|λ̂(k′, kn)|+ |λ̂(0,...,0,1)(k

′, kn)|
}
.

Summing in k′, we obtain∑
k′

∫
R

|λ̂(k′, un)| dun ≤ C
∑
k

{
|λ̂(k)|+ |λ̂(0,...,0,1)(k)|

}
.

In view of assumptions of the proposition, the right-hand side is bounded, and consequently
the series on the left-hand side is convergent. By the B. Levi theorem the series∑

k′

|λ̂(k′, un)|

converges almost everywhere, and hence∫
R

∑
k′

|λ̂(k′, un)| dun =
∑
k′

∫
R

|λ̂(k′, un)| dun.

Further, using the inductive assumption, we obtain∫
Rn

|λ̂(u)| du =

∫
R

[ ∫
Rn−1

|λ̂(u)| du′
]
dun

≤ C

∫
R

∑
k′

∑
ν:νn=0

|λ̂ν(k′, un)| dun

= C
∑
ν

∑
k′

n∫
R

|λ̂ν(k′, un)| dun ≤ C
∑
ν

∑
k

|λ̂ν(k)|,

and the proposition is proved.

To confirm that this result is substantial, we also have to prove the independence of these
conditions. It suffices to give an example of a function λ such that λν ∈ A(Tn) for all
ν 6= (1, ..., 1) from the proposition and λ(1,...,1) 6∈ A(Tn). Indeed, since for every λ ∈ A(Tn)
we have ∑

m

|λ̂(0,...,0,2,0,...,0)(m)| ≤ C
∑
m

|λ̂(m)|,

to verify the other combinations one has to choose λν on place of λ successively for each ν.
The following function delivers the desired counterexample. Set

λ(x) = ln−1

(
eπn

n∏
j=1

(π − xj)
−1

)
for x ∈ Tn

+ and let λ be continued to all Tn to be even in each variable. A standard
integration by part argument shows that λν ∈ A(Tn) for ν 6= (1, ..., 1). Since λ(1,...,1) is odd
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in each variable only for this function we have an additional term

n∏
j=1

(1−m−1
j )m−1

j ln−1(em1...mn)

when calculating the Fourier coefficients. This yields λ(1,...,1) 6∈ A(Tn). The property of being
even at least in one variable removes such a term.

3.2. We are in a position now to give a non-trivial extension of Wiener’s result to several
dimensions (see [L0]). For this we need some additional notation and definitions.

A closed subset S of T1 is called a W -set, or a W1-set, if S is of diameter less than 2π.
Let us consider the sets

Tn−1
k (a) = Tn ∩ {xk = a}

with −π ≤ a ≤ π, k = 1, 2, ..., n, and identify Tn−1
k (−π) and Tn−1

k (π). A closed subset
S of Tn, n = 2, 3, ..., is called a Wj-set, j = 1, 2, ..., n, if for every k = 1, 2, ..., n, k 6= j,
the sets Tn−1

k (a), −π ≤ a ≤ π, are Wj-sets. A set is called a Wα1...αm-set, m ≤ n and
{α1, ..., αm} ⊆ {1, 2, ..., n}, if it is a Wαk

-set for every k = 1, 2, ...,m. We will denote a
W1...n-set as a W -set.

We need the following auxiliary result.

Lemma 3.1. If for any j = 1, 2, ..., n the set S = suppλ is a Wj-set, then λ ∈ A(Tn)
implies λj ∈ A(Tn).

Proof. Under the assumptions of the lemma we have:

(i) for any point
Aj0 = (x1, ..., xj−1, xx+1, ..., xn) ∈ Tn−1

the points
Ajπ = (x1, ..., xj−1, π, xx+1, ..., xn)

and
Aj−π = (x1, ..., xj−1,−π, xx+1, ..., xn)

cannot belong to S simultaneously;

(ii) for any four points

(x1, ..., xj−1,±π, xj+1, ..., xk−1,±π, xk+1, ..., xn),

k = 1, 2, ..., n, k 6= j, only those can belong to the support which lie on the same side of the
hyperplane xj = 0.

Observe, that Tn \S is open with respect to Tn. Hence if Aj−π ∈ S, then Ajπ is an interior
point for Tn \ S, and there exists a neighborhood U(Ajπ) ⊂ Tn \ S of Ajπ (with respect to
Tn). If Ajπ ∈ S a similar neighborhood U(Aj−π) can be found. The properties (i) and (ii)
are still valid for the set

S̃ = (Tn \ U(Aj−π)) \ U(Ajπ).

Nothing is known about the number of neighborhoods removed from Tn to form S̃. Ensure,

by a standard compactness argument, that S̃ can be built by removing only a finite number of
such neighborhoods. Indeed, otherwise cutting Tn by hyper-planes parallel to the coordinate
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hyper-planes so that the faces of Tn corresponding to xj = ±π are divided into 2n−1 equal
parts, we get that the impossibility of removing only a finite number of neighborhoods is
valid at least for one of these parts. Applying to it the same argument and continuing this
process to infinity, we arrive at the contradiction with (i).

Now we are going to build a function ϕ ∈ A(Tn) so that ϕ = xj on S̃. The above

construction has given us a set S̃ with the same properties as S but of simpler structure.

First we continue ϕ from S to S̃ by ϕ = xj on S̃ as well. Then we continue (see [S1, Ch.VI])

this ϕ to the whole of Tn as a k-smooth function with k > n/2 so that ϕ(Ajπ) = ϕ(Aj−π) for

all Aj±π, j = 1, 2, ..., n. This is possible since the number of removed neighborhoods is finite,
their structure is arbitrary (their boundaries can be chosen smooth enough), and conditions
(i) and (ii) are satisfied. Hence ϕ ∈ A(Tn) (see, e.g., [SW, Ch.VII, Cor.1.9]). Since A(Tn)
is the Banach algebra, λ ∈ A(Tn) implies λj = ϕλ ∈ A(Tn).

We are now in a position to prove the following generalization of Wiener’s result.

Proposition 3.2. If the set S = suppλ is a W -set, then λ̂ ∈ L1(Rn) if and only if λ, being
continued 2π-periodically in each variable, has an absolutely convergent Fourier series.

Proof. Indeed, in view of Proposition 3.1 we have to check λν ∈ A(Tn) for all appropriate ν.
This is done by using the lemma in each variable.

Theorem 3.1. If S = suppλ is a W -set, then there exist two positive constants C1 and C2,
C1 < C2, such that

C1

∑
m

|λ̂(m)| ≤ sup
N
||LλN || ≤ C2

∑
m

|λ̂(m)|.

This follows immediately from Propositions 2.2 and 3.2. A simple version of this theorem
(suppλ ⊂ Tn and λ vanishes on Tn

+) can be found in [Be1, Prop.3].

3.3. In various questions of summability, certain assumptions on λ connected to bounded
variation are rather natural; see in the one-dimensional case, e.g., [HT, Te, Be0]. Let us
give one result of Trigub which is quite general and seems to be very useful for passage from
Fourier series to Fourier integrals. We recall some well-known notions. The Vitali variation
is defined as follows (see, e.g., [CA, AC]). Let λ be a complex-valued function and

∆uλ(x) =

( n∏
j=1

∆uj

)
λ(x),

∆uj
λ(x) = λ(x)− λ(x1, ..., xj−1, xj + uj, xj+1, ..., xn),

be a “mixed” difference with respect to parallelepiped [x, x + u]. Let us take an arbitrary
number of non-overlapping parallelepipeds, and form a mixed difference with respect to each
of them. Then the Vitali variation is

V (λ) = sup
∑

|∆uλ(x)|,

where the least upper bound is taken over all the sets of such parallelepipeds. For smooth
functions λ, the Vitali variation is expressed as the following integral

V (λ) =

∫
Rn

∣∣∣∣ ∂nλ(x)

∂x1...∂xn

∣∣∣∣ dx.
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The Tonelli variation is a different thing [To]. Roughly speaking, a function is of bounded
Tonelli variation if it has a bounded variation in each variable, and these variations are
integrable as functions of the remained variables. For a smooth function λ it is equal to∫

Rn

n∑
j=1

∣∣∣∣∂λ(x)

∂xj

∣∣∣∣ dx.
Let us write λ ∈ V0 if its Vitali variation is bounded and lim

|x|→∞
λ(x) = 0. In this case the

function is of bounded variation with respect to any smaller number of variables, that is,
belongs to the class of functions of bounded Hardy variation (cf. [AC]). In other words,
functions depending only on a smaller number of variables than n are excluded.

Theorem 3.2. ([T7,8]) The following relations hold:

1) For each λ ∈ V0, and for every ε = (ε1, ..., εn), εj > 0, j = 1, ..., n,

sup
0<|uj |≤π/εj

∣∣∣∣ ∫
Rn

λ(x)e−iux dx

−
n∏
j=1

εj
∑
k

λ(ε1k1, ..., εnkn)e
−i(ε1k1u1+...+εnknun)

∣∣∣∣
≤ CV (λ)

n∑
j=1

εj
∏
q 6=j

|uq|−1. (3.1)

2) If, moreover, λ has also a bounded Tonelli variation dominated by V (λ), then |uq|−1 is
replaced by (1 + |uq|)−1 in (3.1).

3) If λ satisfies 1) and 2) then for N = (N1, ..., Nn) and

k/N = (k1/N1, ..., kn/Nn)

we have

‖LλN‖ = (2π)−n
∫

|xj |≤πNj

|λ̂(x)| dx

+ θV (λ)
n∑
j=1

∏
q 6=j

ln(Nq + 1),

(3.2)

with |θ| ≤ C.

In this theorem constants C depend only on n; the integrals and sums are treated in the
Cauchy sense. We shall be concerned with functions of bounded variation later on, while
considering the radial case as well as problems of integrability of trigonometric series.
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Proof. First, let us check that the integral (the Fourier transform λ̂) exists in the improper

sense for
n∏
j=1

uj 6= 0. For this, it suffices to prove the following Cauchy type inequality

∣∣∣∣ ∫
N≤|xj |≤N+δ,
j=1,2,...,n

λ(x)e−iux dx

∣∣∣∣ ≤ CVN(λ)
n∏
j=1

|uj|−1, (3.3)

where VN(λ) is the total Vitali variation of λ restricted to the set

{x : |xj| ≥ N, j = 1, 2, ..., n}.

For smooth functions this inequality is established by n-tuple integration by parts. In the
general case, a function may be replaced by its Steklov type function which is smoother than
the given function (see, e.g., [Bc, §44 and Appendix])

λh(x) = h−n
∫

0≤yj≤h,
j=1,2,...,n

λ(x+ y) dy;

we can do this smoothing for several times repeatedly, if needed. Since we have VN(λh) ≤
VN(λ), integration by parts is applicable here, letting then h→ 0.

The series in question is an analog of the Riemann integral sum for λ̂, and thus converges

for
n∏
j=1

uj 6= 0.

1) Let us prove this part of the theorem for uj > 0, j = 1, 2, ..., n. At each point, there
exists the limit

λ(x+ 0) = lim
y→x,y≥x

λ(y).

Without loss of generality, one may take λ(x + 0) = λ(x) everywhere, since the number of
points where λ(x+ 0) 6= λ(x) is at most countable, while

|λ(x+ 0)− λ(x)| = lim
u→+0

|∆uλ(x)| ≤ V[x,x+ε](λ).

Replacing the function by its Steklov type function as above, we can treat λ as smooth
enough in what follows.

Denote by hε = hε(t) an increasing step-wise function on R with the jumps ε > 0 at the
points {kε}, k ∈ Z. Then

|t− hε(t)| ≤ ε

and

t− hε(t) ∼
∞∑

ν=−∞

ανe
2πνt/ε

with |αν | ≤ Cε(|ν| + 1)−1. The last inequality follows, e.g., from the known estimate of the
Fourier coefficients of a function of bounded variation (see, e.g., [Br, Ch.II, §2] or [Zg, Ch.II,
Th.4.12]). Now the series can be written as the following repeated Stieltjes integral∫

Rn

λ(x1, . . . , xn)e
iuxdhε1(x1) . . . dhεn(xn).
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Let us continue the calculations for n = 2, since the case n > 2 is treated completely in
the same way. We have∫

R

∫
R

λ(x1, x2)e
−i(u1x1+u2x2)[dx1d(x2 − hε2(x1)) + dhε2(x2)d(x1 − hε1(x1))]

=

∫
R

∫
R

λ(x1, x2)e
−i(u1x1+u2x2) dx1d(x2 − hε2(x1))

+

∫
R

∫
R

λ(x1, x2)e
−i(u1x1+u2x2) dhε2(x2)d(x1 − hε1(x1))]

= J1 + J2.

After integrating by parts in x2, we obtain

J1 =

∫
R

e−iu1x1 dx1

∫
R

[hε2(x2)− x2]λ
′
x2

(x1, x2)e
−iu2x2 dx2

+

∫
R

eiu1x1dx1

∫
R

iu2[x2 − hε2(x2)]λ(x1, x2)e
−iu2x2 dx2.

Integrating the first summand by parts once more, now in x1, and taking into account that

lim
|x1|→∞

∫
R

|λ′x2
(x1, x2)| dx2

≤ lim
|x1|→∞

∫
|v|≥|x1|

dv

∫
R

|λ′′x1,x2
(v, x2)| dx2 = 0,

and |x2 − hε2(x2)| < ε2, we get the bound

θV (λ)ε2|u1|−1, |θ| ≤ 1.

Insert the series for x2 − hε2(x2) into the second summand for J1. Since its partial sums
are bounded and (3.3) holds, one may change the order of summation and integration. We
arrive at the following value

iu2

∑
αν

∫
R

∫
R

λ(x1, x2)e
−i(u1x1+u2x2−2πiνx2/ε2) dx1dx2.

Proceeding as for the first summand, we obtain the bound

O

(
|u2|ε2V (λ)

∑
ν

(|ν|+ 1)−1|u1|−1|u2 − 2πν/ε2|−1

)
.

It remains now to take into account that |u2| ≤ π/ε2, and for ν 6= 0 we have

|u2 − 2πν/ε2| ≥ π(2|ν| − 1)/ε2.
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This yields the bound O(ε2|u1|−1).
The integral J2 is estimated similarly.
2) For the first summand in J1, we have the immediate bound O(ε2). The second one is

estimated similarly by applying the inequality∣∣∣∣∣∣
∫
Rn

λ(x)eiuxdx

∣∣∣∣∣∣ ≤ C|uj|−1

instead of (3.3); the inequality is obtained by integration once by parts.
3) To prove this, use the previous statement with εj = N−1

j , j = 1, 2, . . . , n. Since∫
Tn

∣∣∣∣∑λ(k/N)eikx
∣∣∣∣ dx

=

∫
|yj |≤πNj ,
j=1,2,...,n

∣∣∣∣∑λ(k/N)e−iy(k/N)

∣∣∣∣ dy n∏
j=1

N−1
j ,

we have ∣∣∣∣ ∫
|yj |≤πNj ,
j=1,2,...,n

|λ̂(y)|dy −
∫
Tn

∣∣∣∣∑λ(k/N)eikx
∣∣∣∣ dx ∣∣∣∣

≤
∫

|yj |≤πNj ,
j=1,2,...,n

∣∣∣∣ λ̂(y)−
∑

λ(k/N)e−iy(k/N)

n∏
j=1

N−1
j

∣∣∣∣ dy
≤ CV (λ)

n∑
j=1

∏
q 6=j

ln(1 + πNj).

The theorem is proved.
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4 Generalizations of the Bochner-Riesz means

In this section, we are going to clarify for which linear means the (2.3) type estimates hold.
These are, in a sense, certain generalizations of the Bochner-Riesz means. The main point
is the geometric properties the support of the function generating linear means.

4.1. The estimates from above were obtained by Colzani and Soardi [CoS]. Their method
is the direct generalization of that used by V. Yudin [Y1] for partial sums.

Suppose S ⊂ Rn is an open bounded set whose boundary ∂S has finite upper Minkowski
measure. Let us consider complex-valued bounded functions λ on Rn satisfying the following
assumptions:

λ(x) = 0 if x does not belong to S; (4.1)

there exist an integer m ≥ 0 and real numbers α > −1/2 and β > −3/2 such that

λ ∈ Cm+1(S); (4.2)

|Dξλ(x)| ≤ Cρ(x, ∂S)α (4.3)

if ξ1 + ...+ ξn = m and x ∈ S;

|Dξλ(x)| ≤ Cρ(x, ∂S)β (4.4)

if ξ1 + ...+ ξn = m+ 1 and x ∈ S.
If (4.1)–(4.4) are satisfied with m ≥ 1, the function λ must also satisfy the following

condition
λ ∈ Cm−1(Rn). (4.5)

Since λ is supposed to be bounded, we may assume α ≥ 0 whenever m = 0. Let us set

γ = min

(
1, α+ 1/2, β + 3/2

)
. (4.6)

If β = −1/2 and α ≥ 1/2, let
λ ∈ Cm+2(S); (4.7)

and
|Dξλ(x)| ≤ Cρ(x, ∂S)−3/2 (4.8)

if ξ1 + ...+ ξn = m+ 2 and x ∈ S.

Theorem 4.1. ([CoS]) Let S be as above and λ satisfies (4.1)–(4.5), and, in addition, (4.7),
(4.8) when β = −1/2 and α ≥ 1/2. Let pc = 2n(n+ 2(m+ γ))−1. Then for all N > 2:

1) If m+ γ ≤ n/2

‖LλN‖p ≤ CpN
n/2−(m+γ) if 1 ≤ p < pc,

‖LλN‖p ≤ CpN
n−n/p ln1/pN if p = pc,

‖LλN‖p ≤ CpN
n−n/p if pc < p ≤ 2.

2) If m+ γ > n/2
‖LλN‖1 ≤ C.
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Vignati [V] generalized these results to the case of non-isotropic metrics in Rn. V. Yudin
[Y3] showed that these estimates cannot be asymptotically improved for N →∞ in the class
of the sets considered.

4.2. Special examination of general conditions for lower estimates was begun in [Y2],
where the lower bound lnnN for the order of growth of the Lebesgue constants of ”all
reasonable” partial sums is established, namely, for those generated by sets, assumed to be
convex, closed, bounded, and containing a certain ball. Nazarov brought our attention to
the fact that these assumptions seem to be unnatural and restrictive; his conjecture is that
the only, in a sense, assumption should be the one that a ball is contained in a generating
set. This conjecture is a natural extension of the Littlewood conjecture. This problem is
still open.

Investigation of estimates of the Lebesgue constants from below was continued, as it was
mentioned above, in [CaS], and then in [L2,3] (see Theorem 1.3). The recent result from
[LRZ] generalizes the left-hand inequality in (2.3) in the spirit of Theorem 1.3.

