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Abstract. Bargraphs are lattice paths in N2
0 with three allowed types of steps; up (0, 1),

down (0,−1) and horizontal (1, 0). They start at the origin with an up step and terminate
immediately upon return to the x-axis. A wall of size r is a maximal sequence of r
adjacent up steps. In this paper we develop the generating function for the total number
of walls of fixed size r ≥ 1. We then derive asymptotic estimates for the mean number
of such walls.

1. Introduction

Bargraphs are lattice paths in N2
0, starting at the origin and ending upon first return

to the x-axis. The allowed steps are the up step, u = (0, 1), the down step, d = (0,−1)
and the horizontal step, h = (1, 0). The first step has to be an up step and the horizontal
steps must all lie above the x-axis. An up step cannot follow a down step and vice versa.
It is clear that the number of down steps must equal the number of up steps. Related
lattice paths such as Dyck paths and Motzkin paths have been studied extensively
(see [8, 15]) whereas until recently bargraphs, which are fundamental combinatorial
structures, have not attracted the same amount of interest. The present authors have
studied height, levels, area and peaks of bargraphs in [1, 2, 3, 4].

Previously, Bousquet-Mélou and Rechnitzer in [5] enumerated (by their site-perimeter)
the simplest family of polyominoes that are not fully convex, namely bargraphs. The
generating function is shown to be a q-series into which an algebraic series has been
substituted. Geraschenko in [12] also studied bargraphs, which were named skylines.
Wall polyominoes were investigated by Feretić, in [10]. Bargraphs models arise fre-
quently in statistical physics, see for example [6, 9, 16, 18, 21, 22, 23]. In addition,
bargraphs are commonly used in probability theory to represent frequency diagrams
and are also related to compositions of integers [17].

In this paper we investigate walls, which are maximal sequences of one or more
adjacent up steps. The study of walls in bargraphs is related to the modelling of
tethered polymers under pulling forces, see [19, 20]. These pulling forces have vertical
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and horizontal components and tend to be resisted by what is known as the stiffness of
the polymers. The polymers undergo phase changes, called the stretched (adsorption)
phase, where the polymer is stretched vertically. The stretched phase occurs only when
the vertical force is not zero. The degree of stretching is a function of the size of the
walls and fundamentally determines where a phase change occurs. We will fix the
height of the walls to be r, and determine the number of walls of height r for each
r ≥ 1. A wall can be thought of as a maximal ascent; work on ascents in compositions
and partitions can be found in [7, 13, 14]. We find the generating functions F(x, y, w)
where x counts the horizontal steps, y the up vertical steps and w the number of walls.

In this paper, we use a return to the first level decomposition consisting of three
cases shown in Figure 1 below. This is a simplification of the so-called wasp-waist
decomposition which had five cases and was previously used in [1, 2, 3, 4, 5]

Note that part α of case 1 and 3 may be empty; other parts are not.

= +

α α

+

1 2 3

Figure 1. Return to the first level decomposition of bargraphs

This decomposition is different to that of the previous papers [1, 2, 3, 4, 5] which all
used a five case decomposition.

2. Definitions and background

A wall in a bargraph is a subword consisting of a maximal number of adjacent up
steps. A wall of size r is a wall consisting of precisely r up steps (and therefore neither
preceded nor followed by another adjacent up step).

We define Fr(x, y, w) to be the generating function that counts bargraphs where the
number of walls of size r are counted by the variable w. The variables x and y count the
horizontal and vertical semi-perimeters respectively. We will also use the generating
function Fr,s(x, y, w) for bargraphs with walls of size r and where the first column is of
height s. The generating function for all bargraphs can be found in [5] amongst others.
It is given by

B(x, y) =
1− x− y− xy−

√
(1− x− y− xy)2 − 4x2y

2x
. (2.1)
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If we substitute z = y = x we obtain the generating function for the semi-perimeter
counted by z, often called the isotropic generating function

B(z, z) =
1− 2z− z2 −

√
1− 4z + 2z2 + z4

2z
. (2.2)

To find the asymptotics for B(z, z), we must first compute the dominant singularity ρ
which is the positive root of D := 1− 4z + 2z2 + z4 = 0. We find

ρ =
1
3

(
−1− 4× 22/3

(13 + 3
√

33 )1/3
+
(
2(13 + 3

√
33 )

)1/3
)
= 0.295598 · · · . (2.3)

Then B(z, z) ∼ Cρ −
√

1−ρ−ρ3

ρ

(
1− z

ρ

)1/2
where Cρ = 0.543689 · · · .