Let S = suppλ be the support of a function λ(x), where S is not necessarily a compactum.
In what follows we shall be interested in functions λ(x) = λr,α(x), which are r-smooth inside
S and may be represented in a certain neighborhood of ∂S as follows:

λr,α(x) = f(x)(ρ(x))α, (4.9)

where f ∈ Cr(Rn) and does not vanish on ∂S, while ρ(x) = 0 if x 6∈ S, and ρ(x) = ρ(x, ∂S)
if x ∈ S (see the notion of regularized distance in [S1, Ch.6]). Notice, that ρ(x) is a smooth
function in a neighborhood of ∂S when x ∈ S (see, e.g., [Gi, Appendix B]). It should be
mentioned that in [CoS] the following obvious consequence of (4.1)–(4.5) is proved.

Lemma 4.1. Suppose S ⊂ Rn is a bounded open set such that S has finite upper Minkowski
measure and λ is a bounded complex-valued function on Rn satisfying (4.1)-(4.5). Then there
exists a constant C > 0 such that

|λ(x)| ≤ Aρ(x, ∂S)α+m

for all x ∈ S.

The following theorem shows that for the norms of the above generalizations of the
Bochner-Riesz means the upper estimates match the lower ones, obtained under very similar
assumptions.

Theorem 4.2. ([LRZ]) Suppose that there exist an open set U and a hyper-surface V of
smoothness

r > max(1, (n− 1)/2 + α),

where 0 ≤ α < (n − 1)/2, with non-vanishing principal curvatures, such that ∂S ∩ U = V .
Suppose, further, that in U ∩S we have λ(x) = λr,α(x). Then there exists a positive constant
CS,λ depending only on S and λ such that

‖LλNS‖ ≥ CS,λN
(n−1)/2−α

for large N .

4.3. We want to indicate three focal points on which the proof of Theorem 4.2 is based.
The first one as well as the idea of the proof was suggested by Belinsky.
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Lemma 4.2. ([L2, LRZ]) Let K be a set in Rn and ψ be a bounded measurable function with
support in K. Then for every point x0 ∈ Rn, for every ball Bδ(x0) of radius δ centered at x0,
and for every function ϕ supported in Bδ(x0) and having the Fourier transform integrable
over all Rn, there exists a constant C, depending only on ϕ, such that

‖LψK‖ ≥ C‖LψϕK∩Bδ(x0)‖.

Proof. We have

‖LψK‖ = sup‖f‖≤1 ‖L
ψ
K(f ; ·)‖ ≥ sup‖TBδ(x0)‖≤1 ‖L

ψ
K(TBδ(x0); ·)‖, (4.10)

where TBδ(x0) denotes a trigonometric polynomial from the set of all those with spectrum in
Bδ(x0). According to [SW, Ch.VII, §2] (see (2.11)), the following inequality holds for every
f ∈ C(Tn): ∥∥∥LφBδ(x0)(f ; ·)

∥∥∥ ≤ (2π)−n‖φ̂‖L1(Rn)‖f‖.

Since the image of LφBδ(x0) is only a part of all polynomials TBδ(x0), it follows from (4.10) that

‖LψK‖ ≥ sup‚‚‚Lφ
Bδ(x0)

(f ;·)
‚‚‚≤1

∥∥∥LψK (LφBδ(x0)(f ; ·); ·
)∥∥∥

≥ C sup
‖f‖≤1

∥∥∥LψφK T
Bδ(x0)(f ; ·)

∥∥∥ = C
∥∥∥LψφK T

Bδ(x0)

∥∥∥ .
The lemma is proved.

This lemma is of certain interest by itself, but mainly as a tool for estimates from below.
A similar way to make “global from local” may be found in [Se].

The next step of the proof is the application of Theorem 2.1, more precisely the lower
estimate for p = 1. After that we need appropriate asymptotic estimates of the Fourier
transform of the functions considered. The following result is strongly based on the estimates
of singularities of the Radon transform obtained by Ramm and Zaslavsky (see [RZ1, RZ2]).

Theorem 4.3. ([LRZ], see also [RZ] and [RK]) Let S be the compact support of a function
λ(x) = λr,α(x) with α ≥ 0 and

r > max(1, (n− 1)/2 + α).

Let S be convex, with the r-smooth boundary ∂S, and suppose the principal curvatures of ∂S
never vanish. Let θ ∈ Rn be a vector on the unit sphere, x+(θ) and x−(θ) be the (uniquely
defined) points of ∂S at which the function θ1x1 + ...+ θnxn attains maximum and minimum
on ∂S, respectively. Then for t→ +∞

λ̂(tθ) = t−α−(n+1)/2
(
Ξ+(θ)eitx

+(θ)θ + Ξ−(θ)eitx
−(θ)θ + o(1)

)
,

Ξ±(θ) = (2π)(n−1)/2Γ(α+ 1)e±iπ(2α+n+1)/4f(x±(θ))(κ±(θ))−1/2,

where the remainder term is small uniformly in θ, and κ±(θ) is the Gaussian curvature of
∂S at the points x±(θ), respectively.

Online Journal of Analytic Combinatorics, Issue 1 (2006), # 5 39



This result continues and develops the well-known asymptotic estimate for the indicator
function of a convex set [GGV]. There is an ”almost all” gap between Theorem 4.3 and
the result in [P7] in the two-dimensional case. We must mention that many authors use
one result of Herz [Hz] to estimate the Fourier transform of the indicator function of a
convex set with smooth boundary. But smoothness assumptions in this work are essentially
more restrictive than those in [GGV] (and, of course, in Theorem 4.3) since the author was
interested in sharp estimate for the remainder term. This explains, for example, the excess
smoothness conditions in [CaS] or [Br1, Br2].

4.4. Special attention must be given to the following circumstance. One can see that
in many results cited the value (n − 1)/2 is of special meaning and importance. It is not
accidentally, and this number is called ”critical order” for the Bochner-Riesz means. Let us
compare Theorem 2.2 with the following well-known result of Stein.

Theorem 4.4. ([S0]) The following asymptotic formula holds:

‖LR(n−1)/2

N ‖L1(Tn)→L1(Tn) = ωn lnN +O(1). (4.11)

This asymptotics was obtained as a corollary to some general estimates of the difference
between the corresponding kernel ∑

|k|≤N

R(n−1)/2(k/N) eikx

and its integral analog. The constant ωn was not indicated explicitly. Here the Lebesgue
constants of the Bochner-Riesz means lose their power rate of growth, and behave as the
Lebesgue constants of one-dimensional partial sums (cf. 0.1). This likeness is not casual.
Before formulating one recent generalization of Theorem 4.4, we wish to derive (4.11) from
Theorem 2.1 as a simple consequence (the promised Corollary 2.2).

Corollary 4.1. The following asymptotic formula holds:

||LR(n−1)/2

N ||L1(Tn)→L1(Tn) =
4Γ((n+ 1)/2)

π3/2Γ(n/2)
lnN +O(1).

Proof. ([Be2]) Theorem 2.1, (2.5), (2.6) and (2.7) yield

||LR(n−1)/2

N || = π−(n+1)/2Γ((n+ 1)/2)

×
∫

1≤|x|≤N

∣∣∣∣ n∏
j=1

xj
2N sin(xj/(2N))

cos(|x| − πn/2)

|x|n

∣∣∣∣ dx+O(1).

Using the relation
xj

2N sin(xj/(2N))
− 1 = O(|xj/N |2)

and proceeding as in the proof of Corollary 2.1, we obtain

||LR(n−1)/2

N || = π−(n+1)/2Γ((n+ 1)/2)

×
∫

1≤|x|≤N

|x|−n| cos(|x| − πn/2)| dx+O(1).
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After passage to spherical coordinates, the right-hand side equals

||LR(n−1)/2

N || = π−(n+1)/2Γ((n+ 1)/2)
2πn/2

Γ(n/2)

×
N∫

1

|t−1 cos(t− πn/2)| dt+O(1).

It is well-known that the last integral is

(2/π) lnN +O(1) (4.12)

(see, e.g., [Zg, Vol.1, Ch.2]), and this completes the proof.

Applying again Theorem 2.1 and certain technique similar to that in the proof of Theorem
4.3 allows us to obtain such logarithmic asymptotics in a more general setting.

Theorem 4.5. ([L8]) Let S be the compact support of a function λ = λn,(n−1)/2, with the
n-smooth boundary ∂S. Assume that S is convex and the principal curvatures of ∂S never
vanish. Then there exists a positive constant CS,λ depending only on S and λ such that

‖LλN‖L1(Tn)→L1(Tn) = CS,λ lnN + o(lnN) (4.13)

for large N .

Remark 4.1. The following formula is given in [L8] to calculate CS,λ

CS,λ = (2π)(n+3)/2Γ((n+ 1)/2)

∫
|θ|=1

dθ

2π∫
0

|(−1)nφ+(θ)eit + φ−(θ)| dt,

where φ±(θ) = f(x±(θ))(κ±(θ))−1/2 (cf. Theorem 4.3). For the Lebesgue constants of the
usual Bochner-Riesz means, simple computations yield the same constant as in Corollary
2.2.

Remark 4.2. It is obvious that taking λ = λr,α, with r > n and α > (n − 1)/2 in Theorem
4.5, we will obtain ‖LλN‖ = O(1) (cf. 2) in Theorem 4.1).
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5 “Radial” results

Considerable study has been given to the Bochner-Riesz means and certain of their gener-
alizations. But we have not discussed yet one more peculiarity of the Bochner-Riesz means:
the function Rα generating these means is radial, that is, depends only on |x|. Such functions
play a special role in Fourier Analysis, and there are many ways to exploit the radiality.

For example, the Fourier transform of an (integrable) radial function f(x) = f0(|x|) is
also radial and is represented by the formula (see, e.g., [Bc, Th.56] or [SW, Ch.IV])

f̂(x) = f̂0(|x|) = (2π)n/2
∞∫

0

f0(t)(|x|t)−n/2+1Jn/2−1(|x|t)tn−1 dt,

which is sometimes attributed to Cauchy and Poisson.

5.1. A situation is more complicated when functions are allowed to be non-integrable.
Let us start with one special class of radial functions, written MV. Let λ(x) = λ0(|x|) be a
radial function satisfying the following conditions:

λ0, λ
′
0, ..., λ

[(n−2)/2]
0 are locally absolutely continuous on (0,∞). (5.1)

lim
t→∞

λ0(t) = 0. (5.2)

Set Λ(t) = t(n−1)/2λ
((n−1)/2)
0 (t). Further assumptions are

lim
t→∞

Λ(t) = 0. (5.3)

||λ||MV = sup
t>0

|λ0|+
∞∫

0

|dΛ(t)| <∞. (5.4)

Here the fractional derivative is understood in the Weyl sense (see, e.g., [BE, Co]); the
definition needs to be specified. For 0 < δ < 1 and a locally integrable function g on (0,∞),

W δ
ω(g; t) =

 1
Γ(δ)

ω∫
t

g(u)(u− t)δ−1 du, 0 < t < ω

0, t ≥ ω

is the fractional (Weyl type) integral of order δ and, following Cossar [Co], define a fractional
Weyl derivative of order α by

g(α)(t) = lim
ω→∞

− d

dt
W 1−α
ω (g; t)

when 0 < α < 1. For α = r + δ, r = 1, 2, ..., and 0 < δ < 1,

g(α)(t) =
dr

dtr
g(δ)(t)

is the fractional derivative of order α.
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Theorem 5.1 ([BL1, BL2]). Let λ(x) = λ0(|x|) be a radial function satisfying (5.1)–(5.4).
Suppose, in addition, that λ0 is continuous at zero. Then

‖LλN‖L1(Tn)→L1(Tn) = (2π)−n
∫

|x|≤πN

|λ̂(x)| dx

+O(||λ0||MV ).

(5.5)

Proof. We are going to prove that the series∑
k

λ(k/N)eikx (0.3)

is the Fourier series of an integrable function; by this the norm in question satisfies (0.4).
Estimate

RN =

∣∣∣∣||LλN || − (2π)−n
∫

|x|≤πN

|λ̂(x)| dx− (2π)−n|λ(0)|
∣∣∣∣

≤ (2π)−n
∫
Tn

∣∣∣∣∑
k 6=0

λ(k/N)eikx − ΦN(x)

∣∣∣∣ dx,
where

ΦN(x) =

{
Nnλ̂(Nx), |x| ≤ π,

0, x ∈ Tn \ {x : |x| ≤ π}.

Consider the periodic, in each variable, continuation of this function and calculate its kth
Fourier coefficient. No confusion will be resulted by saving the same notation. In [BL1, BL2]
the following results were obtained: if a function λ satisfies conditions (5.1)–(5.4) its Fourier
transform can be calculated as follows:

λ̂(x) =
(2π)n/2(−1)[n/2]

Γ((n− 1)/2)
|x|1−n/2

∞∫
0

Λ(t)tn/2Q(|x|t) dt, (5.6)

where

Q(r) =

1∫
0

(1− s)(n−3)/2sn/2Jn/2−1(rs) ds,

and the inverse formula holds for |x| > 0 :

λ(x) = lim
A→∞

(2π)−n
∫

|u|≤A

λ̂(u)eixu du. (5.7)

For generalizations of this result, see [L6, L7]; they were obtained as well as those in [BL1,
BL2] under additional assumptions which are removed in [LT]. For |k| > 0, (5.6) and (5.7)
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yield

Φ̂N(k) = (2π)−n
∫

|u|≤π

Nnλ̂(Nu)e−iku du

= (2π)−n
∫

|u|≤πN

λ̂(u)e−ik/Nu du

= λ(−k/N)− (2π)−n
∫

|u|>πN

λ̂(u)e−iuk/N du.

For k = 0, the passage to the spherical coordinates and (5.6) yield the following equality

Φ̂N(0) = (2π)−n
∫

|u|≤πN

λ̂(u) du

=
2n−1(−1)[n/2]

Γ(n/2)Γ((n− 1)/2)

πN∫
0

rn/2 dr

∞∫
0

Λ(t)tn/2Q(rt) dt.

Denote

q(r) =

1∫
0

(1− s)(n−3)/2sn/2−1Jn/2(rs) ds.

For q, the following asymptotic relation was obtained in [BL2] (see also [L6, L7]):

q(r) = α1r
−(n−1)/2Jn−1/2(r)

+ α2r
−n/2 +O(r−(n+2)/2)

(5.8)

as r → ∞, where α1 = Γ((n − 1)/2) and α2 is some constant depending only on n. Inte-
grating by parts and using one of the two versions of the well-known formula (see, e.g., [BE,
7.2.8(50),(51)])

d

dt
t±νJν(t) = ±t±νJν∓1(t), (5.9±)

we obtain

Φ̂N(0) =
2n−1(−1)[n/2]

Γ(n/2)Γ((n− 1)/2)

πN∫
0

rn/2−1 dr

{
Λ(t)tn/2q(rt)

∣∣∞
0

−
∞∫

0

tn/2q(rt) dΛ(t)

}
= −

∞∫
0

tn/2
πN∫
0

rn/2−1q(rt) dr dΛ(t).
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The right-hand side equals

−
∞∫

0

πNt∫
0

rn/2−1q(r) dr dΛ(t)

= −
∞∫

1/(πN)

πN∫
1

rn/2−1q(rt) dr dΛ(t) +O(||λ||MV )

= −α2

∞∫
1/(πN)

πN∫
1

r−1 dr dΛ(t)

−
∞∫

1/(πN)

πN∫
1

rn/2−1[q(rt)− α2r
−n/2] dr dΛ(t) +O(||λ||MV ).

(5.9)

Let us estimate the first integral on the right-hand side. We get after the obvious substitu-
tions

∞∫
1/(πN)

πN∫
1

r−1 dr dΛ(t) =

∞∫
1

r−1Λ(r/(πN)) dr

=

∞∫
1/(πN)

r(n−3)/2λ
((n−1)/2)
0 (r) dr.

Integration by parts yields the bound O(||λ||MV ). This is obvious for n odd but the same is
true also for n even - this needs some additional calculations, simple in fact, with fractional

derivatives. In order to estimate the second integral and thus to get |Φ̂N(0)| ≤ O(||λ||MV )
it suffices, taking into account (5.4), to prove the boundedness of the value

sup
N,t:πNt>1

∣∣∣∣
πNt∫
1

rn/2−1[q(r)− α2r
−n/2] dr

∣∣∣∣.
It follows from (5.8) that the right-hand side is equal to

sup
N,t:πNt>1

∣∣∣∣α1

πNt∫
1

r−1/2Jn−1/2(r) dr +O

( πNt∫
1

r−2dr

)∣∣∣∣
= sup

N,t:πNt>1

∣∣∣∣α1

πNt∫
1

r−1/2Jn−1/2(r) dr

∣∣∣∣+O(1).

The asymptotic formula (2.7) makes the claimed estimate obvious. Therefore we get the
bound

RN ≤ (2π)−n
∫
Tn

∣∣∣∣∑
k 6=0

[ ∫
|u|>πN

λ̂(u)e−iku/N du

]
eikx
∣∣∣∣ dx+ C||λ||MV .
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Applying the Cauchy-Schwarz inequality to the outer integral and then Parseval’s identity,
we obtain

RN ≤ C

{∑
k 6=0

∣∣∣∣ ∫
|u|>πN

λ̂(u)e−iku/N du

∣∣∣∣2}1/2

+ C||λ||MV .

The Cauchy-Poisson formula for the Fourier transform (see above) and (5.6) yield the fol-
lowing estimate

RN ≤ CNn/2−1

{∑
k 6=0

|k|2−n
∣∣∣∣
∞∫

πN

Jn/2−1(|k|r/N)r dr

∞∫
0

Λ(t)tn/2Q(rt) dt

∣∣∣∣2}1/2

+ C||λ||MV .

Integration by parts in t implies

RN ≤ CNn/2−1

{∑
k 6=0

|k|2−n
∣∣∣∣
∞∫

πN

Jn/2−1(|k|r/N) dr

[
Λ(t)tn/2q(rt)

]∞
0

−
∞∫

πN

Jn/2−1(|k|r/N) dr

∞∫
0

tn/2q(rt) dΛ(t)

∣∣∣∣2}1/2

+ C||λ||MV .

After applying generalized Minkowski’s inequality and (5.4) we get, as above, that it suffices
to prove the boundedness of the value

sup
N,t

Nn/2−1

∑
k 6=0

|k|2−n
∣∣∣∣tn/2

∞∫
πN

Jn/2−1(|k|r/N)q(rt) dr

∣∣∣∣2


1/2

= sup
N,t

Nn/2−1

{∑
k 6=0

|k|2−n
∣∣∣∣tn/2

∞∫
πN

rn/2Jn/2−1(|k|r/N) dr

×
1∫

0

(1− s)(n−3)/2sn/2−1Jn/2(rts)r
n/2 ds

∣∣∣∣2}1/2

.

Integrating by parts and using (5.9-), we obtain

sup
N,t

Nn/2

{∑
k 6=0

|k|−n
∣∣∣∣ tn/2Jn/2(|k|r/N)q(rt)

∣∣∞
πN

+ tn/2+1

∞∫
πN

Jn/2(|k|r/N) dr

1∫
0

(1− s)(n−3)/2sn/2Jn/2+1(rts) ds

∣∣∣∣2}1/2

.

Relations (5.8) and (5.9±) as well as the fact that the series
∑
k 6=0

|k|−n−1 converges imply the

boundedness of the integrated terms. Further, integrating by parts as in the proof of (5.8),
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we obtain the following asymptotic relation

1∫
0

(1− s)(n−3)/2sn/2Jn/2+1(rts) ds

= α3r
−n/2 sin(r − πn/2) +O(r−(n+2)/2).

No additional term appears here, unlike in (5.8), a special connection between the powers
and the order of the Bessel function resulted a somewhat unusual asymptotics in the latter.
Estimates using the remainder term are now trivial. Let us estimate

sup
N,t

Nn/2

{∑
k 6=0

|k|−n
∣∣∣∣ t

∞∫
πN

r−n/2Jn/2(|k|r/N) sin(rt− πn/2) dr

∣∣∣∣2}1/2

.

Again integration by parts yields

sup
N,t

Nn/2

{∑
k 6=0

|k|−n
∣∣∣∣r−n/2Jn/2(|k|r/N) cos(rt− πn/2)

∣∣∞
πN

− (|k|/N)

∞∫
πN

r−n/2Jn/2+1(|k|r/N) cos(rt− πn/2) dr

∣∣∣∣2}1/2

.

(5.10)

The integrated terms in (5.10) are easily estimated. Apply now (2.7) to the last integral
in (5.10). Estimates for the remainder term are obvious. Using also simple trigonometric
identities, we get that the estimate is in order

sup
N,t

N (n−1)/2

∑
k 6=0

|k|1−n
∣∣∣∣

∞∫
πN

r−(n+1)/2 sin r(|k|/N − t) dr

∣∣∣∣2


1/2

. (5.11)

Observe that the estimates for similar values with sin r(|k|/N+t) or cos r(|k|/N±t) on place
of sin r(|k|/N − t) are the same. Assume that Nt is large enough. Split the sum in (5.11)
into three ones: over {k : 1 ≤ |k| < Nt − 1}, over {k : Nt − 1 ≤ |k| ≤ Nt + 1}, and over
{k : Nt+ 1 < |k| <∞}. For the integral in (5.11), integration by parts implies the following
bound, up to some constant,

N−(n+1)/2||k|/N − t|−1 = N−(n−1)/2| |k| −Nt|−1.

Therefore the boundedness of the following sums∑
1≤|k|<Nt−1

|k|1−n(Nt− |k|)−2

and ∑
Nt+1<|k|<∞

|k|1−n(|k| −Nt)−2

has to be established when estimating over the first and the third domains, respectively.
This is easily demonstrated by passing to integrals instead of the sums. For the second one,
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we obtain

sup
N,t

N (n−1)/2

{ ∑
Nt−1≤|k|≤Nt+1

|k|1−n
∣∣∣∣
∞∫

πN

r−(n+1)/2 sin r(|k|/N − t) dr

∣∣∣∣2}1/2

≤ N (n−1)/2

{ ∑
Nt−1≤|k|≤Nt+1

|k|1−n
∣∣∣∣
∞∫

πN

r−(n+1)/2 dr

∣∣∣∣2}1/2

≤ C

{ ∑
Nt−1≤|k|≤Nt+1

|k|1−n
}1/2

≤ C.

When Nt is small similar estimates are valid after splitting the sum in (5.11) into two ones:
over {k : 1 ≤ |k| ≤ 3} and over {k : 3 < |k| <∞}. The proof is complete.

Remark 5.1. In fact, it is obtained in the proof that under the assumptions considered, (0.3)
is the Fourier series of a function which belongs not only to L1(Tn) but to L2(Tn) as well.

Remark 5.2. Observe that besides other applications, say, to approximation on the class of
functions with bounded poly-harmonic operator, Theorem 5.1 allows to obtain once again
(4.11) as a simple corollary. Indeed, conditions (5.1)–(5.4) are verified easily. Then the
estimates are similar to those in the proof of Corollary 2.2, and, of course, the same constant
is obtained in calculations.

It is interesting that we have several different results which proved to be sharp by obtaining
(4.11) as a simple consequence.

5.2. One of the features of radial functions is combining, in a certain sense, some multi-
dimensional properties and those typical for the one-dimensional case. One of the ways to
express this is the following

Theorem 5.2. ([LT]) For λ ∈MV there holds

λ̂(x) = |x|−(n−1)/2−α
{
C1

∞∫
0

Λ(t) sin(|x|t− πn/2) dt

+ C2|x|−1Λ(π/(2|x|))

+O

(
|x|−1

∞∫
0

min
(
2|x|t/π, π/(2|x|t)

)
|dΛ(t)|

)}
.

(5.12)

Remark 5.3. In a weaker form this theorem can be found in [BL1, L6, L7]. The question
of integrability of the Fourier transform, say over |x| > 1, is reduced to the integrability of
the one-dimensional Fourier transform (when the first term in (5.12) is handled) and to the
condition

1∫
0

t−1|Λ(t)| dt <∞ (5.13)
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when the second term is integrated, since the remainder term is always integrable. The
condition (5.13) is sharp and cannot be removed; indeed, there exist functions in MV which
do not satisfy it (see [L6, L7, LT]).

Hence, we can apply to functions λ ∈ MV many one-dimensional results, in which the
behavior of Fourier transform is involved. Let us give such an example (cf. [LN] and [U]).

Proposition 5.1 ([BL1]). Let λ ∈ MV be supported in |x| ≤ π. Assume further that Λ
satisfies (5.13) and has at least one point of discontinuity. Then

‖LλN‖L1(Tn)→L1(Tn) = M(Λ) lnN + o(lnN),

where M(Λ) is an average of some almost periodic function built in accordance with Λ.

Proof. Applying Theorems 5.1 and 5.2 and taking into account (2.2) and (5.12), we arrive
at the integral

N∫
1

∣∣∣∣
∞∫

0

g(t)e−ixt dt

∣∣∣∣ dx
to be estimated, where g is either an odd or even continuation of Λ in accordance with n.
The following argument is due to Belinsky. Let ϕ be the so-called “jump” function defined
as follows:

ϕ(t) =


1, 0 < t < π

1/2, t = 0, t = π

0, −π < t < 0.

We can write

g(t) = g1(t) + g2(t) = g1(t) +
∞∑
k=1

akϕ(t− tk),

where g1 is a (continuous) function with integrable Fourier transform,
∞∑
k=1

|ak| < ∞, and tk

are the points of jump discontinuity of g. We have

π∫
−π

g2(t)e
−ixt dt = (−i/x)

∞∑
k=1

ak(e
−itkx − e−iπx).

Now, the following integral

N∫
−N

|x|−1

∣∣∣∣ ∞∑
k=1

ak(e
−itkx − e−iπx)

∣∣∣∣ dx
has to be estimated. Setting

ψ(x) =
∞∑
k=1

ak(e
−itkx − e−iπx),
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let us show that the limit

lim
N→∞

ln−1N

N∫
−N

|x|−1|ψ(x)| dx

exists. Indeed, this limit coincides with

lim
N→∞

ln−1N
N−1∑
m=1

m−1

[ m+1∫
m

|ψ(x)| dx+

m+1∫
m

|ψ(−x)| dx
]
,

therefore the sequence
m+1∫
m

|ψ(x)| dx+

m+1∫
m

|ψ(−x)| dx

is summed by the method of logarithmic means. Since this method being regular is stronger
than that of arithmetic means, we obtain

lim
N→∞

ln−1N

N∫
−N

|x|−1|ψ(x)| dx = lim
N→∞

(2N)−1

N∫
−N

|x|−1|ψ(x)| dx

provided the limit on the right-hand side does exist. But it is really so, since ψ is a uniformly
almost periodic function (in the Bohr sense; see [Le, Ch.1]). Just this limit on the right-hand
side can be taken as a definition of M(Λ). Proposition is proved.

This result as well as Theorem 5.1 are generalizations of one-dimensional results in [Be0].
Under different assumptions, a similar connection between the radial Fourier transform

and the one-dimensional one was obtained by Podkorytov. Let us give the precise formula-
tion.

Theorem 5.3 ([P4]). Let λ0 ∈ C[0,∞) and λ0(t) = 0 for t ≥ 1. Then the following integrals
converge simultaneously: ∫

Rn

|λ̂(x)| dx

and
∞∫

0

s(n−1)/2

∣∣∣∣∣∣
1∫

0

t(n−1)/2λ0(t) cos(2πst− π(n− 1)/4) dt

∣∣∣∣∣∣ ds.
To compare the latter two theorems, one can see that (5.1)–(5.4) together with (5.13)

is the price one pays for λ not being obliged to possess an integrable Fourier transformṪhe
assumption that λ has compact support is by no means important and can be removed by
positing some smoothness conditions at infinity.

5.3. Let us describe one more “radial” result due to Trigub. It generalizes his own
one-dimensional result Theorem 0.6.

Consider a function λ0(t) in [0, π] and expand it in a cosine series:

λ0(t) ∼
∞∑
j=0

aj cos jx. (5.14)

Online Journal of Analytic Combinatorics, Issue 1 (2006), # 5 50



Theorem 5.4 ([T6]). Let λ0 ∈ C [(n−1)/2][0, π], and λ
(r)
0 (π) = 0 for 0 ≤ r ≤ [(n−1)/2]. Then

sup
N

∫
Tn

∣∣∣∣∑
|k|≤N

λ0(|k|π/N)eikx
∣∣∣∣ dx ≤ C

∞∑
j=0

j(n−1)/2|aj| ln(j + 1). (5.15)

It is supposed that the series on the right-hand side converges and C depends only on
n. For the summability on the whole class of periodic continuous functions, it suffices to
supplement (5.15) with the condition λ0(0) = 1.

It may be shown that for aj, j ≥ 1, with alternating signs, the opposite inequality holds
provided n = 1(mod 4). It is possible to consider the sine expansion of λ0 as well.

Laying some smoothness conditions on λ0 which provide the convergence of the series on
the right-hand side of (5.15), one can get convenient sufficient conditions for summability.

Proof. First, integrate the series (5.14) term by term [(n−1)/2] times. Then, integrating the
series obtained [(n− 1)/2] times over [t, π] and taking into account the boundary condition
at π, we obtain

λ0(t) =
∞∑
j=0

αjψj(t),

where ψj are defined by

ψ
([(n−1)/2])
j (t)

=

{
j[(n−1)/2](−1)[(n−1)/2]/2(cos jt+ (−1)j+1), [(n− 1)/2] is even

j[(n−1)/2](−1)([(n−1)/2]+1)/2 sin jt, [(n− 1)/2] is odd,

and πs
(r)
j (π) = 0 for 0 ≤ r ≤ [(n− 1)/2]. Actually, ψj is the difference between cos jt and its

Taylor polynomial of the corresponding degree at π.
This yields ∑

|k|≤N

λ0(|k|π/N)eikx =
∞∑
j=0

αj
∑
|k|≤N

ψj(|k|π/N)eikx,

and hence ∫
Tn

∣∣∣∣∣∣
∑
|k|≤N

λ0(|k|π/N)eikx

∣∣∣∣∣∣ dx ≤
∞∑
j=0

|αj|
∫
Tn

∣∣∣∣∣∣
∑
|k|≤N

ψj(|k|π/N)eikx

∣∣∣∣∣∣ dx.
What remains to prove is the following

Lemma 5.1. For any integer j ≥ 0

sup
N

∫
Tn

∣∣∣∣∣∣
∑
|k|≤N

ψj(|k|π/N)ikx

∣∣∣∣∣∣ dx ≤ Cj(n−1)/2 ln(j + 1).

Proof of Lemma 5.1. Applying (2.11), we obtain

sup
N

∫
Tn

∣∣∣∣∣∣
∑
|k|≤N

ψj(|k|π/N)eikx

∣∣∣∣∣∣ dx ≤
∫
Rn

|ψ̂j(y)|dy,
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here ψj is radial and vanishes for |x| > π.
The Cauchy-Poisson formula yields∫

Rn

|ψ̂j(y)|dy = C

∞∫
0

tn/2dt

∣∣∣∣∣∣
π∫

0

ψj(u)u
n/2Jn/2−1(ut) du

∣∣∣∣∣∣ .
As for C, it suffices that C depends only on n. Applying the Taylor formula yields

ψj(u) =
1

[(n− 1)/2]!

u∫
π

ψ
([(n−1)/2]+1)
j (t)(t− u)[(n−1)/2]dt

for u ∈ [0, π]. Now change the order of integration and substitute ψ
([(n−1)/2]+1)
j (see above).

We obtain ∫
Rn

|ψ̂j(y)| dy ≤ j[(n−1)/2]+1 C

[(n− 1)/2]!

×
∞∫

0

tn/2dt

∣∣∣∣∣∣
π∫

0

eijudu

u∫
0

(u− z)[(n−1)/2]zn/2Jn/2−1(tz) dz

∣∣∣∣∣∣ .
(5.16)

To continue, we need to know certain properties of the function

i(µ, η, t) =

1∫
0

zµJη(tz) dz,

where µ+ η − 1.

Lemma 5.2. Assuming that t > 0 and µ+ η > −1, we have

(1) i(µ, η, t) = t−1Jη+1(t) + (η + 1− µ)t−1i(µ− 1, η + 1, t).

(2) i′(µ, η, t) + (µ+ 1)t−1i(µ, η, t) = t−1Jη(t).

(3) The function i(µ, η, t) behaves as O(tη) for t→ 0, while for t→∞ it behaves as O(t−3/2)
for µ > 1/2, and as O(t−1−µ) for µ ≤ 1/2.

For the proof of (1) and (3), see, e.g., [L6, L7]; as for (2), it is proved by differentiation
of i and integration by parts.

The inner integral on the right-hand side of (5.16), the one over [0, u], is equal to

[(n−1)/2]∑
p=0

(
[(n− 1)/2]

p

)
(−u)[(n−1)/2]−p

u∫
0

zp+n/2Jn/2−1(tz) dz

= u[(n−1)/2]+n/2+1

[(n−1)/2]∑
p=0

(
[(n− 1)/2]

p

)
× (−1)[(n−1)/2]−pi(p+ n/2, n/2− 1, ut).
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Indeed, the binomial formula is used and linear substitution in the integral is fulfilled.
Use now (1) in Lemma 5.2. After [(n− 1)/2] times, we have

i(p+ n/2, n/2− 1, r) = r−1Jn/2(r)− pr−2Jn/2+1(r)

+ . . .+ (−p)(−p+ 2) . . . (−p+ 2([(n− 1)/2]− 2))

× r−[(n−1)/2]Jn/2+[(n−1)/2]−1(r)

+ (−p)(−p+ 2) . . . (−p+ 2([(n− 1)/2]− 1))

× r−[(n−1)/2]i(p+ n/2

− [(n− 1)/2], k/2 + [(n− 1)/2]− 1, r).

Since
[(n−1)/2]∑
p=0

(
[(n− 1)/2]

p

)
(−1)ppq = 0

for 0 ≤ q ≤ [(n − 1)/2] − 1, for some βp, depending only on p and n, the same integral is
equal to

u[(n−1)/2]+n/2+1

[(n−1)/2]∑
p=0

βp (ut)−[(n−1)/2]

× i(p+ n/2− [(n− 1)/2], n/2 + [(n− 1)/2]− 1, ut),

where β1 = 0 if [(n− 1)/2] ≥ 1.
Changing the order of summation and integration, we have to prove the following estimate

∞∫
0

tn/2−[(n−1)/2] dt

∣∣∣∣
π∫

0

eijuun/2+1i(µ, η, ut) du

∣∣∣∣
= O

(
j(n−1)/2−[(n−1)/2]−1 ln(j + 1)

)
,

(5.17)

where µ = p + n/2 − [(n − 1)/2], η = n/2 + [(n − 1)/2] − 1, and 1 ≤ p ≤ [(n − 1)/2]. If
[(n− 1)/2] = 0, that is, n = 2, we have the only integral

∞∫
0

t dt

∣∣∣∣∣∣
π∫

0

eijuu2i(1, 0, ut) du

∣∣∣∣∣∣ =

∞∫
0

dt

∣∣∣∣∣∣
π∫

0

eijuuJ1(ut) du

∣∣∣∣∣∣ . (5.18)

When j ≥ 1 and t ∈ [0, 1], integration by parts yields
π∫

0

eijuun/2+1i(µ, η, ut) du = (ij)−1eijππn/2+1i(µ, η, πt)

− (ij)−1

π∫
0

eiju(n/2 + 1)un/2i(µ, η, ut) du

− t(ij)−1

π∫
0

eijuun/2+1i(µ, η, ut) du.
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By (3) in Lemma 5.2 we have i(µ, η, r) = O(rη), and by (2)

|i′(µ, η, r)| = O(rη−1)

for 0 ≤ r ≤ π. This estimates the inner integral in (5.17) over [0, 1] by O(j−1). To estimate
the integral in t over [1,∞), split the inner one in two: over [0, π/t] and over [π/t, π].

As for the integral over [0, π/t], integrate, as above, by parts and obtain

(ij)−1eijπ/t(π/t)n/2+1i(µ, η, π)− (ij)−1

π/t∫
0

eiju(n/2 + 1)un/2i(µ, η, ut) du

− t(ij)−1

π/t∫
0

eijuun/2+1i′(µ, η, ut) du.