Singularity analysis is a method for finding the asymptotics of the coefficients of
a generating function by studying the behaviour of the function near its dominant
singularities. By singularity analysis (see [11]) we have

[zn]B(z, z) ∼ 1
2

√
1− ρ− ρ3

πρn3 ρ−n. (2.4)

3. Walls of size one

In this section, we find the generating function F1 := F1(x, y, w) for bargraphs where
walls of size one are counted by the variable w. We first obtain F1,1 := F1,1(x, y, w)
which counts bargraphs where the first column is of height 1. To find F1,1 we use the
decomposition illustrated below, where the 1’s and 2’s specify the height of its indicated
column:

+ 1 2 1 2+ + -- --

Figure 2. Decomposition for bargraphs with first column of height 1

This yields
F1,1 = xyw + xF1,1 + xw2F1,2 + xw(F1 − F1,1 − F1,2), (3.1)

where F1,2 is the generating function for bargraphs whose first column is of height 2.
The generating function F1,2 is obtained with the use of the following decomposition
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1 + 1
1

Figure 3. Decomposition for bargraphs with first column of height 2

Thus

F1,2 =
yF1,1

w
+

F2
1,1

w2 . (3.2)

For the raised case 2 from Figure 1, we shall denote the generating function by FR
1 ,

where the decomposition is illustrated below

-- +1 1

Figure 4. Decomposition for raised bargraphs

This yields the formula for FR
1 as

FR
1 = (F1 − F1,1)y +

F1,1y
w

. (3.3)

Thus by the general decomposition in Figure 1

F1 = F1,1 + FR
1 +

FR
1 F1,1

yw
. (3.4)

Our aim is to solve for F1. Substituting equations (3.1), (3.2) and (3.3) into (3.4) we
obtain the following cubic equation in F1

F3
1 x2 + F2

1 x(−2 + 2x + y + wxy) + F1(1− 2x + x2 − y + xy− wxy + 2wx2y− xy2 + wxy2)

= xy(w− wx + y− wy). (3.5)

In order to find the total number of walls of size one, we differentiate (3.5) with respect
to w and then put w = 1. For simplicity, we use F1(1) for F1(x, y, 1) and F′1(1) for
∂F1(x,y,w)

∂w

∣∣
w=1. Thus, we have

y2(1 + F1(1)) + (−2 + x− 4F1(1) + 4xF1(1) + 3xF2
1 (1))F′1(1)

+ y
(
− 1 + F1(1)(−1 + 2F′1(1)) + x(1 + F1(1))(1 + F1(1) + 2F′1(1)

)
=
−1 + y

x
F′1(1).
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However, we know that F1(1) is the generating function for all bargraphs (see [1, 2]).
So

F1(1) =
1

2x

(
1− x− y− xy−

√
(1− x− y− xy)2 − 4x2y

)
. (3.6)

The solution for F′1(1) is

F′1(1)

=
xy− 2x2y− xy2 + (x− x2 − 4x2y− xy2)F1(1) + (x− 2x2 − xy− 2x2y)F2

1 (1)− x2F3
1 (1)

1− 2x + x2 − y + 2x2y + (−4x + 4x2 + 2xy + 2x2y)F1(1) + 3x2F2
1 (1)

.