Applying similar estimates, we have

j−1

∞∫
1

tn/2−[(n−1)/2]O(t−n/2−1)dt = O(j−1)

for [(n− 1)/2 ≥ 1. For u ≥ π/t, apply the asymptotics of i and i′:

ρ(t) = i(µ, η, t)−
√

(2/π)t−3/2 cos(t− π(η + 1)/2− π/4) = O(t−5/2)

and
ρ′(t) = O(t−5/2)

(the latter for µ ≥ 3/2). Both estimates follow from (2.7) and Lemma 5.2. More precisely,the
first one follows from (1), (3) and (2.7); while the second one from (2), (3), (2.7), and the
estimate already proved. Now substitute the sum√

(2/π)t−3/2 cos(t− θ) + ρ(t)

for i(µ, η, t), where θ = π(η + 1)/2 + π/4. For the first summand, we have when j 6= t∣∣∣∣∣∣∣
π∫

π/t

eijuun/2+1(ut)−3/2e±iutdu

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
π∫

π/t

eiu(j±t)u(n−1)/2 du

∣∣∣∣∣∣∣ t−3/2

= t−3/2

∣∣∣∣i−1(j ± t)−1eiu(j±t)u(n−1)/2
∣∣π
π/t

− (2i)−1(j ± t)−1(n− 1)

π∫
π/t

eiu(j±t)u(n−3)/2 du

∣∣∣∣
≤ Ct−3/2(|j − t|+ 1)−1.
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In this form, the inequality holds to be true for j = t as well. Similarly, for the second
summand ∣∣∣∣∣∣∣

π∫
π/t

eijuun/2+1ρ(ut)du

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
π∫

π/t

eiu(j−t)un/2+1eiutρ(ut) du

∣∣∣∣∣∣∣
=

∣∣∣∣i−1(j − t)−1eiu(j−t)un/2+1eiutρ(ut)
∣∣π
π/t

− i−1(j − t)−1

π∫
π/t

eiu(j−t)
[
(n/2 + 1)un/2eiutρ(ut)

+ itun/2+1eiutρ(ut) + tun/2+1eiutρ′(ut)

]
du

∣∣∣∣
≤ C|j − t|−1|ρ(πt)|+ C|j − t|−1t−n/2−1

+ C|j − t|−1

π∫
π/t

[
u|ρ(ut)|+ u2t|ρ(ut)|+ u2t|ρ′(ut)|

]
du.

Applying the above indicated estimates for ρ and ρ′, we obtain∣∣∣∣∣∣∣
π∫

π/t

eijuun/2+1ρ(ut) du

∣∣∣∣∣∣∣ ≤ Ct−3/2(|j − t|+ 1)−1.

It remains to estimate the integral (see (5.17))

∞∫
1

tn/2−[(n−1)/2]t−3/2(|j − t|+ 1)−1dt.

For n odd, this integral equals

∞∫
1

t−1(|j − t|+ 1)−1dt =

j∫
1

(t−1 + (j − t+ 1)−1(j + 1)−1dt

+

∞∫
j

(−t−1 + (t− j + 1)−1)(j − 1)−1 dt

= O(j−1 ln j).
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For n even, we have

∞∫
1

t−1/2(|j − t|+ 1)−1 dt = 2

√
j∫

1

(j + 1− s2)−1ds+ 2

∞∫
√
j

(s2 − j + 1)−1 ds

= O(j−1/2 ln j).

Combining all the estimates obtained, we obtain that the integral in (5.17) is estimated by

O(j−1) +O(j−[(n−1)/2]−1+(n−1)/2 ln j),

and (5.17) is established for [(n− 1)/2] ≥ 1 (n ≥ 3).
For n = 2, it remains to estimate the integral (cf. (5.18))

∞∫
1

dt

∣∣∣∣∣∣
π/t∫
0

eijuuJ1(ut) du

∣∣∣∣∣∣ =

∞∫
1

dt

∣∣∣∣∣∣
π/t∫
0

ei(j−t)uueiutJ1(ut) du

∣∣∣∣∣∣ .
The estimates are continued by integration by parts as above for the integral over [π/t, π].
The bound will be O(j−1 ln j). Lemma 5.1 is proved.

Obviously, this lemma completes the proof of the theorem.
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6 “Polyhedral” results

Let us again refer to the book [DC]: “Concentric polygons are an obvious thing to try, but
this turns out to be no more interesting than repeating several one-dimensional results. It
doesn’t give any new mathematics, and it avoids having to think deeply about Fefferman’s
result.1 To avoid thinking about a subject is almost always a mistake; at best you are in for
some big surprises later on”.

This passage is a moot point even if one speaks about parallelepipeds with the sides par-
allel to coordinate planes. What is anticipated here is nothing more than the product of
one-dimensional estimates. But even in this case there exists Fefferman’s other bright result
[F1], which gives an example of a continuous function with everywhere rectangularly diver-
gent partial sums. And considering more general objects within the scope of “polyhedral”
case, one can meet with many non-trivial problems. We will touch those closely connected
to our topic.

6.1. We must say that, in general, this case has a “logarithmic” nature. More precisely,
there exist two positive constants C1 and C2, C1 < C2, such that for each polyhedron E we
have

C1 lnnN ≤
∫
Tn

∣∣∣∣∑
k∈NE

eikx
∣∣∣∣ dx ≤ C2 lnnN. (6.1)

Actually this was proved by Belinsky [Be2]; nothing new was added in later publications
[P3, Bb1]. Thus, we see an essential difference between this case and the spherical case
characterized in (1.2). In the latter case, the Lebesgue constants are of power growth, the
worst possible, in a sense, while (6.1) is the best possible estimate one can achieve for partial
sums generated by a non-trivial set. We are going to concentrate on two important problems
which are essentially of “polyhedral” nature.

6.2. One of them touches quite a natural question stated as follows.
Can partial sums be defined by sets for which the norms of the corresponding operators

(1.1) have an intermediate - between (6.1) and (1.2) - rate of growth with respect to N-
dilations of these sets?

Some trivial solutions were suggested in [Y2], where an intermediate growth is achieved
by Cartesian product of the two mentioned situations. Of course, this is possible only for
dimension three and greater. Thus a real solution might be that for the two-dimensional
case. It was done by Podkorytov (similar but weaker results were given in [YY2]). It is clear
(see Theorem 1.3) that the boundary can possess no point of non-vanishing curvature - this
readily results in the maximal (power) order N (n−1)/2. On the other side, any polyhedron
matches (6.1). Thus, the only chance might be delivered by a “polyhedron” with an infinite
number of specially organized sides.

Let C1 and C2 denote, as above, positive constants such that C1 < C2.

Theorem 6.1 ([P5]). The following assertions hold.

1) For any p > 2 there exists a compact, convex set E for which

C1 lnpN ≤
∫
T2

∣∣∣∣∑
k∈NE

eikx
∣∣∣∣ dx ≤ C2 lnpN, N ≥ 2. (6.2)

1The famous solution of the multiplier problem for the ball in [F2].
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2) For any p ∈ (0, 1/2) and α > 1 there exists a compact, convex set E for which

C1N
p ln−αpN ≤

∫
T2

∣∣∣∣∑
k∈NE

eikx
∣∣∣∣ dx ≤ C2N

p ln2−2pN, N ≥ 2. (6.3)

The proof is obtained by proceeding, in a sense, as in the proof of Theorem 1.1, using
very delicate technique where the behavior of the sequence of lengths and slopes of the sides
of E is treated carefully.

6.3. The next question also seems to be very natural.
Is it possible to write a certain asymptotic relation instead of the ordinal estimate (6.1)?
Some partial cases were investigated by Daugavet [D], Kuznetsova [Ku1, Ku2, Ku4],

Skopina [Sk0, Sk2]. For example, Kuznetsova generalized Daugavet’s result as follows.

Theorem 6.2 ([Ku1, Ku2, Ku4]). Let

BN1,N2 = {(k1, k2) : |k1|/N1 + |k2|/N2 ≤ 1}.

The asymptotic equality

||SBN1,N2
|| = 32π−4 lnN1 lnN2 − 16π−4 ln2N1 +O(lnN2)

holds uniformly with respect to all natural N1, N2, and l = N2/N1.

The case l = 1 is the mentioned result of Daugavet. What differentiates both these results
from many others is that not dilations of certain fixed domain are taken. This is a source of
additional difficulties, and nothing is known for l other than integer as well as for the case
of more dimensions. Let us also mention a recent paper [Bak].

As for the “regular” situation, an unexpected result was obtained again by Podkorytov
[P6]. He has shown that there are two main cases. The first one, the afore-mentioned
asymptotic results may be referred to, deals with the polygons (we are speaking about two-
dimensional results) with integer, or rational slopes of sides. In this case one can show that
the estimates change insignificantly if one considers the corresponding integrals instead of
sums, that is, the Fourier transform χ̂NE of the indicator function of the N -dilation of the
corresponding set E. In other words, the Dirichlet kernel is well approximated by χ̂NE. This
circumstance allows to obtain the logarithmic asymptotics, namely,

∫
T2 |
∑

k∈NE e
ikx| dx is

equivalent to ln2N and both to
∫
T2 |χ̂NE(x)| dx.

In the second case, that is, when at least one slope is irrational, the situation changes
qualitatively: the upper limit and the lower limit of the ratio of

∫
T2 |
∑

k∈NE e
ikx| dx and

ln2N, as N → ∞, may be different. In other words, in this case the behavior of the
Fourier transform of the indicator function of NE is not representative of the behavior of the
corresponding partial sums. In [P6] the quantitative estimate of this phenomenon is given
at once. Namely, for the triangles

E = Eα = {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ αu}

the following theorem is true.

Theorem 6.3. There hold two assertions.
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1) We have ∫
T2

∣∣∣∣ ∑
k∈NEα

eikx
∣∣∣∣ dx =

∫
T2

|χ̂NEα(x)| dx

+

2π∫
0

∣∣∣∣ N∑
j=0

{αj}eijt
∣∣∣∣ dt+O(lnN ln lnN),

where {...} denotes the fractional part of the corresponding number.

2) There exists irrational α such that

lim
N→∞

ln−2N

2π∫
0

∣∣∣∣ N∑
j=0

{αj}eijt
∣∣∣∣ dt > 0. (6.4)

The main defect of this theorem is that it is true only for α from very scarce set, and
nothing is known about other α. In a recent paper by Nazarov and Podkorytov [NP] this
uncertainty is partly removed. Namely, the following is true. Denote by IN(α) the integral
in (6.4).

Theorem 6.3’. Let α be irrational.

1) We have
0 < C1 ≤ lim

N→∞
IN(α) ln−2N ≤ C2.

2) We have
lim
N→∞

IN(α) ln−2N = 0

if and only if α is a Liouville number, that is, if and only if for each M > 0 there exist
fractions p/q (q ≥ 2) such that

|α− p/q| ≤ q−M .

3) If |α − p/q| ≤ q−M for some M > 2 and infinitely many fractions p/q (q ≥ 2), then the
fraction IN(α) ln−2N has no limit as N →∞.

4) The integral IN(α) is concentrated on a set of small measure, namely, for all N ≥ 2 and
α irrational there exists a set E = E(N,α) ⊂ T such that

mes(E) ≤ e−
√

lnN

while ∫
T\E

∣∣∣∣ ∑
0≤j≤N

{αj}eijt
∣∣∣∣ dt ≤ C ln3/2N.

5) There exist numbers 0 < ω ≤ Ω <∞ such that for almost all α

ω = lim
N→∞

IN(α) ln−2N

and
Ω = lim

N→∞
IN(α) ln−2N.
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6.4. Observe that Podkorytov in [P2] and Skopina in [Sk1, Sk2] gave some asymptotic
estimates for more general linear means in the cases which we may treat as “polyhedral” as
well. Let

ρ(x) = ρE(x) = inf{α > 0 : x/α ∈ E}
be the Minkowski functional of a set E and

LλN(f ;x) = LλE
N (f ;x) =

∑
k∈NE

λ(ρ(k)/N)f̂(k)eikx.

Theorem 6.4 ([P2]). Let E be a polyhedron star-shaped with respect to the origin, which is
an interior point of it, and λ ∈ C[0,∞) be supported on [0, 1].

1) If the extension of at least one of the faces of the polyhedron E passes through the origin,
then

sup
N
||LλE

N || = ∞

and consequently there exists an f ∈ C(Tn) such that

lim
N→∞

|LλN(f ; 0)| = ∞.

2) If no extension of a face pass through the origin, then the convergence of the integral

Fn(λ) =

∫
R

|dλ̂(r)| ln
n−1(2 + |r|)

1 + |r|
dr,

where

dλ̂(r) =

1∫
0

e−irt dλ(t),

is sufficient for the norms ||LλN || to be bounded, and consequently LλN(f ; ·) converge uniformly
to f as N →∞ for all f ∈ C(Tn).

Some results for “polyhedral” functions λ are obtained in [Sk2, Sk3] in the form similar
to that given in Theorem 5.1. In particular, the following asymptotic relation holds.

Theorem 6.5 ([Sk3]). Let E be an n-dimensional polyhedron with vertices having all co-
ordinates rational, star-shaped with respect to the origin, and the origin does not lie on the
extension of any face of the polyhedron. Let λ(x) = λE(x). Then

‖LλN‖L1(Tn)→L1(Tn) = (2π)−n
∫

NTn

|λ̂(x)| dx

+O(Vλ0 + |λ0(0)|) lnn−1N.

On the base of this theorem, it is possible to find the main term of

‖LλN‖L1(Tn)→L1(Tn)

in a form suitable for calculations. We mention some special cases. For instance, it is shown
in [Sk3], that the following statement holds.
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Theorem 6.6. If E is a convex symmetric 2l-polygon, and λ0 ∈ C[0, 1] ∩ C1[0, 1) is such
that λ0(t) ≥ 0, λ0(1) = 0, and both λ′0(t) and (t− 1)λ′0(t) are monotone decreasing, then

‖LλN‖L1(T2)→L1(T2)

= 16 lπ−4

N∫
1

x−1λ0(1− 1/x) ln x dx

+O

( N∫
1

x−1λ0(1− 1/x) dx+ λ0(0)

)
.

This allows us to obtain the logarithmic asymptotics provided some better bounds are
valid for the remainder terms. The constant in the main term depends on geometric
properties of the polyhedron. It is shown in [Sk1] that the Lebesgue constants grow as
(2/π)2n lnnN for parallelepipeds, and as 2(n + 1)π−n−1 lnnN for simplices. More precisely,
let for N = 0, 1, 2, ..., and 0 ≤ p ≤ N the means LλN be defined by means of

λ(x) =


1, for x ∈ (N − p)E,

(N + 1− ρ(x))(p+ 1)−1, for x ∈ NE \ (N − p)E,

0, for x 6∈ NE,

where E is the same as in Theorem 6.5; then the norms of such operators are equal to

||LλE
N || = (2π)−n

∫
Tn

|λ̂(x)| dx+ Σ,

where
|Σ| ≤ CP,n(p+ 1)−1(ln(N + 2))n−1.
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7 “Hyperbolic” results

Since the appearance of Babenko’s paper [Ba1] interest has continued in various questions of
Approximation Theory and Fourier Analysis in Rn connected with the study of linear means
with harmonics in “hyperbolic crosses”

Γ(N, γ) = {k ∈ Zn : h(N, k, γ) =
n∏
j=1

(|kj|/N)γj ≤ 1, γj ≥ 1, j = 1, ..., n}.

We are interested in the hyperbolic means of Bochner-Riesz type of order α ≥ 0

LαΓ(N,γ) : f(x) 7→
∑

k∈Γ(N,γ)

(1− h(N, k, γ))α+ f̂(k)eikx.

Hyperbolic Bochner-Riesz means (for the two-dimensional Fourier integrals with γ1 =
γ2 = 2) appeared for the first time in the paper of El-Kohen [EK] in connection with the
study of their Lp-norms. His result was not sharp, and shortly after was strengthened by
Carbery [C].

The case α = 0 - hyperbolic partial sums LΓ(N,γ) = L0
Γ(N,γ) - is investigated separately

earlier. The exact degree of growth for them ‖LΓ(N,γ)‖ � N (n−1)/2 (cf. Theorem 1.1) was
established in the two-dimensional case independently by Belinsky [Be2] and by A. and V.
Yudins [YY1], and afterwards was generalized to the case of arbitrary dimension in [L1].
Recently these results were applied to problems of uniform convergence in [Dy4].

For α > 0, the estimates are given in the following

Theorem 7.1. ([L4]) The following assertions hold. 1) For α < (n− 1)/2, we have

‖LαΓ(N,γ)‖ � N (n−1)/2−α.

2) For α = (n− 1)/2, we have

‖L(n−1)/2
Γ(N,γ) ‖ = ωn,γ lnnN +O(lnn−1N).

3) For α > (n− 1)/2, we have

‖LαΓ(N,γ)‖ = ωn,γ,α lnn−1N +O(lnn−2N).

Here and below ω with subscripts denotes, generally speaking, different constants depend-
ing only on the indicated indices.

Observe that the critical order (n − 1)/2 is the same as in the spherical case. But if for
the values lower than the critical one the orders of growth of the Lebesgue constants coincide
(this is clear in view of Theorem 4.2), the difference between (4.11) and 2) in Theorem 7.1 is
obvious as well as for orders greater than (n−1)/2: in the latter case the Lebesgue constants
of the usual Bochner-Riesz spherical means are bounded. In order to establish Theorem 7.1,
especially 2) and 3), we need the following

Theorem 7.2. ([L4,9, LS]) For the norms of operators

L̄αΓ(N,γ) : f(x) 7→
∑

|kj |≤N,j=1,...,n

(1− h(N, k, γ))α+ f̂(k)eikx
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the following asymptotic equality is true

‖L̄αΓ(N,γ)‖ = ωn,γ,α lnn−1N +O(lnn−2N).

This is a strengthening of Kivinukk’s result [Ki], where two-sided ordinal inequalities were
obtained; by this it was shown for the first time the influence of smoothness at the corner
points on the order drop of a logarithmic growth, as compared with the Lebesgue constants
of cubic partial sums.

It should be mentioned that these theorems are proved by step by step passage from sums
to corresponding integrals. This leads to the Fourier transform of a function generating the
method of summability under consideration.

Proof of Theorem 7.1. The proof is inductive. To estimate the passage from the trigono-
metric sum to the Fourier transform, first the two-dimensional case is considered. Then a
geometric argument allows one to make estimates for higher dimensions which are either
easier or similar to those for dimension two. Hence we present the two-dimensional proof
of the passage from sums to integrals, while the inductive argument for higher dimensions
is the same as that for hyperbolic partial sums (α = 0) in [L1]. Then the stationary phase
method is applied to estimate the Fourier transform. Some ideas from [Be2] are used here.

Since the norms of the operators

f →
∫
T

f(x1, x2)dx1 and f →
∫
T

f(x1, x2)dx2,

taking C(T2) into C(T2), are bounded, it suffices to estimate the norm of the operator

f →
∑

1≤|m1|γ1 |m2|γ2

≤Nγ1+γ2

(1− |m1|γ1|m2|γ2/Nγ1+γ2)αf̂(m)eimx.

This norm is equal to (cf. (0.4))∫
T2

∣∣∣∣ ∑
1≤|m1|γ1 |m2|γ2

≤Nγ1+γ2

(1− |m1|γ1|m2|γ2/Nγ1+γ2)αeimx
∣∣∣∣ dx

=

∫
T2

∣∣∣∣ ∑
1≤|m1|≤N

eim1x1

∑
1≤|m2|γ2

≤Nγ1+γ2 |m1|−γ1

(1− |m1|γ1|m2|γ2/Nγ1+γ2)αeim2x2

+
∑

1≤|m2|≤N

eim2x2

∑
1≤|m1|γ1

≤Nγ1+γ2 |m2|−γ2

(1− |m1|γ1|m2|γ2/Nγ1+γ2)αeim1x1

+ ≤
∑

1≤|m1|,|m2|≤N

(1− |m1|γ1|m2|γ2/Nγ1+γ2)αeimx
∣∣∣∣ dx

times (2π)−2. The estimate for the last sum is given in Theorem 7.2. The first two sums are
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similar, so we will handle only one of them. We have∫
T2

∣∣∣∣ ∑
1≤|m1|≤N

eim1x1

{ ∑
1≤|m2|γ2

≤Nγ1+γ2 |m1|−γ1

(1− |m1|γ1|m2|γ2/Nγ1+γ2)αeim2x2

−
∫

|y2|γ2≤Nγ1+γ2 |m1|−γ1

(1− |m1|γ1|y2|γ2/Nγ1+γ2)αeiy2xxdy2

}∣∣∣∣ dx
=

∫
T2

∣∣∣∣ ∑
1≤|m1|≤N

eim1x1

{ ∑
1≤|m2|γ2

≤Nγ1+γ2 |m1|−γ1

(1− |m1|γ1|m2|γ2/Nγ1+γ2)αeim2x2

−Nγ1/γ2+1|m1|−γ1/γ2
∫

|z|≤1

(1− |z|γ2)αeix2zNγ1/γ2+1/|m1|γ1/γ2dz

}∣∣∣∣ dx,
where z is substituted for y2|m1|γ1/γ2/Nγ1/γ2+1. The right-hand side may be rewritten as∫

T2

∣∣∣∣ ∑
1≤|m1|≤N

eim1x1

{ ∑
1≤|m2|γ2

≤Nγ1+γ2 |m1|−γ1

(1− |m1|γ1|m2|γ2/Nγ1+γ2)αeim2x2

−Nγ1/γ2+1|m1|−γ1/γ2Λ(x2N
γ1/γ2+1|m1|−γ1/γ2)

}∣∣∣∣ dx,
(7.1)

where Λ is the one-dimensional inverse Fourier transform, times 2π, of the function (1 −
|z|γ2)α+. The same argument as that when proving Theorem 5.1 yields the following relation

(2π)−1

∫
T

Nγ1/γ2+1|m1|−γ1/γ2Λ(x2N
γ1/γ2+1|m1|−γ1/γ2)e−im2x2 dx2

= (1− |m1|γ2|m2|γ2/Nγ1+γ2)α+

− (2π)−1

∫
|t|>πNγ1/γ2+1|m1|−γ1/γ2

Λ(t)e−itm2|m1|γ1/γ2/Nγ1/γ2+1

dt.

(7.2)

Observe that the left-hand side of (7.2) is simply the m2th Fourier coefficient of the
function between the sign of the integral and e−im2x2 . Applying successively the Cauchy-
Schwarz inequality and Parseval’s identity to (7.1), and then using (7.2), we arrive at the
following value which is to be estimated:{ ∑

1≤|m1|≤N

∑
m2 6=0

∣∣∣∣ ∫
|t|>πNγ1/γ2+1|m1|−γ1/γ2

Λ(t)e−itm2|m1|γ1/γ2/Nγ1/γ2+1

dt

∣∣∣∣2}1/2

.

We will consider later on the case m2 = 0. For this as well as for all other m2, we have to
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know the behavior of Λ(t). We have

Λ(t) =

1∫
−1

(1− |z|γ2)αeitzdz = 2

1∫
0

(1− zγ2)α cos tz dz

= 2

1∫
0

(γ2/2)(1− z2)α cos tz dz

+ 2

1∫
0

[(1− zγ2)α − (γ2/2)(1− z2)α] cos tz dz.

Using (2.5), we obtain

Λ(t) = 2α−1/2Γ2

√
πΓ(α+ 1)Jα+1/2(t)t

−α−1/2

+

1∫
0

ϕ(z) cos tz dz,

and it is completely clear what is taken as ϕ(z). Integration by parts yields (integrated terms
obviously vanish)

Λ(t) = 2α−1/2γ2

√
πΓ(α+ 1)Jα+1/2(t)t

−α−1/2

+ t−1

1∫
0

Φ(z) sin tz dz,

where the function Φ(z) = −ϕ′(z) behaves as zmin(γ2−1,1) at zero, and as (1 − z)α at 1.
Applying (2.7) to the Bessel function and elementary estimates to the integral, we obtain

Λ(t) = 2αγ2Γ(α+ 1)t−α−1 cos(t+ θ) +O(t−2−ε) (7.3)

with some numbers θ and ε ≥ 0. Denote

M3 = {m2 : 1 ≤ |m2| ≤ Nγ1/γ2+1|m1|−γ1/γ2 + 2}.

First we obtain { ∑
1≤|m1|≤N

∑
M3

∣∣∣∣ ∫
|t|>πNγ1/γ2+1/|m1|γ1/γ2

t−2−ε dt

∣∣∣∣2}1/2

≤
{ ∑

1≤|m1|≤N

∑
M3

(|m1|γ1N−γ1−γ2)2(1+ε)/γ2

}1/2

≤ CN−ε.

Denote now
M1 = {m2 : 1 ≤ |m2| ≤ Nγ1/γ2+1|m1|−γ1/γ2 − 2}.
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To handle the main term in (6.3), let us estimate{ ∑
1≤|m1|≤N

∑
M1

∣∣∣∣ ∫
|t|>πNγ1/γ2+1/|m1|γ1/γ2

t−α−1e±i(t+θ)e−itm2|m1|γ1/γ2/Nγ1/γ2+1

dt

∣∣∣∣2}1/2

=

{ ∑
1≤|m1|≤N

∑
M1

∣∣∣∣ ∫
|t|>πNγ1/γ+1/|m1|γ1/γ2

t−α−1e−it(m2|m1|γ1/γ2/Nγ1/γ2+1±1) dt

∣∣∣∣2}1/2

.

Integrating by parts, we obtain the following bound for the integral on the right-hand
side

(|m2| |m1|γ1/γ2/Nγ1/γ2+1 ± 1)−1(πNγ1/γ2+1|m1|−γ1/γ2)−1−α.

Hence the bound for the whole right-hand side is ∑
1≤|m1|≤N

∑
M1

(|m2| |m1|γ1/γ2/Nγ1/γ2+1 ± 1)−2(Nγ1/γ2+1|m1|−γ1/γ2)−2−2α


1/2

≤ CN−(1+α)(γ1/γ2+1)

{ ∑
1≤|m1|≤N

|m1|2γ1(1+α)/γ2Nγ1/γ2+1|m1|−γ1/γ2

× (1− |m1|γ1γ2(Nγ1/γ2+1|m1|−γ1γ2 − 2)N−γ1/γ2−1)−1

}1/2

≤ CN−α(γ1/γ2+1)−(γ1/γ2+1)/2

×

 ∑
1≤|m1|≤N

|m1|γ1/γ2+2αγ1/γ2Nγ1/γ2+1|m1|−γ1/γ2


1/2

= CN−α(γ1/γ2+1)

{ ∑
1≤|m1|≤N

|m1|2αγ1/γ2
}1/2

≤ CN1/2−α.

For ∣∣∣∣ |m2| −Nγ1/γ2+1|m1|−γ1/γ2
∣∣∣∣ ≤ 2,

estimates are straightforward and comparatively simple. Indeed,{ ∑
1≤|m1|≤N

∣∣∣∣ ∫
|t|>πNγ1/γ2+1|m1|−γ1/γ2

t−1−α dt

∣∣∣∣2}1/2

≤ C

{ ∑
1≤|m1|≤N

(|m1|γ1/γ2N−γ1/γ2−1)2α

}1/2

≤ CN1/2−α.
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Of course, the latter estimate in this form is true only for α > 0. For α = 0, some additional
though simple estimates are needed, but these have been proved earlier (see [Be2], [L1]).

Let us consider now estimates for

m2 ∈M2 = {m2 : |m2| > Nγ1/γ2+1|m1|−γ1/γ2 + 2}.

Since M2 is infinite, more delicate consideration is needed. First, let us integrate by parts{ ∑
1≤|m1|≤N

∑
M2

∣∣∣∣ ∫
|t|>πNγ1/γ2+1|m1|−γ1/γ2

Λ(t)e−itm2|m1|γ1/γ2/Nγ1/γ2+1

dt

∣∣∣∣2}1/2

≤
{ ∑

1≤|m1|≤N

∑
M2

(Nγ1/γ2+1|m2|−1|m1|−γ1/γ2)2Λ2(πNγ1/γ2+1|m1|−γ1/γ2)
}1/2

+

{ ∑
1≤|m1|≤N

∑
M2

(Nγ1/γ2+1|m2|−1|m1|−γ1/γ2)2

×
∣∣∣∣ ∫
|t|>πNγ1/γ2+1|m1|−γ1/γ2

Λ′(t)e−itm2|m1|γ1/γ2/Nγ1/γ2+1

dt

∣∣∣∣}1/2

= I ′ + I ′′.

For I ′, the estimates are very similar to those above. Since for α ≤ 1, which is more than
enough for us, Λ(t) = O(t−1−α), we have

I ′ ≤ C

{ ∑
1≤|m1|≤N

∑
M2

|m2|−2(Nγ1/γ2+1|m1|−γ1/γ2)2−2α

}1/2

≤ C

{ ∑
1≤|m1|≤N

(Nγ1/γ2+1|m1|−γ1γ2)−1−2α

}1/2

= N−γ1/γ2+1)/2−α)γ1/γ2+1)

{ ∑
1≤|m1|≤N

|m1|γ1/γ2+2αγ1/γ2

}1/2

≤ CN−α.

(7.4)

To estimate I ′′, observe that

Λ′(t) = i

1∫
−1

(1− |z|γ2)αzeitzdz

= i

1∫
−1

(1− |z|γ2)αeitzdz + i

1∫
−1

(1− |z|γ2)α(z − 1)eitzdz

= 2αiγ2Γ(α+ 1)t−α−1 cos(t+ θ) +O(t−2−ε)

as above. Since
∑
l|m2|>Q|m2|−2 ≤ 2Q−1, estimates for the remainder term are exactly as

above. Hence, we again are concerned with the main term in the asymptotic representation
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for Λ′(t). We have{ ∑
1≤|m1|≤N

∑
M2

m−2
2 (Nγ1/γ2+1|m1|−γ1/γ2)2

×
∣∣∣∣ ∫
|t|>πNγ1/γ2+1|m1|−γ1/γ2

t−1−αeit(1−m2|m1|γ1/γ2/Nγ1/γ2+1) dt

∣∣∣∣}1/2

≤ C

{ ∑
1≤|m1|≤N

∑
M2

m−2
2 (Nγ1/γ2+1|m1|−γ1/γ2)2

× (1− |m2| |m1|γ1/γ2/Nγ1/γ2+1)−2(Nγ1/γ2+1|m1|−γ1/γ2)−2−2α

}1/2

≤ C

{ ∑
1≤|m1|≤N

(Nγ1/γ2+1|m1|−γ1/γ2)−2α

×
∑
M2

(|m2| −Nγ1/γ2+1|m1|−γ1/γ2)−2

}1/2

≤ CN−α(γ1/γ2+1)

{ ∑
1≤|m1|≤N

|m1|2αγ1/γ2
}1/2

≤ CN1/2−α.

Let us now come back to the case m2 = 0. Of course, it may cause no serious problem. We
have to estimate∫

T2

∣∣∣∣ ∑
1≤|m1|≤N

eim1x1

( ∫
|t|>πNγ1/γ2+1|m1|−γ/γ2

Λ(t) dt− 1

)∣∣∣∣ dx
= ω2 logN +O

( ∑
1≤|m1|≤N

∣∣∣∣ ∫
|t|>πNγ1/γ2+1|m1|−γ1/γ2

Λ(t) dt

∣∣∣∣ ).
It suffices to use a simple bound Λ(t) = O(t−1−α). This yields the estimate O(N−α) for the
remainder term on the right-hand side. Actually, this is the case for any individual m2, or a
finite number of m2s. So the same good estimate is valid when estimating over M3 \M1.

Let us sum up previous work. We have succeeded in passing from the trigonometric sum
in m1 to the correspondent integral with an appropriate estimate of the difference in (7.1).
Now we go on with∫

T2

∣∣∣∣ ∑
1≤|m1|≤N

eim1x1Nγ1/γ2+1|m1|−γ1/γ2Λ(x
γ1/γ2+1
2 |m1|−γ1/γ2)

∣∣∣∣ dx.
Using, as when proving Theorem 1.1, the relation

eim1x1 =
x1

2 sin(x1/2)

m1+1/2∫
m1−1/2

eix1u du,
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we have to estimate the difference∫
T2

∣∣∣∣ ∑
1≤|m1|≤N

m1+1/2∫
m1−1/2

eix1u du

{ ∫
|t|≤Nγ1/γ2+1|m1|−γ1/γ2

(1− |m1|γ1|t|γ1N−γ1−γ2)αeix2t dt

−
∫

|t|≤Nγ1/γ2+1|u|−γ1/γ2

(1− |u|γ1|t|γ2N−γ1−γ2)αeix2tdt

}∣∣∣∣ dx.
Substituting u → m1 + u and applying simple inequalities, and then the Cauchy-Schwarz
inequality, Parseval’s identity and mean-value theorem, we estimate this difference via

∫
T

dx2

1/2∫
−1/2

du

∫
T

∣∣∣∣ ∑
1≤m1|≤N

eix1(m1+u)

{ ∫
|t|≤Nγ1/γ2+1|m1|−γ1/γ2

(1− |m1|γ1|t|γ1−γ2)αeix2t dt

−
∫

|t|≤Nγ1/γ2+1|m1+u|−γ1/γ2

(1− |m1 + u|γ1|t|γ2N−γ1−γ2)eix2tdt

}∣∣∣∣
≤
∫
T

{ ∑
1≤|m1|≤N

∣∣∣∣ ∫
|t|≤Nγ1/γ2+1|m1|−γ1/γ2

(1− |m1|γ1|t|γ2N−γ1−γ2)αeix2t dt

−
∫

|t|≤Nγ1/γ2+1|m1+s|−γ1/γ2

(1− |m1 + s|γ1 |t|γ2N−γ1−γ2)αeix2t dt

∣∣∣∣2}1/2

dx2,

where s is some number in (−1/2, 1/2).
After substitutions reducing the inner integrals to those over [−1, 1], the right-hand side
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can be rewritten as∫
T

 ∑
1≤|m1|≤N

∣∣∣∣∣∣N |m1|−γ1/γ2
1∫

−1

(1− |t|γ2)αeix2tNγ1/γ2+1|m1|−γ1/γ2 dt

−N |m1 + s|−γ1/γ2
1∫

−1

(1− |t|γ2)αeix2tNγ1/γ2+1|m1 + s|−γ1/γ2dt

∣∣∣∣∣∣
2


1/2

dx2

= 4

πN∫
0

 ∑
1≤|m1|≤N

∣∣∣∣∣∣ |m1|−γ1/γ2
1∫

0

(1− tγ2)α cos(vtNγ1/γ2|m1|−γ1/γ2) dt

− |m1 + s|−γ1/γ2
1∫

0

(1− tγ2)α cos(vtNγ1/γ2|m1 + s|−γ1/γ2) dt

∣∣∣∣∣∣
2


1/2

dv

times Nγ1/γ2 .
To estimate this, split the sum over m1 into two: 1 ≤ |m1| ≤ vqNp and |m1| > vqNp,

where p and q will be specified later on. The first part is simpler. Applying the above rough
estimate to the inner integrals, we obtain

Nγ1/γ1

πN∫
0

v−1−α

 ∑
1≤|m1|≤vqNp

∣∣ |m1|−γ1/γ2|m1|(1+α)γ1/γ2N−(1+α)γ1/γ2
∣∣2

1/2

dv

= N−αγ1/γ2

πN∫
0

v−1−α

 ∑
1≤|m1|≤vqNp

|m1|2αγ1/γ2


1/2

dv

= N−αγ1γ2Npαγ1/γ2+p/2

πN∫
0

v−1−αvqαγ1/γ2+q/2 dv.

Two things should now be achieved by choice of p and q. First, integration must be
guaranteed. Observe that here and in what follows non-integrability at zero might become
a real problem. It was possible earlier to separate the integral, say, over [0, 1] which results
in no confusion; hence the integral can be always understood as that over [1, πN ]. Thus we
wish that

q/2 + qαγ1/γ2 − α > 0,

which leads to the estimate

O(N−αγ1/γ2Npαγ1/γ2+p/2N q/2+qαγ1/γ2−α).

Analyzing this, we arrive at the restrictions p+ q = 1 and

q > α/(1/2 + αγ1/γ2).

The latter gives, for α ≤ 1/2, that q < 1. Hence for α < 1/2 the bound is O(N1/2−α), just
the one which is needed. For α = 1/2, the precise estimate is O(logN) which is also good for
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us. For α > 1/2, the estimate is even better than needed; the only point is that sometimes
(this depends on γ1 and γ2) one should take q > 1 and p < 0.

Let us proceed now with the case |m1| > vqNp, in which more delicate consideration is
needed for

πN∫
0

{ ∑
|m1|>vqNp

∣∣∣∣ v|m1|−γ1/γ2
1∫

0

(1− tγ2)α cos(tvNγ1/γ2|m1|−γ1/γ2) dt

− v|m1 + s|−γ1/γ2
1∫

0

(1− tγ2)α cos(tvNγ1/γ2 |m1 + s|−γ1/γ2) dt
∣∣∣∣2}1/2

dv

v

times Nγ1/γ2 .
We need some more information on the behavior of the inner integrals. First, denoting

(1− tγ2)α = Φ(t) and integrating by parts, we obviously obtain

M

1∫
0

Φ(t) cosMtdt = −
1∫

0

Φ′(t) sinMtdt,

and the value we have to estimate is
πN∫
0

 ∑
|m1|>vqNp

∣∣∣∣∣∣
1∫

0

Φ′(t) sin(tvNγ1/γ2|m1 + s|−γ1/γ2) dt

−
1∫

0

Φ′(t) sin(tvNγ1/γ2|m1|−γ1/γ2) dt

∣∣∣∣∣∣
2


1/2

dv

v
.