(3.7)

Substituting the expression for F1(1) from (3.6) into the derivative (3.7), we get

F′1(1) =
xy(1− y)

[
1− x(1− y) + y +

√
X
]

1 + x2(1− y)2 − 2y + y2 + (1 + y)
√

X− x(1− y)(2 + 2y +
√

X)
(3.8)

where X = (1− y)(1 + x2(1− y)− y− 2x(1 + y)).
The series expansion for this derivative up to the term in x5 and y5 with the pertinent

term in bold illustrated in Figure 5 is

xy + x2(y + 2y2 + 2y3 + 2y4 + 2y5) + x3(y + 6y2 + 12y3 + 18y4 + 24y5)

+ x4(y + 12y2 + 42y3 + 92y4 + 162y5) + x5(y + 20y2 + 110y3 + 340y4 + 780y5) + · · · .

We illustrate below, in bold, the six walls of size one in the bargraphs represented by
x3y2. Note that the first 3 bargraphs in Figure 5 contain no wall of size 1.

Figure 5. The 6 walls of size 1 corresponding to x3y2

3.1. Asymptotics. We are now going to consider an asymptotic expression for the total
number of walls of size 1 as the semi-perimeter of the bargraph tends to infinity. For
this, we use the isotropic generating function where y is replaced by x. After this
substitution, x measures the total semi-perimeter in the bargraph.

∂F1(x, x)
∂w

∣∣∣∣
w=1

=
(1− x)x2(1 + x2 +

√
1− 4x + 2x2 + x4)

1− 4x + x4 +
√

1− 4x + 2x2 + x4 + x2(2 +
√

1− 4x + 2x2 + x4)
.

(3.9)
We use the dominant singularity ρ as found in (2.3), as before it is the positive root of
D = 1− 4x + 2x2 + x4.
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As x → ρ we find that the expression for ∂F1(x,x)
∂w

∣∣∣∣
w=1

is asymptotic to

∂F1(x, x)
∂w

∣∣∣∣
w=1
∼ ρ2 − ρ3

2
√

ρ(1− ρ− ρ3(1− x
ρ )

1/2
.

By singularity analysis, see [11], we find that

[xn]
∂F1(x, x)

∂w

∣∣∣∣
w=1
∼ ρ2 − ρ3

2
√

πρn
√

1− ρ− ρ3
ρ−n as n→ ∞.

In order to find the average number of walls of size 1, we divide by the number of
bargraphs of size n which was found in (2.4). Thus, we have the following result

Theorem 1. The average number of walls of size one is asymptotic to
ρ2 − ρ3

1− ρ− ρ3 n as n→ ∞.

Numerically this is C n where C = 0.0907039.

4. Walls of size r

In the previous section, we considered walls of size 1, in this section we consider
walls of size r where r > 1. Again, we shall use Fr,s as the generating function for
bargraphs with walls of size r starting with a first column of height s.

First, we consider Fr,1 for r > 1. The decomposition for Fr,1 is given below



WALLS IN BARGRAPHS 7

1
= + --r r+1 r+ + r+1--

Figure 6. Decomposition for Fr,1

Thus
Fr,1 = xy + x(Fr − Fr,r − Fr,r+1) +

x
w

Fr,r + xwFr,r+1, (4.1)

where the decomposition for bargraphs with generating function Fr,r is

r =
r-1

+
r-1

1

Figure 7. Decomposition for Fr,r

so that
Fr,r = ywFr,r−1 + wFr,r−1Fr,1 = wFr,r−1(y + Fr,1). (4.2)

Next, we consider the generating function Fr,i, where 1 < i < r. The decomposition is
the same as in Figure 7 except that all r’s are replaced by i’s. Hence

Fr,i = yFr,i−1 + Fr,i−1Fr,1 = Fr,i−1(y + Fr,1). (4.3)

Iterating (4.3) yields
Fr,i = (y + Fr,1)

i−1Fr,1. (4.4)
Similarly we compute Fr,r as

Fr,r = w(y + Fr,1)Fr,r−1 = w(y + Fr,1)
r−1Fr,1. (4.5)

To find Fr,r+1, we use a similar decomposition to that shown in Figure 7 except that
every r is replaced by r + 1.