The difference of the two integrals is equal to

vNγ1/γ2(|m1 + s|−γ1/γ2 − |m1|−γ1/γ2)

×
1∫

0

Φ′(t)t cos(tvNγ1/γ2|m1 + sm1|−γ1/γ2) dt,

where |m1| < |m1 + sm1| < |m1 + s|, and the entire value under estimation is bounded by

CNγ1/γ2

πN∫
0

 ∑
|m1|>vqNp

∣∣ |m1|−γ1/γ2−1(vNγ1/γ2 |m1|−γ1/γ2)−α
∣∣2

1/2

dv

= CNγ1γ2−αγ1/γ2

πN∫
0

 ∑
|m1|>vqNp

|m1|−2γ1/γ2−2+2αγ1/γ2


1/2

v−αdv

= CNγ1/γ2−αγ1/γ2−pγ1/γ2+pαγ1/γ2−p/2

×
πN∫
0

v−α−qγ1/γ2−q/2+qαγ1/γ2dv.
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The procedure of the choice of p and q is exactly the same as above. We arrive at the same
condition p+ q = 1 as well as the bound

q < (1− α)/(γ1/γ2 + 1/2− αγ1/γ2),

the latter at least for α ≤ 1/2. Finally, all this means that the passage from the trigonometric
sum to the Fourier transform is properly estimated. What has to be estimated now is the
following integral∫

T2

∣∣∣∣ ∑
1/2≤|u|≤N+1/2

eix1u

∫
|t|≤Nγ1/γ2+1|u|−γ1/γ2

(1− |u|γ1 |t|γ2N−γ1−γ2)αeix2t dt

+

∫
1/2≤|t|≤N+1/2

eix2t dt

∫
|u|≤Nγ2/γ1+1|t|−γ2/γ1

(1− |u|γ1|t|γ2N−γ1−γ2)αeix1u du

∣∣∣∣ dx.
As mentioned above, the case of more dimensions can be handled inductively similarly to

that for the case of partial sums, α = 0, in [L1]. But it can be seen already from the two-
dimensional case itself the type of problems one encounters with passing from trigonometric
sums to the Fourier transform in the hyperbolic case; compare this with the proof of Theorem
1.1.

Thus we have to estimate now∫
NTn

∣∣∣∣ ∫
|x1|γ1 ...|xn|γn≤1,
|x1|,...,|xn−1|≥1/2

(1− |x1|γ1 . . . |xn|γn)αeiux dx

∣∣∣∣ du.
Of course, all the other combinations of n − 1 variables separated from zero should be
considered as well; they are treated similarly.

Denote the inner integral by Ψ(u); we are interested in the behavior of Ψ(u) for u large.
Further, it suffices to consider

Ψ(u) =

∫
x

γ1
1 ...xγn

n ≤1,
x1,...,xn−1≥1/2, xn≥0

(1− xγ11 . . . xγn
n )α cos(ux) dx.

Introduce a new variable
t = x

γ1/γn

1 . . . x
γn−1/γn

n−1 xn.

We obtain

Ψ(u) =

1∫
0

(1− tγn)αdt

∫
G

x
−γ1/γn

1 . . . x
−γn−1/γn

n−1

× cos(u1x1 + · · ·+ un−1xn−1 + tunx
−γ1/γn

1 . . . x
−γn−1/γn

n−1 )dx1 . . . dxn−1.

Here and in further estimates we denote by the same letter G corresponding domains in
Rn−1

+ . The only thing of importance to us is that the variables are separated from zero and
infinity.
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Let us introduce new variables

vj = xjuj(|u1|γ2 . . . |un|γn|t|γn)−1/γ, j = 1, 2, . . . , n− 1,

with γ = γ1 + γ2 + · · ·+ γn. We have

tunx
−γ1/γ2
1 . . . x

−γn−1/γn

n−1

= v
−γ1/γn

1 . . . v
−γn−1/γn

n−1 (tγn|u1|γ1 . . . |un|γn)1/γ

and

x
−γ1/γn

1 . . . x
−γn−1/γn

n−1 dx1 . . . dxn−1

= tnγn/γ−1(|u1|γ1 . . . |un|γn)n/γ|u1 . . . un|−1v
−γ1/γn

1 . . . v
−γn−1/γn

n−1 dv1 . . . dvn−1.

By this we obtain

Ψ(u) = |u1 . . . un|−1(|u1|γ1 . . . |un|γn)n/γ

×
1∫

0

(1− tγn)α tnγn/γ−1 dt

∫
G

cos

(
(tγn|u1|γ1 . . . |un|γn)1/γ(v1 + · · ·+ vn−1 + v

−γ1/γn

1 . . . v
−γn−1/γn

n−1 )

)
× v

−γ1/γn

1 . . . v
−γn−1/γn

n−1 dv1 . . . dvn−1.

It is convenient to perform one more substitution tγn/γ → t. By this we represent Ψ in the
following form

Ψ(u) = (γ/γn)|u1 . . . un|−1(|u1|γ1 . . . |un|γn)n/γ

×
1∫

0

(1− tγn)α tn−1 dt

∫
G

cos

(
t(|u1|γ1 . . . |un|γn)1/γ(v1 + · · ·+ vn−1 + v

−γ1/γn

1 . . . v
−γn−1/γn

n−1 )

)
× v

−γ1/γn

1 . . . v
−γn−1/γn

n−1 dv1 . . . dvn−1.

Our next task is to consider the inner integral. It can be rewritten in the following form∫
Rn−1

+

ϕ(v1, . . . , vn−1)e
itM(v1+···+vn−1+v

−γ1/γn
1 ...v

−γn−1/γn
n−1 ) dv1 . . . dvn−1,

where ϕ is an infinitely differentiable function supported on G, and

M = (|u1|γ1 . . . |un|γn)1/γ.

Denoting also v = (v1, . . . , vn−1) and

Φ(v) = v1 + · · ·+ vn−1 + v
−γ1/γn

1 . . . v
−γn−1/γn

n−1 ,
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we have to investigate the behavior of the integral

Qn(tM) =

∫
Rn−1

+

ϕ(v)eitMΦ(v)dv.

Let us estimate this integral by means of the stationary phase method, more precisely,
its multi-dimensional version (see, e.g., [Fr]); namely, for the integer k ≥ 1 the following
asymptotic formula is valid

Qn(R) = (2π)(n−1)/2R−(n−1)/2ei(RΦ(v0)+θ(v0))

× | det Φ′′(v0)|−1/2(ϕ(v0) +O(R−1))

+R−(n−1)/2eiRΦ(v0)

k−1∑
j=1

ajR
−j +O(R−(n−1)/2−k),

(7.5)

where v0 = (v0
1, v

0
2, . . . , v

0
n−1) is a stationary point of Φ; Φ′′ is the matrix of the second

derivatives of Φ; θ(v0) is a real number depending on det Φ′′(v0); and aj are some (complex)
numbers. Now we have to find stationary points, if existent, and calculate all the parameters
in (7.4).

We obtain for j = 1, 2, . . . , n− 1

∂Φ

∂vj
= 1− (γj/γn)v

−γ1/γn

1 . . . v
−γn−1/γn

n−1 v−1
j ,

and solving the system of n− 1 equations ∂Φ
∂vj

= 0, j = 1, 2, ..., n− 1, we get a solution

v0
j = γj(γ

γ1
1 . . . γγn

n )−1/γ.

Let us prove that just this is the unique stationary point. For this we find the value of the
determinant of the second derivatives at this point and prove that it is non-zero. We have

∂2Φ

∂vj∂vk
=


γjγkγ

−2
n v

−γ1/γn

1 . . . v
−γn−1/γn

n−1 v−1
j v−1

k , j 6= k

(γj/γn)(γj/γn + 1)v
−γ1/γn

1 . . . v
−γn−1/γn

n−1 v−2
j , j = k.

By this we obtain

det Φ′′(v) = γ−2(n−1)
n (v

−γ1/γn

1 . . . v
−γn−1/γn

n−1 )n−1

×

∣∣∣∣∣∣∣∣∣∣
γ1(γ1 + γn)v

−1
1 v−1

1 γ1γ2v
−1
1 v−1

2 . . . γ1γn−1v
−1
1 v−1

n−1

γ2γ1v
−1
2 v−1

1 γ2(γ2 + γn)v
−1
2 v−1

2 . . . γ2γn−1v
−1
2 v−1

n−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
γn−1γ1v

−1
n−1v

−1
1 γn−1γ2v

−1
n−1v

−1
2 . . . γn−1(γn−1 + γn)v

−1
n−1v

−1
n−1

∣∣∣∣∣∣∣∣∣∣
= (v

−γ1/γn

1 . . . v
−γn−1/γn

n−1 )n−1γ−2(n−1)
n v−2

1 . . . v−2
n−1γ1 . . . γn−1 ∆,
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where

∆ =

∣∣∣∣∣∣∣∣∣∣
γ1 + γn γ2 . . . γn−1

γ1 γ2 + γn . . . γn−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
γ1 γ2 . . . γn−1 + γn

∣∣∣∣∣∣∣∣∣∣
.

Standard inductive argument shows that

∆ = (γ1 + · · ·+ γn)γ
n−2
n = γγn−2

n .

Hence
det Φ′′(v) = γγ1 . . . γn−1γ

−n
n (v

−γ1/γn

1 . . . v
−γn−1/γn

n−1 )n−1v−2
1 . . . v−2

n−1.

We have
det Φ′′(v0) = γγ−1

1 . . . γ−1
n (γ

γ1/γn

1 . . . γ
γn−1/γn

n−1 γn)
n−1 > 0;

therefore v0 is a stationary point.
Now we get

Φ(v0) = (γγ11 . . . γγn
n )−1/γ(γ1 + · · ·+ γn−1)

+ (γ
γ1/γn

1 . . . γ
γn−1/γn

n−1 )−1(γγ11 . . . γ
γn−1

n−1 γ
γn
n )(γ1/γn+···+γn−1/γn)/γ

= γ(γγ11 . . . γγn
n )−1/γ.

Observe that

ϕ(v0) = (v0
1)
−γ1/γn . . . (v0

n−1)
−γn−1/γn

= γn(γ
γ1
1 . . . γγn

n )−1/γ.

Obviously, ∫
|uj |≤1,

j=1,2,...,n

|Ψ(u)| du = O(1).

It remains to estimate ∫
1≤|uj |≤πN,
j=1,2,...,n

|Ψ(u)| du.

For the leading term in (7.4), we have∫
1≤|uj |≤πN,
j=1,2,...,n

|u1 . . . un|−1(|u1|γ1 . . . |un|γn)n/γ(|u1|γ1 . . . |un|γn)(n−1)/(2γ)

×

∣∣∣∣∣∣
1∫

0

(1− tγn)αt(n−1)/2eit(|γ1|
γ1 ...|γn|γnj)−1/γΦ(v0) dt

∣∣∣∣∣∣ du.
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The inner integral is estimated as above. For α < (n− 1)/2, we obtain∫
1≤|uj |≤πN,
j=1,2,...,n−1

|u1 . . . un|−1(|u1|γ1 . . . |un|γn)n/γ

× (|u1|γ1 . . . |un|γn)(n−1)/(2γ)(|u1|γ1 . . . |un|γn)−(α+1)/γdu

= 2n
n∏
j=1

πN∫
1

u−1
j u

γj((n−1)/2−α)/γ
j duj

= O

(
n∏
j=1

Nγj((n−1)/2−α)/γ

)
= O(N (n−1)/2−α).

Now we see how to handle the other terms in (7.4), including the remainder one. Also we
see that for α > (n− 1)/2, the bounds are better than the leading term of the asymptotics
in Theorem 7.2. It remains to mention that for α = (n − 1)/2, the leading term in (7.4)
gives the product of n integrals estimated by (4.12) each, that is,

ωn lnnN +O(lnn−1N),

and the other terms give better bounds. The theorem is proved.
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8 When is the partial sums operator unbounded?

In previous considerations we studied a sequence of operators of taking partial sums de-
pending on some parameter, either scalar or vector. For any individual value of parameter
this operator was bounded even in the case when infinitely many harmonics were involved
(cf. Section 7), while the sequence of norms grew infinitely. But some situations when even
the norm of an individual operator turns out to be infinite are currently known. In both
theorems the second parts are proved by using the following result from [Ru1] (see also [Ru2,
Th.3.1.3]):

If the operator of taking partial sums with respect to some dilation of a given set is bounded,
then this set may be represented as a finite union of co-sets of discrete subgroups of the lattice
Zn.

To get a contradiction with this statement some theorems from Geometric Number Theory
are used (see [Ca1, Ca2]).

8.1. The first result is due to Belinsky [Be5] (see also [MP]). Let l1, l2, ..., lk, where k < n,
be a family of linearly independent vectors in Rn. Consider the sets

Pj = {m ∈ Zn : |ljm| ≤ 1},

and set

P =
k⋂
j=1

Pj

and

P0 =
k⋂
j=1

{x ∈ Rn : ljx = 0}.

Theorem 8.1. The following two statements hold.

1) If in P0 there exists a sublattice of Zn of dimension n− k, then

||SNP || � lnkN as N →∞.

2) If no one such sublattice exists in P0, then the operator SNP is unbounded for each N > 0.

Proof. Let α1, ..., αn−k be a basis of the sublattice consisting of all the points in P0 with
integer coordinates. Then by [Ca1, Ch.1] there exist points αn−k+1, ..., αn such that the
system α1, ..., αn forms a basis of the lattice Zn. Let us pass from the canonical basis in Zn

to the basis α1, ..., αn. Since this map, written ϕ, is an automorphism of the group Zn, the
function f(ϕ−1) also belongs to C(Tn). By this, the set P is mapped to the set

Pϕ =
k⋂
j=1

{m ∈ Zn : |γjm| ≤ 1},

where vectors γj = (γj1, ..., γjn) are defined by relations γjs = αslj for s = 1, 2, ..., n. Since
for 1 ≤ s ≤ n− k we have αslj = 0, the equalities γjs = 0 are valid for 1 ≤ s ≤ n− k. Hence

||SNP || = ||SNPϕ|| � lnkN.
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The last relation is (6.1) indeed.
Let us go on to the second assertion of this theorem. Suppose the contrary, that is,

SNP is a bounded operator for some N. Then, by the above mentioned Rudin’s result, the
set NP can be represented as a finite union of co-sets of discrete subgroups of the lattice
Zn. Observe, that if two subgroups are embedded into NP, then their direct sum is also a
group embedded into NP. Therefore, NP is a finite union of co-sets of a certain subgroup Λ.
Suppose, further, that dim Λ < n−k. Then there exists a vector α orthogonal to the vectors
l1, ..., lk as well as to the basis of Λ. It follows from [Ca2, Ch.1] that there exists an infinite
number of points with integer coordinates belonging to NP so that they are concentrated
in a neighborhood of the line x = at. This contradicts the fact that NP is representable as
a finite union of co-sets of Λ. Hence dim Λ = n− k, and the linear span of Λ coincides with
the orthogonal complement to the subspace spanned by the vectors l1, ..., lk, that is, with P.
Therefore the sublattice Λ is contained in P, and this contradiction completes the proof of
the theorem.

Remark 8.1. If in the first case of Theorem 8.1 an asymptotics is already proved for the set
considered (see Section 6), then one gets the asymptotics in Theorem 8.1 as well.

8.2. The next theorem due to Belinsky and Liflyand [BL3], is of the same nature but
deals with hyperbolic partial sums (see also Section 7). Let

Lj(x) = lj1x1 + ...+ ljnxn, j = 1, 2, ..., n,

be linear forms with nonsingular coefficient matrix

Λ = {ljk}, 1 ≤ j, k ≤ n, det Λ 6= 0,

and

H = {x ∈ Rn :
n∏
j=1

|Lj(x)| ≤ 1}.

We call the matrix Λ rational if each row of this matrix consists of integers, possibly up to
a common factor. In the contrary case, the matrix is said to be irrational.

Theorem 8.2. The following two statements hold.

1) If the matrix Λ is rational, then

||SNH || � N (n−1)/2.

2) If Λ is irrational, then there exists an integer N0 such that the operator SNH is unbounded
for all N > N0.

For n = 2, Theorem 8.2 was earlier obtained by Belinsky (see [Be3, Be4]). The proof was
not at all like that of Theorem 8.2 in [BL3] but essentially two-dimensional and relied on
some other results in Number Theory, in particular, an exact value N0 was indicated. More
precisely, in this case NH may be represented as

{(m1,m2) : |m2
1 − γ2m2

2| ≤ γN}.

If γ is irrational, then the operator is unbounded provided N > N0 = 2/
√

5. There exists an
irrational γ such that the operator is bounded as soon as N < 2/

√
5.
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Nevertheless, even in this case the second part of Theorem 8.2 cannot be established for
sets

Hγ =

{∏
|Lj|γj ≤ 1

}
,

since no corresponding results in Number Theory are available to treat this more general
case. Any new number theory results for Hγ, that is, some special versions of Minkowski’s
theorem, will immediately lead to certain extensions of Theorem 8.2.
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9 Integrability of multiple trigonometric series

A comparatively detailed survey of one-dimensional results on integrability of trigonometric
series was given in Section 0. Corresponding multidimensional extensions are closely related
to estimates of Lebesgue constants in the same way as for dimension one. The number of
such extensions may be compared with the number of the most important one-dimensional
results. It is natural, in some sense, since such extensions are proved mostly by repeating
the corresponding one-dimensional argument. Nevertheless, it is not always so simple as it
may seem, and sometimes peculiarities of the multidimensional case are displayed. The fol-
lowing authors started and then continued such generalizations: Bugrov [Bu1], Telyakovskii
[Te1, Te3], Nosenko [N1-N4], Zaderei [Z1,Z3-Z5], Giang and Móricz [Mo,Mo0-Mo3,Mo5-
Mo8,GM0,GM1], Marzuk [Mz], C.-P. Chen [Ch1, Ch2, CH], Papp [Pa], and Ram and Bhatia
[RB].

We will give more details for the recent result due to Aubertin and Fournier [AF2] which
generalizes their own one-dimensional result [AF1]. It is of special interest not only because
of its strength but also because of involving some notions not so usual in this context. Then
much attention will be paid to the author’s results. Here a new approach connected to the
Fourier transform is used to the same extent as for simple trigonometric series (see Section
0).

9.1. The result in [AF2] as well as its prototype in [AF1] (see also [BTM3]) is of special
interest because of two reasons. First, it involves amalgam spaces introduced by N. Wiener
(see, e.g., [Fe] or [FS]). But, moreover, this leads to special strong conditions apparently
incomparable with the other ones, since no bounded variation is assumed.

Let ∑
m∈Zn

c(m)eimx (9.1)

be a trigonometric series with coefficients c(m) tending to zero at infinity. It is well-known
that this is not sufficient for integrability. A natural restriction is that the differences of the
coefficients are also small enough. In what follows mixtures of differences in all directions
are involved. For each index j with 1 ≤ j ≤ n, let

∆jc(m) = c(m)− c(m1, ...,mj−1,mj + 1,mj+1, ...,mn)

be the usual forward difference with respect to the jth component. The operators ∆j com-

mute; let ∆ =
n∏
j=1

∆j. The condition on the sizes of ∆c(m) involves amalgams of l1-norms

and l2-norms. For each positive integer j, let J(j) be the set of integers in the interval
[−2j−1, 2j−1). Given a multi-index k in Zn

+, let J(k) be the cartesian product of the sets
J(kj). Also let 2k be the multi-index with components 2kj . Given two multi-indices k and m,

denote the multi-index with components kjmj by km. For each k in Zn
+, the sets J(k)+m2k

with m ∈ Zn are disjoint and cover Zn.
Given a function d on Zn, let ||d||1,2,2k be the quantity obtained by combining norms as

follows. First compute the l1-norm of the restriction of d to each set J(k) +m2k. This norm
depends on the choice of m, and hence defines a function on Zn. Then compute the l2-norm
of that function. Further, call a set J(k)+m2k a middle translate if some component of m is

equal to 0; this is equivalent to the set J(k) +m2k having a member with some component
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equal to 0. Let ||d||′
1,2,2k denote the quantity obtained by proceeding as in the definition of

||d||1,2,2k but omitting the middle translates. Then let

I = {1, 2, ..., n}

and
||c||∆ =

∑
k:kj≥0,j∈I

||∆c||′1,2,2k .

Given integers p and q with q in the set I, consider the restriction of the function c to the set
of multi-indices m with mq = p. Identify this function in the obvious way with a function,
c(q,p) say, on Zn−1, and use the complement of {q} in I to index Zn−1 in this case. Then
form the difference

σ(q,p)c = c(q,p) − c(q,−p).

Products of these operators σ(q,p) with distinct indices q are well defined, and the operators

commute. Given a nonempty subset S of I and a multi-index m in Z|S|, let

σ[S,m]c =

[∏
j∈S

σ(j,mj)

]
c,

where |S| denotes the cardinality of S; then σ[S,m]c has n− |S| components. When |S| < n,

define the functional || ·||∆ on sequences on Zn−|S| as before, except for replacing n by n−|S|.
If |S| = n, then σ[S,m]c is a constant; in this case define ||σ[S,m]c||∆ to be the absolute value
of σ[S,m]c.

Definition 9.1. Call a function, c say, on Zn sufficiently symmetric if

||c||Σ =
∑
|S|>0

∑
k∈Z

|S|
+

||σ[S,2k]c||∆ <∞.

If c is fully even in the sense that c(m) is not affected if mj is replaced by −mj for any j,
then c automatically satisfies this definition.

Theorem 9.1. If the coefficients c(m) of a multiple trigonometric series (9.1) tend to zero,
have a property that ||c||∆ < ∞, and are sufficiently symmetric, then the series represents
an integrable function.

It is shown in [AF2] that multiple cosine series automatically satisfy the symmetry con-
dition while for multiple sine series additional assumptions have to be imposed on - just like
in the one-dimensional case.

9.2. Let us recall what is the idea of the approach introduced in [L5] (see Section 0).
First, some known conditions for integrability of trigonometric series which were imposed
on the sequence of coefficients of a trigonometric series are adapted to the case of integrals.
For the classes of functions satisfying these generalized conditions, an asymptotic behavior
of the Fourier transform of a function in such class is established. Then, using Theorem 3.2,
even somewhat stronger results are derived for trigonometric series. Let us give the precise
formulations for several dimensions.

Let

I(q, p), 0 ≤ q ≤ n, 1 ≤ p ≤
(
n

q

)
,
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be the pth subset from all possible different subsets of I consisting of n− q elements; let

I(q, p; s, r), 0 ≤ s ≤ n− q, 1 ≤ r ≤
(
n− q

s

)
,

be the rth one from all possible different subsets of I(q, p) consisting of n−q−s elements. We
denote by ∂q,pf the partial derivative of a function f taken with respect to every variable with
index from I(q, p). Given a function ϕ defined on Rn

+, let ϕs,r denote the odd continuation
of ϕ in each variable with index in I(q, p; s, r).

Theorem 9.2. Let f be defined on Rn
+; let for each q, p, 1 ≤ q ≤ n, 1 ≤ p ≤

(
n
q

)
, the

functions ∂q,pf be locally absolutely continuous with respect to every variable with index from
I \ I(q, p) and

lim
x1+...+xn→∞

∂q,pf = 0.

Then for any y1, ..., yn > 0 and for any set of numbers

{aj : aj = 0 or π/2, j ∈ I}

we have ∫
Rn

+

f(x)
n∏
j=1

sin(xjyj + aj) dxj

= (−1)nf(π/(2y1), ..., π/(2yn))
n∏
j=1

(1− 2aj/π)y−1
j + θγ(y),

(9.2)

where |θ| ≤ C and∫
Rn

+

|γ(y)| dy

≤
n−1∑
q=0

(n
k)∑
p=1

n−q∑
s=0

(n−q
s )∑

r=1

∫
Rn

+

∣∣∣∣ ∫
Rn−q−s

(∂q,pf)s,r(x
y
q,p)

∏
j∈I(q,p;s,r)

dxj/(yj − xj)

∣∣∣∣
×

∏
j∈I\I(q,p)

y−1
j cos aj dy,

provided the right-hand side of the last inequality is finite (xyq,p means that yj occur on the
places corresponding to the indices j ∈ I \ I(q, p)).

Corollary 9.1. Under the assumptions of Theorem 9.2, the asymptotic relation (9.2) holds
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provided ∫
Rn

+

|γ(y)| dy

≤ Cb

n−1∑
q=0

(n
k)∑
p=1

∫
Rn

+

( ∫
yj≤xj ,
j∈I(q,p)

|(∂q,pf)s,r(x
y
q,p)|b

∏
j∈I(q,p)

dxj/yj

)1/b

×
∏

j∈I\I(q,p)

y−1
j cos yj dy

is finite for some b > 1.

Corollary 9.2. Under the assumptions of Theorem 9.2, the asymptotic relation (9.2) holds
provided ∫

Rn
+

|γ(y)| dy

≤
n−1∑
q=0

∑
p=1(

n
k) R

Rn
+

ess sup
yj≤xj ,
j∈I(q,p)

|(∂q,pf)s,r(x
y
q,p)|

×
∏

j∈I\I(q,p)

y−1
j cos aj dy <∞.

Now we are in a position to obtain estimates for trigonometric series. Set

C(x) =
n−1∑
q=0

(n
k)∑
p=1

∆I(q,p)c(m)
∏

j∈I(q,p)

(mj − xj)

on [m1 − 1,m1]× ...× [mn − 1,mn], where ∆I(q,p)c(m) denotes the mixed difference of step
1 with respect to every variable with index from I(q, p).

Theorem 9.3. Let m ∈ Zn
+ and

lim
m1+...+mn→∞

c(m) = 0.

Then for any 0 < y1, ..., yn ≤ π and for any set of numbers

{aj : aj = 0 or π/2, j ∈ I}

we have ∑
m∈Zn

+

c(m)
n∏
j=1

sin(mjyj + aj)

= (−1)nC(π/(2y1), ..., π/(2yn))
n∏
j=1

(1− 2aj/π)y−1
j + θγ(y),

(9.3)
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where |θ| ≤ C and∫
Tn

+

|γ(y)| dy

≤
n−1∑
q=0

(n
k)∑
p=1

n−q∑
s=0

(n−q
s )∑

r=1

∑
k:kj>0

∣∣∣∣ ∑
Zn−q−s

(∆q,pc)s,r(m
k
q,p)

∏
j∈I(q,p;s,r)

(kj −mj)
−1

∣∣∣∣
×

∏
j∈I\I(q,p)

k−1
j cos aj,

provided the right-hand side of the last inequality is finite (mk
q,p means that kj occur on the

places corresponding to the indices j ∈ I \ I(q, p)).

Here the procedure of odd continuation is applied to sequences.

Corollary 9.3. Under the assumptions of Theorem 9.3, the asymptotic relation (9.3) holds
provided ∫

Tn
+

|γ(y)| dy

≤ Cb

n−1∑
q=0

(n
k)∑
p=1

∑
k:kj>0

( ∑
kj≤mj ,
j∈I(q,p)

|(∆q,pc)s,r(m
k
q,p)|b

∏
j∈I(q,p)

k−1
j

)1/b

×
∏

j∈I\I(q,p)

k−1
j cos aj

is finite for some b > 1.

Corollary 9.4. Under the assumptions of Theorem 9.3, the asymptotic relation (9.3) holds
provided ∫

Tn
+

|γ(y)| dy

≤
n−1∑
q=0

(n
k)∑
p=1

∑
k:kj>0

sup
yj≤xj ,
j∈I(q,p)

|(∆q,pc)s,r(m
k
q,p)|

×
∏

j∈I\I(q,p)

k−1
j cos aj dy <∞.

The results in 9.2 are given in a stronger form than the results referred to above; indeed,
they can be derived either from Theorem 9.3 or from one of the corollaries by integrating
the obtained point-wise estimates.

9.3. In [Ku3], a result similar to that in Corollary 9.4 is given in a very special setting
(both are generalizations of the Sidon-Telyakovskii condition). The series (9.1) is considered
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to be of the form

c(0) +
∞∑
l=1

c(l)
∑

m∈(lV \(l−1)V )∩Zn

eimx, (9.4)

where V is a polyhedron with rational vertices, star-shaped with respect to the origin, which
is an interior point of it, and such that the extensions of all its faces miss the origin.

Theorem 9.4. If lim
l→∞

c(l) = 0 and there exists a decreasing numerical sequence Al such that

|c(l)− c(l + 1)| ≤ Al

for all l, and
∞∑
l=0

Al < ∞, then (9.4) converges almost everywhere on Tn and is a Fourier

series, and ∫
Tn

∣∣∣∣c(0) +
∞∑
l=1

c(l)
∑

m∈(lV \(l−1)V )∩Z

eimx
∣∣∣∣ dx ≤ C

∞∑
l=1

Al.

We mention also recent results by Kuznetsova [Ku5-Ku7]; in [Ku6] integrability conditions
for (9.4) are given in the terms of Orlicz spaces.

Let us mention the following multidimensional result; it can be found in [SW, Ch.VII,
6.5(d)]. Suppose that

∑
k

ake
ikx and

∑
k 6=0

ak(kj/|k|)eikx, j = 1, 2, ..., n,

are the Fourier-Stieltjes series of finite measures, then for each homogeneous (of degree r)
harmonic polynomial Pr(x), r = 0, 1, 2, ..., the series∑

k 6=0

(Pr(k)/|k|r)akeikx

is the Fourier series of a function in L1(Tn). The techniques used to prove this may be found
in [S1, Ch.VII].
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10 Nikolskii type results

The problem posed by S. M. Nikolskii (estimating the norms of linear means via multipliers;
see Section 0) led not only to numerous one-dimensional results but also to various multi-
dimensional generalizations. Among them are those due to I. Matveev [Ma], Grishin [Gr],
Lebed’ [Lb1], Bugrov [Bu1, Bu2], Trigub [T5, T9], Zaderei [Z2].

10.1. Let us start with one result due to Trigub [T9] in which estimates of Lebesgue
constants via multipliers differ from those obtained earlier.

Let {ej}nj=1 be the standard basis in Rn, I = {1, ..., n}, and q =
∑
qjej where the qj are

natural numbers (j ∈ I); analogously h =
∑
hjej where the hj are also natural numbers.

Set
∆hj

λk = λk − λk+hjej

(the difference operator with step-size hj in the direction ej) and

∆q
hλk =

(∏
j∈M0

∆
qj
hj

)
λk

(the “mixed” difference in the direction of all axes).

Theorem 10.1. For every p ∈ [1, 2) and q, there exists a constant C, depending only on p,
q and n, such that∫

Tn

∣∣∣∣ ∑
−Nj≤kj≤Nj

λke
ikx

∣∣∣∣p dx
≤ C

∏
j

(Nj + 1)(p−2)/2
∑

0≤sj≤[log2(Nj+1)]

2
(1−p/2)

P
j
sj
(∑

k

|∆q
hλk|

2

)p/2
,

(10.1)

where λk is taken to equal 0 for kj 6∈ [−Nj, Nj] at least for one j in the sum
∑
k

, while

h = h(s,N) is defined by the following conditions

Nj + 1

3 · 2sj
≤ hj ≤

5(Nj + 1)

6 · 2sj

and
Nj + 1

3 · 2sj
≤ hj ≤

Nj + 1

2sj
,

for j = 1, 2, ..., n, according as sj < [log2(Nj + 1)] or sj = [log2(Nj + 1)].

In several corollaries sufficient conditions are given to ensure that the Lebesgue constants
have a given rate of growth. This is done in terms of smoothness of a function generating
the sequence {λk}, namely

λk = λN,k = λ(k1/N1, ..., kn/Nn).

For one more application of Theorem 10.1, see the proof of Theorem 11.2.

10.2. The following result is a generalization of Theorem 0.1. It was obtained by Zaderei
[Z2].

Online Journal of Analytic Combinatorics, Issue 1 (2006), # 5 86



To present it, some additional notation should be introduced. Recall that

I = {1, 2, ..., n}.

Denote by akB ,lI\B
and alB−kB ,kI\B

the elements of an n-dimensional sequence

{ak} = {ak1,k2,...,kn}

with indices kj and lj − kj, respectively, for j ∈ B ⊂ I, while for j ∈ I \B those with indices
lj and kj, respectively. Let P n

k denote the set of all trigonometric polynomials of n variables
of degree not greater than k. By

pj∑
kj=lj ,j∈B

ak, B = {j1, j2, ..., js},

denote the sum
pj1∑

kj1
=lj1

pj2∑
kj2

=lj2

· · ·
pjs∑

kjs=ljs

akB ,kI\B
;

obviously, we denote akB ,kI\B
= ak for the sake of convenience. If any of the upper limits

in this sum is smaller than the corresponding lower one, consider it to be zero; for B = I

denote this sum simply by
p∑
k=l

ak.

Let for j = 1, 2, ..., n
∆j

1ak = ak − akI\{j},kj+1

and
∆j
lj
ak = akI\{j},kj−lj − akI\{j},kj+lj

be the first difference and the first symmetric difference, both with respect to kj, with step
1 and 2lj, respectively.

Let further

∆i,j
1 ak = ∆i

1(∆
j
1ak), ∆B

1 ak = ∆
B\{j}
1 (∆j

1ak),

∆I
1ak = ∆

I\B
1 (∆B

1 ak), ∆i,j
li,lj
ak = ∆i

li
(∆j

lj
ak),

∆B
lB
ak = ∆

B\{j}
lB\{j}

(∆j
lj
ak), ∆I

l = ∆
I\B
lI\B

(∆B
lB
ak),

and ∆∅
1ak = ∆∅

l∅
ak = ak. Obviously, operators ∆i

1 and ∆j
1 as well as ∆i

li
and ∆j

lj
are transitive.

Denote by
∏
j∈B

xj the product xj1xj2 · · ·xjs , and set
∏
j∈∅

xj = 1.

Let in what follows
µj = [kj/3], νj = kj − µj, j ∈ I,

and

hk(l) =


1, l ∈ P n

µ∏
j∈G

νj−lj
νj−µj

, 0 ≤ lI\G ≤ µI\G,

µG ≤ lG ≤ νG, G ⊆ I

0, l ∈ P n
k \ P n

ν .
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The inequality µG ≤ lG ≤ νG naturally denotes the fact that µj ≤ lj ≤ νj for all j ∈ G.
Starting with a sequence ak, k ∈ Zn

+, define 2n sequences a(B) = {a(B)
k } as follows

a
(B)
k = alB−kB ,kI\B

hl(k), B ⊂ I.

In accordance with the introduced notation

ak =
∑
B⊂I

a
(B)
lB−kB ,kI\B

=
∑
B⊂I

akhl(lB − kB, kI\B).

Set for B ⊂ I and G ⊂ I, B ∩G = ∅,

δkB;G(a) = δ
(k1,k2,...,kn)
B;G (a)

:=

ki−1∑
li=1,
i∈B

kj−2∑
lj=2,
j∈G

ks−1∑
ls=0,

s∈I\(B∪G)

∏
i∈B

l−1
i

∣∣∣∣ [lj/2]∑
mj=1,
j∈G

(
∆G
mG

(∆
I\B
1 ak

)∏
j∈G

m−1
j

∣∣∣∣.
If B = ∅, denote δk∅;G(a) = τ kG(a), i.e.,

τ kG(a) = τ
(k1,...,kn)
G

:=

kj−2∑
lj=2,
j∈G

ks−1∑
ls=0,

s∈I\(B∪G)

∣∣∣∣ [lj/2]∑
mj=1,
j∈G

(
∆G
mG

(∆
I\B
1 ak

)∏
j∈G

m−1
j

∣∣∣∣,
while for G = ∅, set

δkB;∅(a) = ηkB(a) :=

ki−1∑
li=1,
i∈B

ks−1∑
ls=0,

s∈I\(B∪G)

∏
i∈B

l−1
i

∣∣∣∣∆I\B
1 ak

∣∣∣∣.
Further set

qlj ,kj
= min([lj/2], [(kj − lj)/2]),

and

δ̄k;qB;G =:

ki−1∑
li=1,
i∈B

kj−2∑
lj=2,
j∈G

ks−1∑
ls=0,

s∈I\(B∪G)

∏
i∈B

l−1
i

∣∣∣∣ q(lj ,kj)∑
mj=1,
j∈G

(
∆G
mG

(∆
I\B
1 ak

)∏
j∈G

m−1
j

∣∣∣∣,
δ̄k;q∅;G(a) = τ̄ k;qG (a), τ̄ k;q∅ (a) = τ k∅ (a), δ̄k;qB;∅(a) = τ kB(a).

We are now in a position to formulate the following generalization of Theorem 0.2.

Theorem 10.2. If a matrix λ = {λN,l} = {λl}, l, N ∈ Zn
+, and λl = 0 for l ∈ Zn

+ \ P n
N−1

satisfies the inequality ∑
D,G⊂I

δ̄k;qD;G(λ(D)) ≤ C,
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where λ(D) denotes the sequence {λkD−lD,lI⊂D
}, D∩G = φ and D 6= I, then for convergence

of LλN(f ;x) at each point x for every continuous function f it is necessary and sufficient that
lim
N→∞

λN,k = 1 for every k ∈ Zn
+ and

ηNI (λ(I)) =
N−1∑
l=1

|λN−l|
∏
j∈I

l−1
j ≤ C.