Thus we obtain
Fr,r+1 =

yFr,r

w
+

Fr,rFr,1

w
= (y + Fr,1)

rFr,1. (4.6)

Again, using the decomposition from Figure 1

Fr = Fr,1 + FR
r +

FR
r Fr,1

y
. (4.7)

The raised case 2 from Figure 1 has generating function FR
r with decomposition:
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= -- --r-1 r + + rr-1

Figure 8. Decomposition for FR
r

Therefore,

FR
r = y(Fr − Fr,r−1 − Fr,r) + ywFr,r−1 +

y
w

Fr,r. (4.8)

Using (4.4) this simplifies to

FR
r =

(
Fr − (y + Fr,1)

r−2Fr,1 − Fr,r

)
y + yw(y + Fr,1)

r−2Fr,1 +
y
w

Fr,r. (4.9)

We eliminate FR
r , Fr,r and Fr,r+1 from (4.1), (4.5), (4.6), (4.7) and (4.9) to obtain two

equations in Fr,1 and Fr. These are

Fr,1 = xy+ x(Fr−w(y+ Fr,1)
r−1Fr,1− (y+ Fr,1)

rFr,1)+ x(y+ Fr,1)
r−1Fr,1 + xw(y+ Fr,1)

rFr,1
(4.10)

and

Fr

=
[
(Fr − (y + Fr,1)

r−2Fr,1 − w(y + Fr,1)
r−1Fr,1)y + yw(y + Fr,1)

r−2Fr,1 + y(y + Fr,1)
r−1Fr,1

]
(

Fr,1

y
+ 1
)
+ Fr,1. (4.11)

Since, we are interested in the total number of walls of size r > 1, we differentiate
equations (4.10) and (4.11) as before. For the derivative of equation (4.10) we have

F′r,1(1)

=
x
[

F2
r,1(1)(y + Fr,1(1))r + yF′r(1) + Fr,1(1)(−(y + Fr,1(1))r + y(y + Fr,1(1))r + F′r(1))

]
y + Fr,1(1)

(4.12)

The derivative of equation (4.11) yields

F′r(1) =
1

y + Fr,1(1)
[
Fr,1(1)((y + Fr,1(1))r − y((y + Fr,1(1))r − 2F′r(1)) + (1 + Fr(1))F′r,1(1))

+F2
r,1(1)(−(y + Fr,1(1))r + F′r,1(1)) + y(yF′r(1) + (1 + Fr(1))F′r,1(1))

]
. (4.13)
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We solve the two simultaneous equations (4.12) and (4.13) to finally obtain

F′r(1) =
(1− x− xFr,1(1))Fr,1(1)(1− y− Fr,1(1))(y + Fr,1(1))r−1

1− x− y− xFr,1(1)− Fr,1(1)
.

However, we know from (2.1)

Fr(1) = B(x, y) =
1− x− y− xy−

√
(1− x− y− xy)2 − 4x2y

2x
.

Thus, the derivative becomes

F′r(1) =
21−rxy(−1 + y)(1 + x(−1 + y) + y−

√
X)r

√
X(−1 + x− y− xy +

√
X)

(4.14)

where X = (1− y)(1 + x2(1− y)− y− 2x(1 + y)) as in the previous section.
For example where r = 2 we obtain

F′2(1) =
xy(−1 + y)(−1 + x− y− xy +

√
(−1 + y)(−1 + x2(−1 + y) + y + 2x(1 + y)

2
√
(−1 + y)(−1 + x2(−1 + y) + y + 2x(1 + y)

,

with series expansion (up to the term in x5 and y5)

xy2 + x2(2y2 + 2y3 + 2y4 + 2y5) + x3(3y2 + 9y3 + 15y4 + 21y5)

+ x4(4y2 + 24y3 + 64y4 + 124y5) + x5(5y2 + 50y3 + 200y4 + 525y5) + · · · .

As before, we illustrate the term 3x3y2 with the three walls of size two shown in bold
below.

Figure 9. The 3 walls of size 2 corresponding to x3y2

4.1. Asymptotics. We now find an asymptotic expression for the total number of walls
of size r as the semi-perimeter of the bargraph tends to infinity. As before, we use the
isotropic generating function which is the expression for F′r(1) in (4.14) with y = x

F′r(1)
∣∣
y=x =

21−r(1− x)x2
(

1 + x2 −
√

1− 4x + 2x2 + x4
)r−1

√
1− 4x + 2x2 + x4

.