Actually, necessity and sufficiency in this theorem may be represented as two separate
results, both of certain interest by themselves.

Theorem 10.3. We have the lower bound

LλN ≥ C

N−1∑
`=0

|λN,`|
∏
j∈I

(Nj − `j)
−1.

Proof. Let

∆n = {z = (z1, z2, . . . , zn) : |zj| = |xj + iyj| < 1, j = 1, 2, . . . , n}

be the unit poly-disk. Denote zk = zk11 . . . zkn
n and correspondingly rk = rk11 . . . rkn

n , and let

reit = (r1e
it1 , r2e

it2 , . . . , rne
itn).

Let 0 ≤ r ≤ 1 mean that 0 ≤ rj ≤ 1, j = 1, 2, . . . , n); and let H1 be the Hardy space of
functions f(z) analytic in ∆n so, that

sup
0≤r<1

∫
Tn

|f(reit)|dt <∞.

The following generalization of Hardy’s inequality is true (see, e.g., [Z1, ?]): if we have

Φ(z) =
∑
k∈Zn

+

bkz
k ∈ H1,

then ∑
k∈Zn

+

|bk|
∏
j∈I

(kj + 1)−1 ≤ 2−n
∫
Tn

|Φ(eit)|dt <∞.

Since

P2N(z) =

2(N−1)∑
k=0

λN,k−N+1z
k ∈ H1,

Online Journal of Analytic Combinatorics, Issue 1 (2006), # 5 89



we obtain

LλN = (2π)−n
∫
Tn

∣∣∣∣∣
N−1∑

k=−N+1

λN,ke
ikx

∣∣∣∣∣ dx
= (2π)−n

∫
Tn

∣∣∣∣∣
N−1∑

k=−N+1

λN,ke
i(k+N−1)x

∣∣∣∣∣ dx
= (2π)−n

∫
Tn

|P2N(eit)|dt

≥ C

2(N−1)∑
k=0

|λN,k−N+1|
∏
j∈I

(kj + 1)−1

> C

N−1∑
k=0

|λN,k|
∏
j∈I

(Nj − kj)
−1

which completes the proof.

Theorem 10.4. We have the upper bound

LλN ≤ C

( ∑
D,G⊂I
D 6=I

δ
N ;q

D;G(λ(D)) + ηI(λ(I))

)
.

Proof. We will give only an idea of the proof, since actually it is an n-dimensional repeating of
the one-dimensional proof. The point that should be stressed is that integrability results are
applied to (cf., e.g., Theorem 9.3 from the previous section) in order to obtain the estimate

LλN ≤ C
∑

B\G⊂I

∑
D⊂B\G,
G⊂I

∑
B⊃B\G

δ∞D;G(λ
(B)
N,k)

for D ∩G = ∅. To complete the proof, the following estimate is needed∑
B\G⊂I

∑
D⊂B\G,
G⊂I

∑
B⊂B\G

δ∞D;G(λ
(B)
N,k) ≤ C

∑
D,G⊂I

δ
N ;q

D;G(λ(D)),

which, in turn, is based on the estimate

δ∞D;G(a) ≤ C

∞∑
ki=1,
i∈D

∞∑
kj=1,
j∈G

∞∑
ks=0,

s∈I\(D∪G)

∏
i∈D

k−1
i

∏
j∈G

kj|∆G
1 (∆

I\D
1 ak)|

for any sequence {ak}, k ∈ Zn
+, and D ⊂ I, G ⊂ I, D ∩G = ∅.

Both estimates are very technical and no new tools are needed as compared with the
one-dimensional prototype [Te].

The results given here are, in our opinion, representative for the topic considered. Note
that in many cases it is very difficult to compare such types of multi-dimensional results.
Sometimes it is merely a problem of complicated notation, but it also occurs that they are
essentially incomparable.
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11 More results

In this section some results concerning Lebesgue constants are collected which are not, at
least explicitly, in the context of Fourier transforms. 11.1. The following result obtained by

A. Yudin and V. Yudin [YY1] (see Theorem 11.1 below) is closely connected to the result
of Podkorytov given above in Theorem 1.2. We mention that Theorem 11.1 was elaborated
for estimates from above of the Lebesgue constants of hyperbolic partial sums (see Section
7). It turned out that Theorem 1.2 is also well adjusted to this (Podkorytov’s private
communication).

Let U ⊂ Zn be a bounded set and t ∈ Zn. Set

Ut = {k ∈ Zn : k − t ∈ U}

and
ω(t, U) = 2|U | − |U ∩ Ut| − |U ∩ U−t|,

where |U | denotes the number of points in U.

Theorem 11.1. Let numbers L1 ≤ L2 be such that

ω(hej, U) ≤ L1h and ω(her, U) ≤ L2h

for some natural numbers r, j ∈ I, where r 6= j, and every natural number h. Then

||SU || ≤ (1/2)(L1/2)1/2 log2(L2/L1)

+ (3/(2−
√

2))L
1/2
1 .

11.2. The Lebesgue constants of step hyperbolic crosses have been considered in many
papers, together with various applications of such estimates. These problems were discussed
by Temlyakov [Tm1, Tm2], E. Galeev [Ga1, Ga2], and E. Belinsky (see, e.g., [Be8]). For
example, the following was proved by Belinsky in [Be6].

Let HN be defined as

HN =
⋃
{m ∈ Zn : 2sj ≤ |mj| < 2sj+1}

for s ∈ Zn
+ such that 0 ≤ s1 + ...+ sn ≤ N, and N = 1, 2, ....

Theorem 11.2. The following ordinal estimate holds

||SHN
|| � Nn+(n−1)/2

as N →∞.

Proof. Observe, that no one exponent is considered if at least one coordinate is zero. As in
Section 7, the operator of taking such series of smaller dimension is bounded and thus has
no effect on the final estimate.

To obtain the estimate from above, make use of Theorem 10.1. Here all Nj = 2N ,
j = 1, 2, ..., n, and λk = 1 or 0 according to whether k is within or outside the step hyperbolic
cross, respectively. This cross consists of at most Nn−1 rectangular parallelepipeds. It is
easy to see that the mixed difference ∆h does not vanish only in the case when k is in
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a neighborhood of the vertex of the parallelepiped; namely, this neighborhood is the n-
dimensional parallelepiped with length 2hj, j = 1, 2, ..., n, in the jth direction. Hence the
total number of points at which the mixed difference does not vanish, for a given s, does not
exceed

2n
n∏
j=1

2N2−sjNn−1.

Therefore, the right-hand side of (10.1) admits the following estimate, up to some constant,

2−Nn/2
∑

0≤sj≤N+1

2
P
sj/22n/22Nn/22−

P
sj/2N (n−1)/2 ≤ CNn+(n−1)/2.

The estimate from above is proved.
We now come to the estimate from below. Recall that ||SHN

|| is an integral (0.4) with
corresponding Dirichlet kernel, namely, the kernel∑

0≤s1+...
+sn≤N

n∏
j=1

sin(2sj − 1/2)xj − sin(2sj+1 − 1/2)xj
2 sin(xj/2)

.

Since on T the ratio t/(2 sin(t/2)) is uniformly bounded, we will estimate the following
integral with the kernel somewhat different from that given above∫

Tn

∣∣∣∣ ∑
0≤s1+...
+sn≤N

n∏
j=1

sin(2sj − 1/2)xj − sin(2sj+1 − 1/2)xj
xj

∣∣∣∣ dx.
Denote

ϕN(x) =
∑

0≤s1+...
+sn≤N

n∏
j=1

sin(2sj − 1/2)xj − sin(2sj+1 − 1/2)xj
xj

,

∆1ϕN(x) = ϕN(x)− ϕN+1(x),

and
∆mϕN = ∆(∆m−1ϕN).

We will continue the proof by induction on dimension. We wish to prove a slightly more
general result, namely, that for any integer m ≥ 0 we have∫

Tn

|∆mϕN(x)| dx ≥ Cm,nN
n+(n−1)/2.

In particular, the estimate needed is the one for which m = 0. Starting with n = 1, we obtain
π∫

0

|∆mϕN(x1)| dx1 =

π∫
0

∣∣∣∣ m∑
p=0

(−1)p
(
m

p

)

×
∑

0≤s1≤N+p

sin(2s1 − 1/2)x1 − sin(2s1+1 − 1/2)x1

x1

∣∣∣∣ dx1

=

π∫
0

∣∣∣∣ m∑
p=0

(−1)p
(
m

p

)
sin(2N+p+1 − 1/2)x1 − sin(x1/2)

x1

∣∣∣∣ dx1.
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Since
m∑
p=0

(−1)p
(
m

p

)
= 0,

we have
π∫

0

|∆mϕN(x1)| dx1 =

π∫
0

∣∣∣∣ m∑
p=0

(−1)p
(
m

p

)
x−1

1 sin(2N+p+1 − 1/2)x1

∣∣∣∣ dx1

≥ C

π∫
0

∣∣∣∣ m∑
p=0

(−1)p
(
m

p

)
x−1

1 sin 2N+p+1x1

∣∣∣∣ dx1 − Cm.

Substituting the variable 2Nx1 → x1, we obtain

2Nπ∫
0

∣∣∣∣ m∑
p=0

(−1)p
(
m

p

)
sin 2p+1x1

∣∣∣∣ x−1
1 dx1

≥
2Nπ∫
π

∣∣∣∣ m∑
p=0

(−1)p
(
m

p

)
sin 2p+1x1

∣∣∣∣ x−1
1 dx1

≥
2N−1∑
k=1

(k + 1)−1

(k+1)π∫
kπ

∣∣∣∣ m∑
p=0

(−1)p
(
m

p

)
sin 2p+1x1

∣∣∣∣ dx1

=

π∫
0

∣∣∣∣ m∑
p=0

(−1)p
(
m

p

)
sin 2p+1x1

∣∣∣∣ dx1

2N−1∑
k=1

(k + 1)−1.

The right-hand side is equivalent to N, and the one-dimensional case is proved.
Suppose now that our assertion is true for any dimension not exceeding n. Then we have∫

Tn+1

∣∣∣∣ m∑
p=0

(−1)p
(
m

p

)
ϕN+p(x1, x2, ..., xn+1)

∣∣∣∣ dx1 dx

=

∫
Tn

2

π∫
0

∣∣∣∣ m∑
p=0

(−1)p
(
m

p

) ∑
0≤s1≤N+p

sin(2s1 − 1/2)x1 − sin(2s1+1 − 1/2)x1

x1

× ϕN+p−s1(x2, ..., xn+1)

∣∣∣∣ dx1 dx,

where obviously dx = dx2...dxn+1. Using the known estimate for the Lebesgue constants, we
represent the last integral in the form∫

Tn

π∫
0

∣∣∣∣ m∑
p=0

(−1)p
(
m

p

) ∑
0≤s1≤N+p

sin 2s1x1 − sin 2s1+1x1

x1

× ϕN+p−s1(x2, ..., xn+1)

∣∣∣∣ dx1 dx

+O(Nn+1+(n−1)/2).
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Splitting the inner sum, we obtain the difference of the leading term and the remainder term
as follows:

∫
Tn

N−1∑
k=0

π/2k∫
π/2k+1

∣∣∣∣ m∑
p=0

(−1)p
(
m

p

)

×
∑

k≤s1≤N+p

sin 2s1x1 − sin 2s1+1x1

x1

ϕN+p−s1(x2, ..., xn+1)

∣∣∣∣ dx1 dx

−
∫
Tn

N−1∑
k=0

π/2k∫
π/2k+1

∣∣∣∣ m∑
p=0

(−1)p
(
m

p

)

×
∑

0≤s1<k

sin 2s1x1 − sin 2s1+1x1

x1

ϕN+p−s1(x2, ..., xn+1)

∣∣∣∣ dx1 dx.

Using the estimate from above already proved, we obtain the following bound for the re-
mainder term

m∑
p=0

(
m

p

)N−1∑
k=0

π2−k−1
∑

0≤s1<k

2s1(N + p− s1)
n+(n−1)/2 = O(Nn+1+(n−1)/2).

Substituting the variable in the leading term 2kx1 → x1, we transform it to be of the form

N−1∑
k=0

∫
Tn

π∫
π/2

∣∣∣∣ m∑
p=0

(−1)p
(
m

p

) ∑
k≤s1≤N+p

sin 2s1−kx1 − sin 2s1+1−kx1

x1

× ϕN+p−s1(x2, ..., xn+1)

∣∣∣∣ dx1 dx.

Changing the indices s1 − k → s1 and N − 1− k → k, and estimating x1 roughly, we arrive
at the integral

N−1∑
k=0

∫
Tn

π∫
π/2

∣∣∣∣ m∑
p=0

(−1)p
(
m

p

) ∑
0≤s1≤p+k+1

(sin 2s1x1 − sin 2s1+1x1)

× ϕk+p−s1+1(x2, ..., xn+1)

∣∣∣∣ dx1 dx.
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For this value, consider again the difference of the leading term and the remainder term

N−1∑
k=0

∫
Tn

π∫
π/2

∣∣∣∣ ∑
0≤s1≤k+1

(sin 2s1x1 − sin 2s1+1x1)

×
m∑
p=0

(−1)p
(
m

p

)
ϕk+p−s1+1(x2, ..., xn+1)

∣∣∣∣ dx1 dx

−
N−1∑
k=0

∫
Tn

π∫
π/2

∣∣∣∣ m∑
p=0

(−1)p
(
m

p

) ∑
k+1<s1≤p+k+1

(sin 2s1x1 − sin 2s1+1x1)

×ϕk+p−s1+1(x2, ..., xn+1)

∣∣∣∣ dx1 dx.

In view of the obtained estimate from above, the remainder term is estimated byO(Nn+1+(n−1)/2).
Apply the Abel transform to the inner sum in the leading term. We obtain

N−1∑
k=0

∫
Tn

π∫
π/2

∣∣∣∣ ∑
0≤s1≤k+1

(sin 2s1x1 − sin 2s1+1x1)

×∆mϕk−s1+1(x2, ..., xn+1)

∣∣∣∣ dx1 dx

≥
N−1∑
k=0

∫
Tn

π∫
π/2

∣∣∣∣ ∑
0≤s1≤k

sin 2s1x1∆
m+1ϕk−s1+1(x2, ..., xn+1)

∣∣∣∣ dx1 dx

+O(Nn+1+(n−1)/2).

Consider now the integral in x1. We have the lacunary trigonometric polynomial within the
signs of absolute value. Hence (see [Zg, Ch.V, §6]) the right-hand side in the last inequality
is greater, up to a constant, than

N−1∑
k=0

∫
Tn

( ∑
0≤s1≤k

∣∣∣∣∆m+1ϕk−s1+1(x2, ..., xn+1)

∣∣∣∣2)1/2

dx.

In view of the generalized Minkowski’s inequality, this is greater than

N−1∑
k=0

( ∑
0≤s1≤k

(∫
Tn

∣∣∣∣∆m+1ϕs1+1(x2, ..., xn+1)

∣∣∣∣ dx)2)1/2

.

Using the inductive hypothesis, we get the estimate

N−1∑
k=0

( ∑
0≤s1≤k

s
2(n+(n−1)/2)
1

)1/2

which is equivalent to Nn+1+n/2. This completes the proof.
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11.3. We now have to introduce some new notation to formulate certain results by
Dyachenko. Let A2 be the class of bounded sets U ⊂ Zn such that if m ∈ U, then

Zn
⋂ n∏

j=1

[min(mj, 0),max(mj, 0)] ⊂ U,

and let us define A1 by

A1 = {U
⋂

(0,∞)n, where U ∈ A2}.

We also define M1 as the class of n-dimensional sequences

a = {am} = {am1,...,mn},

where 1 ≤ m1, ...,mn <∞, such that 1 ≤ kj ≤ mj implies that ak ≥ am ≥ 0. Set also

∏
(x) =

n∏
j=1

(|xj|+ 1),

and it is then possible to give the following assertions.

Theorem 11.3. Given U ∈ A1 or U ∈ A2 and a number p ∈ [1, 2n/(n + 1)), then there
holds the estimate

||SU ||Lp ≤ Cp,n max
m∈U

(∏
(m)

)(1−1/n)/2

.

We note that Theorem 11.3 yields the upper bound in Theorem 7.1 in the case 1) for
α = 0 and γ1 = ... = γn = 1, that is, for the Lebesgue constants of hyperbolically symmetric
partial sums.

Corollary 11.1. The following inequalities are satisfied under the hypotheses of Theorem
11.3:

||SU ||Lp ≤ Cp,n|U |(1−1/n)/2

and

||SU ||Lp ≤ Cp,n

(∑
m∈U

(∏
(m)

)−2/(n+1))(1+1/n)/2

.

The first inequality of Corollary 11.1 was proved in [Dy2] for p = 1 and U ∈ A1 with the
constant C1,n = 50n3. In [Dy1] a similar estimate was obtained with an additional logarithmic
factor. Some other estimates for p > 1 as well as some open problems can be found in the
survey [Dy3, Sect.3].

We mention also Ustina’s results on the Lebesgue constants of the two-dimensional Haus-
dorff method (see [U]) - this is a partial extension of the one-dimensional result from [LN]
to the case of two dimensions (cf. also Proposition 5.1).

One more point of interest closely related to our subject is point-wise behavior of spherical
Dirichlet kernels ∑

|k|≤N

eikx.
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Such results depend on very delicate number theory techniques and go back to investigations
of Walfisch and Landau. One can find a kind of a brief survey of these questions in [Dy3].
We mention especially the paper by K. I. Babenko [Ba4] and a recent paper by A. Yudin
[YA].
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don Math. Soc. 40 (1965), 628–634.

[Br1] L. Brandolini , Estimates for Lebesgue Constants in Dimension Two, Annali di
Matematica Pura e Applicata(IV) CLVI (1990), 231–242.

[Br2] , Fourier transform of characteristic functions and Lebesgue constants for
multiple Fourier series, Colloquium Math. LXV (1993), 51–59.

[Bu1] Ya. S. Bugrov, Approximation of functions of several variables by trigonometric
polynomials, Trudy nauch. ob’ed. prepod. fiz.-mat. fak. pedag. inst. Dal’n. Vost.,
Khabarovsk 1 (1962), 28–49 (Russian).

[Bu2] , On linear summation methods of Fourier series, Analysis Math. 5 (1979),
119–133.
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