The dominant singularity is still ρ, the positive root of D = 1− 4x + 2x2 + x4.
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Thus as x → ρ, we have

F′r(1)
∣∣
y=x ∼

2−r(1− ρ)ρ2(1 + ρ2)r−1√
ρ(1− ρ− ρ3)

√
1− x/ρ

.

By singularity analysis, we obtain the following estimate for the coefficients

[xn]F′r(1)
∣∣
y=x ∼

2−r(1− ρ)ρ2(1 + ρ2)r−1√
nπρ(1− ρ− ρ3)

ρ−n as n→ ∞.

Thus, after dividing by the asymptotic number of bargraphs in (2.4), we have the fol-
lowing result

Theorem 2. The average number of walls of size r is asymptotic to 21−r(1−ρ)ρ2(1+ρ2)r−1

1−ρ−ρ3 n as
n→ ∞.

Numerically this average is Crn where for example C2 = 0.04931, and C3 = 0.02681.
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[10] S. Feretić, A perimeter enumeration of column-convex polyominoes, Discrete Math. Theor. Comput.
Sci., 9, (2007), 57–84.

[11] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009.

[12] A. Geraschenko, An investigation of skyline polyominoes.
http://people.brandeis.edu/∼gessel/47a/geraschenko.pdf

[13] S. Heubach, P. Chinn and R.P. Grimaldi, Rises, levels, drops and “+" signs in compositions:
extensions of a paper by Alladi and Hoggatt. Fibonacci Quart., 41(3), (2003), 229–239.

[14] S. Heubach, and T. Mansour, Counting rises, levels and drops in compositions. Integers, 5(1), A11,
(2005).



WALLS IN BARGRAPHS 11

[15] K. Humphreys, A history and a survey of lattice path enumeration, J. Statist. Plann. Inference,
140:8, (2010), 2237–2254.

[16] E. J. Janse van Rensburg and P. Rechnitzer. Exchange symmetries in Motzkin path and bargraph
models of copolymer adsorption. Electron. J. Comb., 9, (2002), R20.

[17] D. Merlini, F. Uncini and M. C. Verri, A unified approach to the study of general and palindromic
compositions, Integers, 4, (2004), #A23.

[18] J. Osborn and T. Prellberg, Forcing adsorption of a tethered polymer by pulling, J. Stat. Mech-
Theory E., (2010), P09018.

[19] A. Owczarek, Exact solution for semi-flexible partially directed walks at an adsorbing wall, J. Stat.
Mech.: Theor. and Exp., (2009), P11002.

[20] A. Owczarek, Effect of stiffness on the pulling of an adsorbing polymer from a wall: an exact
solution of a partially directed walk model, J. Phys. A: Math. Theor., 43, (2010), 225002 (16pp).

[21] A. Owczarek and T. Prellberg, Exact Solution of the Discrete (1+1)-dimensional SOS Model with
Field and Surface Interactions, J. Stat. Phys., 70:5/6, (1993), 1175–1194.

[22] T. Prellberg and R. Brak. Critical exponents from nonlinear functional equations for partially
directed cluster models. J. Stat. Phys., 78, (1995), 701–730.

[23] C. Richard, I. Jensen and A. J. Guttmann, Scaling Function for Self-Avoiding Polygons, Proceed-
ings TH2002 Supplement, (2003), 267–277, Birkhäuser Verlag, Basel, 2003.

A. Blecher, The John Knopfmacher Centre for Applicable Analysis and Number Theory,
School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannes-
burg, South Africa

E-mail address: Aubrey.Blecher@wits.ac.za

C. Brennan, The John Knopfmacher Centre for Applicable Analysis and Number Theory,
School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannes-
burg, South Africa

E-mail address: Charlotte.Brennan@wits.ac.za

A. Knopfmacher, The John Knopfmacher Centre for Applicable Analysis and Number Theory,
School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannes-
burg, South Africa

E-mail address: Arnold.Knopfmacher@wits.ac.za

Online Journal of Analytic Combinatorics, Issue 12 (2017), #06


